Chapter: Motion, Acceleration, and Forces

Similar documents
9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics?

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option.

Chapter: The Laws of Motion

Chapter: Newton s Laws of Motion

Forces and Newton s Laws

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the

Chapter 3, Section 3

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable.

Section 1: Measuring Motion. Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion

Chapter 2. Forces & Newton s Laws

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box?

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Motion and Forces study Guide

Motion and Forces. Forces

What does the lab partner observe during the instant the student pushes off?

Chapter 6 Study Questions Name: Class:

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Waffles & Running Shoes

Physical Science Forces and Motion Study Guide ** YOU MUST ALSO USE THE NOTES PROVIDED IN CLASS TO PREPARE FOR THE TEST **

Newton. Galileo THE LAW OF INERTIA REVIEW

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

Section Distance and displacment

Introductory Physics, High School Learning Standards for a Full First-Year Course

Motion and Forces. Describing Motion

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

Chapter 4 Newton s Laws

Introductory Physics, High School Learning Standards for a Full First-Year Course

Newton s Laws of Motion

AP Physics Free Response Practice Dynamics

Motion. Definition a change of position

Chapter 5 Matter in Motion Focus Notes

TEACHER BACKGROUND INFORMATION FORCE

A force is could described by its magnitude and by the direction in which it acts.

Semester 1 Final Exam Review Answers

8. The graph below shows a beetle s movement along a plant stem.

Motion, Forces, and Energy

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object.

11.3 Acceleration The basketball constantly changes velocity as it rises and falls.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

Forces. Video Demos. Graphing HW: October 03, 2016

Chapter 4 Force and Motion

Pushes and Pulls. Example- an apple falling on a tree exerts a downward force with a magnitude of about 1 newton.

How Do Objects Move? Describing Motion. Different Kinds of Motion

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

Directed Reading B. Section: Newton s Laws of Motion NEWTON S FIRST LAW OF MOTION

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing

The Laws of Motion. Gravity and Friction

Semester 1 Final Exam Review Answers

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12

Forces and Motion Study Guide

Chapter 3. Accelerated Motion

AP Physics I Summer Work

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

3 Friction: A Force That Opposes Motion

Name Date Hour Table

Conceptual Physics Fundamentals. Chapter 3: EQUILIBRIUM AND LINEAR MOTION

Practice Honors Physics Test: Newtons Laws

Bellringer Day In your opinion, what are the five most important lab safety rules?

The Laws of Motion. Gravity and Friction

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

5 th Grade Force and Motion Study Guide

Vocabulary and Section Summary A

TEK 8.6C: Newton s Laws

Describing Mo tion. Speed and Velocity. What is speed?

Forces. Brought to you by:

Chapter 2. Force and Newton s Laws

Chapter 5 The Force Vector

Do Now: Why are we required to obey the Seat- Belt law?

Forces. Dynamics FORCEMAN

Circular Orbits. Slide Pearson Education, Inc.

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. A sphere with a radius of 1.7 cm has a volume of: A) m 3 B) m 3 C) m 3 D) 0.11 m 3 E) 21 m 3

Assignment 4.2 Frictional Forces CONCEPTUAL QUESTIONS: 1. What is the SI unit of the coefficient of friction (μ s or μ k )?

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

Force, Friction & Gravity Notes

Broughton High School

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

Lesson 1: How can you describe motion?

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

NCSP 2 nd Ed Chapter 4 Solutions Forces

Friction: A Force That Opposes Motion

Version 001 HW 03 TJC Hewitt Conceptual Fundamantals sizemore (Phys fall-tjc-jts) 1

Honors Physics Semester 2 Final Exam Review

Chapter 4 Conservation Laws

Transcription:

Chapter 3

Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces

1 Motion Describing Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount of time.

1 Describing Motion Motion and Position You don t always need to see something move to know that motion has taken place. A reference point is needed to determine the position of an object. Motion occurs when an object changes its position relative to a reference point. The motion of an object depends on the reference point that is chosen.

