USE OF GIBBERELLIC ACID TO MANIPULATE FLOWERING IN THE 'HASS' AVOCADO: A PRELIMINARY REPORT

Similar documents
Effect of gibberellic acid treatments on flowering of avocado

DIFFERENTIATION OF AVOCADO BLOSSOM BUDS IN FLORIDA

UNIVERSITY OF CALIFORNIA, RIVERSIDE. Botany. Department of. and. Plant Sciences.

DEVELOPMENTS IN PLANT GROWTH REGULATORS: MANIPULATION OF VEGETATIVE GROWTH, FLOWERING AND FRUITING OF AVOCADOS

Plant Growth Regulators for Avocado Production

FLOWERING OF AVOCADO (Persea americana Mill.). I. INFLORESCENCE AND FLOWER DEVELOPMENT

Campo Experimental Santiago Ixcuintla, INIFAP, Apdo. Postal 100, HORTSCIENCE 41(7):

1996 Avocado Research Symposium pages California Avocado Society and University of California, Riverside. Gemüsebau der Universität Bonn

Involvement of endogenous plant hormones (IAA, ABA, GAs) in leaves and flower bud formation of satsuma mandarin (Citrus unshiu Marc.

EFFECTS OF CROP LOAD ON VEGETATIVE GROWTH OF CITRUS

A ROLE FOR CARBOHYDRATE LEVELS IN THE CONTROL OF FLOWERING IN CITRUS

Developing Off-season Production Technique for Rambutan

SCANNING ELECTRON MICROSCOPY OF FLORAL INITIATION AND DEVELOPMENTAL STAGES IN SWEET CHERRY (PRUNUS AVIUM) UNDER WATER DEFICITS HAKAN ENGIN

REDUCTION OF INITIAL FRUIT SET THROUGH THE USE OF A CHEMICAL FRUIT SET THINNER ETHEPHON

Scientia Horticulturae, 25 (1985) Elsevier Science Publishers B.V., Amsterdam --Printed in The Netherlands

7. Summary of avocado tree architecture.

Demonstration of ammonia accumulation and toxicity in avocado leaves during water-deficit stress

The timing of oral development events is an

Effect of high temperature exposure time during ower bud formation on the occurrence of double pistils in `Satohnishiki' sweet cherry

Physiology of Flowering- The Case of Mango

Is that artificial turf or real grass? Its thicker than Bermuda!

Physiology of Pruning Fruit Trees

Height Variability Obtained From a New Dwarf Avocado Tree Population

EVALUATION OF AVOCADO COLD HARDINESS

FRUIT-BUD DIFFERENTIATION IN MANGO 'ALPHONSO' AND 'TOTAPURI' UNDER MILD TROPICAL RAINY CONDITIONS

INFLUENCE OF PHOTOPERIOD ON IMPROVED 'WHITE SIM' CARNATION (DIANTHUS C A R Y O P H Y L L U S L.) BRANCHING AND FLOWERING

applied urea improves freezing protection avocado and peach

Plant Growth and Development Part I. Levels of Organization

Response Of Blueberry To Day Length During Propagation

Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

ALMOND FLOWER DEVELOPMENT. Timing of Floral Differentiation in Three Cultivars in Four California Almond-Growing Areas

Preharvest Growth Regulators in Apple

THE IRON-CHLOROPHYLL RELATEONSHIP IN YOUNG HASS AVOCADO LEAVES

Levels of Organization

Long-term Effect of Winter Gibberellic Acid Sprays and Auxin Applications on Crop Value of Clausellina Satsuma

Reproductive Bud Development of Pears (Pyrus communis L.) with Emphasis on the Bourse Shoot

Citrus Degreening. Mary Lu Arpaia University of California, Riverside. What is degreening?

USE OF POTASSIUM NITRATE ON MANGO FLOWERING

Chap 5. Differentiation and Development. 1. General Information 2. Plant Growth Hormones 3. Vegetative Physiology 4. Reproductive Physiology

Plant Growth and Development

Growth Regulator Effects on Flowering in Maize

EFFECT OF PLANT GROWTH REGULATORS ON GROWTH AND YIELD PARAMETERS OF PAPRIKA cv.ktpl-19

Plant Structure, Growth, and Development

Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands

Apple bud histology: A tool to study floral bud development in relation to biennial bearing

Class XI Chapter 15 Plant Growth and Development Biology

Class XI Chapter 15 Plant Growth and Development Biology

EFFECTS OF PACLOBUTRAZOL ON STOMATAL SIZE AND DENSITY IN PEACH LEAVES

Citrus Degreening. Ethylene Degreening What do we degreen? What is degreening?