1 Describing Motion Relative Motion If you are sitting in a chair reading this sentence, you are moving. You are not moving relative to your desk or your school building, but you are moving relative to the other planets in the solar system and the Sun.

1 Distance Describing Motion An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit of length or distance is the meter (m). Longer distances are measured in kilometers (km).

1 Distance Describing Motion Shorter distances are measured in centimeters (cm).

1 Displacement Describing Motion Suppose a runner jogs to the 50-m mark and then turns around and runs back to the 20-m mark. The runner travels 50 m in the original direction (north) plus 30 m in the opposite direction (south), so the total distance she ran is 80 m.

1 Displacement Describing Motion Sometimes you may want to know not only your distance but also your direction from a reference point, such as from the starting point. Displacement is the distance and direction of an object s change in position from the starting point.

1 Displacement Describing Motion The length of the runner s displacement and the distance traveled would be the same if the runner s motion was in a single direction.

1 Speed Describing Motion You could describe movement by the distance traveled and by the displacement from the starting point. You also might want to describe how fast it is moving. Speed is the distance an object travels per unit of time.

1 Describing Motion Calculating Speed Any change over time is called a rate. If you think of distance as the change in position, then speed is the rate at which distance is traveled or the rate of change in position.

1 Describing Motion Calculating Speed The SI unit for distance is the meter and the SI unit of time is the second (s), so in SI, units of speed are measured in meters per second (m/ s).

1 Describing Motion Calculating Speed Sometimes it is more convenient to express speed in other units, such as kilometers per hour (km/h).

1 Describing Motion Motion with Constant Speed Suppose you are in a car traveling on a nearly empty freeway. You look at the speedometer and see that the car s speed hardly changes. If you are traveling at a constant speed, you can measure your speed over any distance interval.

1 Describing Motion Changing Speed Usually speed is not constant. Think about riding a bicycle for a distance of 5 km, as shown.

1 Describing Motion Changing Speed How would you express your speed on such a trip? Would you use your fastest speed, your slowest speed, or some speed between the two?

1 Describing Motion Average Speed Average speed describes speed of motion when speed is changing. Average speed is the total distance traveled divided by the total time of travel. If the total distance traveled was 5 km and the total time was 1/4 h, or 0.25 h. The average speed was:

1 Describing Motion Instantaneous Speed A speedometer shows how fast a car is going at one point in time or at one instant. The speed shown on a speedometer is the instantaneous speed. Instantaneous speed is the speed at a given point in time.

1 Describing Motion Changing Instantaneous Speed When something is speeding up or slowing down, its instantaneous speed is changing. If an object is moving with constant speed, the instantaneous speed doesn t change.

1 Describing Motion Graphing Motion The motion of an object over a period of time can be shown on a distance-time graph. Click image to play movie. Time is plotted along the horizontal axis of the graph and the distance traveled is plotted along the vertical axis of the graph.

1 Describing Motion Plotting a Distance-Time Graph On a distance-time graph, the distance is plotted on the vertical axis and the time on the horizontal axis. Each axis must have a scale that covers the range of number to be plotted.

1 Describing Motion Plotting a Distance-Time Graph Once the scales for each axis are in place, the data points can be plotted. After plotting the data points, draw a line connecting the points.

1 Velocity Describing Motion Speed describes only how fast something is moving. To determine direction you need to know the velocity. Velocity includes the speed of an object and the direction of its motion.

1 Velocity Describing Motion Because velocity depends on direction as well as speed, the velocity of an object can change even if the speed of the object remains constant. The speed of this car might be constant, but its velocity is not constant because the direction of motion is always changing.

1 Question 1 Section Check What is the difference between distance and displacement?

1 Answer Section Check Distance describes how far an object moves; displacement is the distance and the direction of an object s change in position.