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Citrus Degreening. What is degreening? The process of exposing green citrus fruit with low levels of ethylene to enhance coloration.

those in Arizona. This period would extend through the fall equinox (September 23, 1993). Thus, pending variation due to cloudiness, total light flux

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING.

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid

The Relationship Between Flower and Fruit Abscission and Alternate Bearing of Hass Avocado

What is the overall objective of. all cropping systems? What is the overall objective of. What resources are we mainly interested in?

Plant Juvenility Text Pages: 15 18,

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT

Cytokinin treatment and flower quality in Phalaenopsis orchids: Comparing N-6-benzyladenine, kinetin and 2- isopentenyl adenine

CONTROL SYSTEMS IN PLANTS

Peter Hirst Organization: Purdue University Telephone/ / Department of Horticulture and Landscape Architecture

TREES. Functions, structure, physiology

Role of Paclobutrazol and Ethephon in reproductive growth of Allahabad Safeda guava (Psidium guajava L.) plants at different spacing

Effect of 1-MCP on Ethylene Synthesis and Development of Cotton Flowers under Normal and High Temperature

Plant Growth and Development

Crop Development and Components of Seed Yield. Thomas G Chastain CSS 460/560 Seed Production

A review of basic tree physiology

Chapter 25 Plant Processes. Biology II

Scientia Horticulturae 82 (1999) 217±226

Olive Floral Bud Growth and Starch Content During Winter Rest and Spring Budbreak

EVALUATION OF SOME MANGO CULTIVARS UNDER NORTH INDIAN CONDITIONS

Respiration. Internal & Environmental Factors. Respiration is tied to many metabolic process within a cell

BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH Lesson 6: PLANT PARTS AND FUNCTIONS Part 4 - Flowers and Fruit

Other funding Sources Agency Name: MSU Agricultural Experiment Station /Project GREEEN Amount requested or awarded: 30,000

Understanding Cranberry Frost Hardiness

Studies on the Light Controlling Flower Initiation of Pharbitis Nil. VI. Effect of Natural Twilight. by Atsushi TAKIMOTO* and Katsuhiko IKEVA*

THE INFLUENCE OF TIMING AND DURATION OF PHOTOPERIODIC LIGHTING ON THE WINTER FLOWERING OF CARNATIONS

Plant Growth Regulators(NCERT)

Foliar Nutrient Uptake (Translocation) in HLB Affected Leaves

The mode of development in animals and plants is different

DEVELOPMENT OF NUTRITIONAL QUALITY AND BIOCHEMICAL CONTENT OF BILIMBI FRUIT BY USING PLANT HORMONE AND BARK STRESS

Development of Reproductive Organs and Initial Fruit Set in Peach and Nectarine in the Northern Highlands of Thailand

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida

Level 2 Plant Growth and Development Part I Toby Day MSU Extension Horticulture Associate Specialist

Trees are: woody complex, large, long-lived self-feeding shedding generating systems compartmented, self optimizing

Plant Propagation PLS 3221/5222

Reflexions, le site de vulgarisation de l'université de Liège

Responses of potted Hass avocado plants to paclobutrazol drenches

Avocado Thrips Subproject 2: Pesticide Evaluations and Phenology in the Field

Name Class Date. In the space provided, write the letter of the description that best matches the term or phrase.

What is Growth? Increment in biomass Increase in volume Increase in length or area Cell division, expansion and differentiation. Fig. 35.

November 2018 Weather Summary West Central Research and Outreach Center Morris, MN

can affect division, elongation, & differentiation of cells to another region of plant where they have an effect

Comparison of Early Inflorescence Development between Japanese Pear (Pyrus pyrifolia Nakai) and Quince (Cydonia oblonga Mill.)

Seed Development and Yield Components. Thomas G Chastain CROP 460/560 Seed Production

PHYSIOLOGY AND MAINTENANCE Vol. V - Phenology of Trees and Other Plants in the Boreal Zone Under Climatic Warming - Heikki Hänninen

Regulatory Systems in Plants (Ch 39)

MICROPHENOPHASES ON SOME JUNEBEARING STRAWBERRY VARIETIES IN REGION OF SKOPJE

E#ect of Daylength on the Flower Bud Di#erentiation and Development in Coriander (Coriandrum sativum L.)

Transcription:

Proceedings from Conference 97: Searching for Quality. Joint Meeting of the Australian Avocado Grower s Federation, Inc. and NZ Avocado Growers Association, Inc., 23-26 September 1997. J. G. Cutting (Ed.). Pages 106-111. USE OF GIBBERELLIC ACID TO MANIPULATE FLOWERING IN THE 'HASS' AVOCADO: A PRELIMINARY REPORT Samuel Salazar-Garcia 1 and Carol J. Lovatt 2 1 Campo Experimental Santiago Ixcuintla-INIFAP, Apdo. Postal 100, Santiago Ixcuintla, NAY 63300, Mexico 2 Department of Botany and Plant Sciences, University of California, Riverside, CA 92507-0124 Keywords: Persea americana, inflorescence development, alternate bearing, fruit set, inflorescence phenology Abstract Inflorescence development of the 'Hass' avocado (Persea americana Mill.) was investigated at the macro and microscopic level. Near the end of shoot extension, two secondary axis meristems were present in the axils of inflorescence bracts. The primary axis meristem changed shape from conical to flattened to conical followed by the initiation of additional bracts and associated secondary axis inflorescence meristems rather than additional leaf primordia. No anatomical changes were associated with commitment to flowering. The transition phase from the vegetative to reproductive condition occurred in less than one month from the end of July through August for summer flush shoots. A period of dormancy was not prerequisite for the shift to inflorescence development. Commitment to flowering resulted in formation of additional bracts with secondary axis inflorescence meristems from August to October, anthesis was seven months later. Eleven stages of external bud and subsequent inflorescence development were correlated with organogenesis for use in predicting specific stages of inflorescence development in the field. Yield had little effect on the rate of inflorescence development, which correlated with the cumulative number of nights with temperatures < 15 C, but the "on" crop reduced inflorescence number with a concomitant increase in the number of vegetative shoots. Gibberellic acid (GA 3 ) sprays at 25 mg-liter -1 in September reduced flowering intensity in "on" and "off" crop years. November sprays reduced inflorescence number in the "off" year with a concomitant increase in vegetative shoots; whereas the 2-fold increase in inflorescences in the "on" year was not significant. GA 3 caused precocious development of the vegetative shoot apex of indeterminate inflorescences. Control trees yielded 18 kgtree -1 (an "off" crop year) whereas GA 3 applied in November, January, or March increased yield to 34.8, 27.3, and 33.9 kg-tree -1, with more green late-harvested fruit (May). Kg-tree -1 of individual fruit weighing 135-177 g and 213-269 g increased 3-fold or 2-fold with GA 3 applied in November or March, respectively. GA 3 should prove useful in evening out alternate bearing in avocado.

Introduction Exogenous gibberellins have been shown to alter floral development in temperate fruit trees, such as peach, apricot, almond, cherry, plum and apple (Bradley and Crane, 1960; Griggs and Iwakiri 1961; Guttridge, 1962; Hull and Lewis, 1959), as well as in tropical fruit trees, like mango (Kachru et al, 1972; Nunez-Elisea and Davenport, 1991) and citrus (Guardiola et al, 1977; Iwahori and Oohata, 1981; Nir et al, 1972). The results of these studies and others have created a consensus in the literature that the effect of exogenous gibberellins on flowering is highly influenced by concentration and time of application in relation to the stage of floral bud development. Guardiola et al. (1982) found that the application of GA 3 any time from early November until bud break resulted in a significant inhibition of flowering in several Citrus species. They concluded that flower meristems could be reverted to vegetative apices even after petal formation. In contrast, Lord and Eckard (1987) found that irreversible commitment to flowering of the 'Washington' navel orange probably occurred once sepals were initiated. GA 3 application (100 mg-liter -1 ) prevented flowering in 90% of potentially flowering shoots only when applied to resting buds well in advance of sepal formation. Application of GA 3, in lanolin paste, to apical buds of mango cv. Dashedari before floral initiation stimulated vegetative growth in 75% of shoots. However, once flower meristems were present, GA 3 did not inhibit flowering (Kachru et al., 1972). In another study, Nunez- Elisea and Davenport (1991) sprayed GA 3 to deblossomed branches of 'Keitt' mango. A single application of either 10 or 50 mg GA 3. liter -1 delayed further flowering by more than four weeks. The greatest effect was observed with 250 mg-liter -1. These authors proposed that the delay in flowering was due to repression in floral bud initiation. A promotive and/or inhibitory response to GA 3 application has also been reported for treatments made after floral initiation. Porlingis and Boynton (1961) found a dual effect of GA 3 on strawberry flowering. GA 3 accelerated the appearance of flowers that had differentiated at the time of application but inhibited the initiation of new flowers under inductive conditions. With coffee (Coffea arabica L.), application of GA 3 (100 mg-liter -1 ) stimulated early anthesis of floral buds that were 4 mm long at the time of treatment (Schuch et al, 1990). No differences were apparent in the time of flowering for buds that were treated either earlier (< 4 mm long) or later at the candle stage (> 10 mm), which is just prior to anthesis. Thus, the effect of GA 3 was dependent on the stage of inflorescence bud development. In the case of avocado, there is no published information on the effect of exogenous GA 3 on flowering. Considering the several physiological similarities reported for avocado, mango, and citrus (Bower et al, 1990; Nevin and Lovatt, 1989; Scholefield et al, 1985), it would be beneficial to conduct research to determine the role of GA 3 in avocado flowering. The results may provide information useful to commercial production of the avocado. Lord and Eckard (1985) proposed that careful documentation of the time and pattern of floral organogenesis is a necessary prerequisite to any attempts to manipulate flowering in woody perennials. Given that the response of various plant species to GA 3 was dependent on the stage of inflorescence and flower organogenesis a series of studies under controlled environment conditions and in commercial orchards was undertaken to determine when vegetative buds of the 'Hass' avocado change to inflorescence buds and to determine the time and pattern of subsequent organogenesis. This research was in

order to develop strategies using foliar applied GA 3 to regulate inflorescence phenology and intensity of flowering in order to increase yield and even out alternate bearing of the 'Hass' avocado. Materials and methods Inflorescence development In a commercial 'Hass' avocado orchard, two apical buds (or expanding inflorescences) from 20 tree-replicates borne on summer shoots were collected weekly from July to August during an "on" and "off" crop year. Buds from each sample collected were sorted by shape and degree of expansion, fixed, sectioned and analyzed microscopically to determine anatomical development. Another study was undertaken to determine the stage of development during which commitment of the shoot primary axis meristem to flowering occurs in avocado. Three-year-old 'Hass' avocado trees on Duke 7 rootstock were induced to flower with low temperature treatments of 10-h days at 10 C and 14-h nights at 7 C for one, two, three, or four weeks in a growth chamber. At the end of the induction treatment, the temperature was increased to 25/20 C (day/night) through the end of the study. To further test commitment to flowering, GA 3 (100 mg-liter -1 ) was applied to apical and axillary buds at the end of 2, 4, and 6 weeks after exposure to low-temperature floral-induction treatments. Effect of GA 3 on espression of flowering and yield To quantify the effects of GA 3 on the 'Hass' avocado under field conditions, branches of 10-year-old 'Hass' avocado trees were sprayed with 0, 50, 100 or 1000 mg GA 3 -liter -1 in November, December or January. All treatments were made after commitment to flowering and inflorescence initiation but prior to bud break. Another study was conducted to quantify the effect on yield of GA 3 canopy sprays during "on' and "off crop years of the 'Hass' avocado. GA 3 (25 or 100 mg-liter -1 plus Triton X-100 at 1 ml-liter -1 ) was applied to separate sets of trees in September (during inflorescence initiation), November (end of inflorescence initiation), January (initial development of the perianth of terminal flowers), March (cauliflower stage), or monthly sprays from September through January. Control trees did not receive any treatment. Results and discussion A conical-shaped primary axis meristem was related to formation of leaf primordia or inflorescence bracts. Near the end of summer shoot extension, two secondary axis meristems were formed in the axils of inflorescence bracts. The primary axis meristem changed shape from conical to flattened to conical followed by the initiation of additional bracts and associated secondary axis inflorescence meristems rather than additional leaf primordia. The transition phase from the vegetative to reproductive condition occurred in less than one month from the end of July through August for summer flush shoots. A period of dormancy was not prerequisite for the shift to inflorescence development. Formation of microspores and ovule integuments occurred at the cauliflower stage

(elongation of secondary axes of the inflorescence); a stage that has been found to be responsive to treatments designed to improve pollen vigor, ovule viability, and yield. This shows how knowledge of developmental events related to flowering can be used to guide production strategies. Commitment to flowering was determined by using temperature and GA 3. Anatomical sections of apical buds at the beginning of the low-temperature floral-induction treatments and after one, two, three, or four weeks of low temperature (83% of the buds were committed to flower by the end of week 4) were indistinguishable, having a conical primary axis meristem with two inflorescence bracts bearing secondary axis meristems without apical bracts. Commitment to flowering resulted in formation of additional bracts with secondary axis inflorescence meristems. In the field, secondary axis inflorescence meristems were produced from August to October, anthesis was seven months later. GA 3 application to apical and axillary buds when at least one pair of secondary axis meristems were present and thereafter had no effect on flowering. While there was no anatomical feature to mark commitment to flowering, the results defined a system in which regulation of flowering can be critically studied in the future. Macroscopic grading was very reliable for predicting the microscopic stage of inflorescence development. Eleven stages of external bud and subsequent inflorescence development were correlated with organogenesis for use in predicting specific stages of inflorescence development in the field. Yield had little effect on the rate of inflorescence development, which was correlated with the cumulative number of nights with temperatures < 15 C. The high yield during the "on" crop year (average of 66.1 kg-tree -1 ) reduced inflorescence number with a concomitant increase in the number of vegetative shoots. Application of GA 3 on branches stimulated apical growth of all shoots. Thus, if a inflorescence bud was already differentiated, the inflorescence developed in advance of inflorescences on branches not treated with GA 3. Early GA 3 treatment (Nov.) reduced flowering intensity by stimulating the expansion of inflorescences that were only partially formed, i.e. having fewer secondary axes. In addition, GA 3 caused precocious development of the vegetative shoot of indeterminate inflorescences relative to the flowers in the same inflorescence and relative to the vegetative shoot of indeterminate inflorescences from untreated branches. GA 3 treated branches reached the cauliflower stage of inflorescence development earlier than untreated controls, but the time of anthesis was not significantly affected by GA 3. Growth of axillary buds was inhibited with increased GA 3 concentrations. GA 3 sprays to whole 'Hass' avocado trees in September reduced flowering intensity the two years of the study. November sprays reduced the number of inflorescences produced in the spring when the tree was bearing an "off' crop year with a concomitant increase in production of vegetative shoots; there was no effect in the "on" crop year. January and March applications had no effect on flowering or shoot production either year. GA 3 treatment did not affect flower parts. GA 3 had no. effect on time of flowering (days to presence of 50 inflorescences at anthesis per tree). Application of GA 3 (25 mg-liter -1 ) in November or January stimulated the precocious development of the vegetative shoot of indeterminate inflorescences. The only effect on fruit set was that the November application of GA 3 (25 mg-liter -1 ) increased fruit set in the "on" year and decreased it in the

"off' year. GA 3 was applied during the "on" crop year; thus, the yield data for the first year are for an "off crop: 18 kg-control tree -1. GA 3 (25 mg-liter -1 ) applied in November, January, or March increased yield to 35, 27, and 34 kg-tree -1, respectively, but no treatment was significantly better than the control. The November GA 3 application resulted in approximately a 3-fold increase in fruit weighing 135-177 g compared to the control. The March application resulted in a 2-fold increase in fruit weighing 213-269 g. GA 3 (25 mgliter -1 ) applications in November, January and March increased the number of lateharvested fruit (May) with green skin, i.e. reduced the number with black skin, with no negative effects on internal fruit quality or maturity. This study provides a visual index of the external characters of the inflorescence bud and subsequent inflorescence that researchers and growers can use in the field to predict specific stages of inflorescence development at the microscopic level within the bud or after bud break. Results of foliar GA 3 applications to avocado have not been previously reported. This study defined the effect of GA 3 dose and timing on vegetative shoot and inflorescence development, fruit set and fruit maturation. Our results establish that GA 3 causes precocious development of both the vegetative shoot apex of indeterminate inflorescences and the secondary axes of indeterminate inflorescences, but not of flowers. Depending on the time of application, GA 3 showed the potential to reduce flowering intensity, make leaves in indeterminate inflorescences sources rather than sinks during fruit set, and increased yield and fruit size. The larger leaves of G AS-treated trees protected fruit from sunburn earlier in their development and GA 3 kept the peel of lateharvested fruit green. The results of this research provide evidence that strategies using foliar-applied GA 3 to manipulate flowering can be developed at the commercial level to increase yield and fruit size and/or even out alternate bearing for the benefit of the avocado industry. Acknowledgments This research was supported in part by the Citrus Research Center and Agricultural Experiment Station of the Univ. of California, Riverside and by the California Avocado Commission. The senior author acknowledges the financial support of CONACYT and INIFAP of Mexico and the University of California, Riverside. References Bower, J.P., J.G.M. Cutting, C.J. Lovatt, and M.M. Blanke. 1990. Interaction of plant growth regulators and carbohydrate in flowering and fruit set. Acta Horticulturae 275:425-434. Bradley, M.V. and J.C. Crane. 1960. Gibberellic-induced inhibition of bud development in some species of Primus. Science 131:825-826. Griggs, W.H., and B.T. Iwakiri 1961. Effects of gibberellin and 2,4,5- trichlorophenoxipropionic acid sprays on Bartlett pear trees. Proceedings of the American Society for Horticultural Science 77:73-89. Guardiola, J.L., G. Monerri, and M. Agusti. 1982. The inhibitory effect of gibberellic acid and flowering in Citrus. Physiologia Plantarum 55:136-142.

Guardiola, J.L., M. Agustí and F. García-Marí. 1977. Gibberellic acid and flower bud development in sweet orange. Proceedings of the International Society of Citriculture 2:696-699. Guttridge, C.G. 1962. Inhibition of fruit-bud formation in apples with gibberellic acid. Nature 196:1008. Hull, J. and L.N. Lewis. 1959. Response of one-year-old cherry and mature bearing cherry, peach and apple trees to gibberellin. Proceedings of the American Society for Horticultural Science 74:93-100. Iwahori, S. and J.T. Oohata. 1981. Control of flowering of Satsuma mandarins (Citrus unshiu Marc) with gibberellin. Proceedings of the International Society of Citriculture 1:247 249. Kachru, R.B., R.N. Singh, and E.K. Chacko. 1972. Inhibition of flowering in Mangifera indica L. by gibberellic acid. Acta Horticulturae 24:206-209. Lord, E.M. and K.J. Eckard. 1987. Shoot development in Citrus sinensis L. (Washington navel orange). II. Alteration of developmental fate of flowering shoots after GA 3 treatment. Botanical Gazette 148:17-22. Nevin, J.M. and C.J. Lovatt. 1989. Changes in starch and ammonia metabolism during low temperature stress-induced flowering in Hass avocado - A preliminary report. South African Avocado Growers' Association Yearbook 12:21-25. Nir, I., R. Goren, and B. Leshem. 1972. Effects of water stress, gibberellic acid and 2 chloroethyltrimethylammoniumchloride (CCC) on flower differentiation in "Eureka" lemon trees. Journal of the American Society for Horticultural Science 97:774-778. Nunez-Elisea, R. and T.L. Davenport. 1991. Flowering of "Keitt" mango in response to deblossoming and gibberellic acid. Proceedings of the Florida State Horticultural Society 104: 41-43. Porlingis, I.C. and D. Boynton. 1961. Growth responses of the strawberry plant, Fragaria chiloensis var. ananassa, to Gibberellic acid and to environmental conditions. Proceedings of the American Society for Horticultural Science 78:261-269. Scholefield, P.B., M. Sedgley, and D.McE. Alexander. 1985. Carbohydrate cycling in relation to shoot growth, floral initiation, and development and yield in the avocado. Scientia Horticulturae 275:425-434. Schuch, U.K., L.H. Fuchigami, and M.A. Nagao. 1990. Gibberellic acid causes earlier flowering and synchronizes fruit ripening in coffee. Plant Growth Regulation 9:59-64.