1 Question 2 Section Check is the distance an object travels per unit of time. A. acceleration B. displacement C. speed D. velocity

1 Answer Section Check The answer is C. Speed is the distance an object travels per unit of time.

1 Question 3 Section Check What is instantaneous speed? Answer Instantaneous speed is the speed at a given point in time.

2 Acceleration Acceleration, Speed and Velocity Acceleration is the rate of change of velocity. When the velocity of an object changes, the object is accelerating. A change in velocity can be either a change in how fast something is moving, or a change in the direction it is moving. Acceleration occurs when an object changes its speed, its direction, or both.

2 Acceleration Speeding Up and Slowing Down When you think of acceleration, you probably think of something speeding up. However, an object that is slowing down also is accelerating. Acceleration also has direction, just as velocity does.

2 Acceleration Speeding Up and Slowing Down If the acceleration is in the same direction as the velocity, the speed increases and the acceleration is positive.

2 Acceleration Speeding Up and Slowing Down If the speed decreases, the acceleration is in the opposite direction from the velocity, and the acceleration is negative.

2 Acceleration Changing Direction A change in velocity can be either a change in how fast something is moving or a change in the direction of movement. Any time a moving object changes direction, its velocity changes and it is accelerating.

2 Changing Direction The speed of the horses in this carousel is constant, but the horses are accelerating because their direction is changing constantly. Acceleration

2 Acceleration Calculating Acceleration To calculate the acceleration of an object, the change in velocity is divided by the length of time interval over which the change occurred. To calculate the change in velocity, subtract the initial velocity the velocity at the beginning of the time interval from the final velocity the velocity at the end of the time interval.

2 Acceleration Calculating Acceleration Then the change in velocity is:

2 Acceleration Calculating Acceleration Using this expression for the change in velocity, the acceleration can be calculated from the following equation:

2 Acceleration Calculating Acceleration If the direction of motion doesn t change and the object moves in a straight line, the change in velocity is the same as the change in speed. The change in velocity then is the final speed minus the initial speed.

2 Acceleration Calculating Positive Acceleration How is the acceleration for an object that is speeding up different from that of an object that is slowing down? Suppose a jet airliner starts at rest at the end of a runway and reaches a speed of 80 m/s in 20 s.

2 Acceleration Calculating Positive Acceleration The airliner is traveling in a straight line down the runway, so its speed and velocity are the same. Because it started from rest, its initial speed was zero.

2 Acceleration Calculating Positive Acceleration Its acceleration can be calculated as follows:

2 Acceleration Calculating Positive Acceleration The airliner is speeding up, so the final speed is greater than the initial speed and the acceleration is positive.

2 Acceleration Calculating Negative Acceleration Now imagine that a skateboarder is moving in a straight line at a constant speed of 3 m/s and comes to a stop in 2 s. The final speed is zero and the initial speed was 3 m/s.

2 Acceleration Calculating Negative Acceleration The skateboarder s acceleration is calculated as follows:

2 Acceleration Calculating Negative Acceleration The skateboarder is slowing down, so the final speed is less than the initial speed and the acceleration is negative. The acceleration always will be positive if an object is speeding up and negative if the object is slowing down.

2 Acceleration Amusement Park Acceleration Engineers use the laws of physics to design amusement park rides that are thrilling, but harmless. The highest speeds and accelerations usually are produced on steel roller coasters.

2 Acceleration Amusement Park Acceleration Steel roller coasters can offer multiple steep drops and inversion loops, which give the rider large accelerations. As the rider moves down a steep hill or an inversion loop, he or she will accelerate toward the ground due to gravity.

2 Acceleration Amusement Park Acceleration When riders go around a sharp turn, they also are accelerated. This acceleration makes them feel as if a force is pushing them toward the side of the car.

2 Question 1 Section Check Acceleration is the rate of change of.

2 Answer Section Check The correct answer is velocity. Acceleration occurs when an object changes its speed, direction, or both.

2 Question 2 Section Check Which is NOT a form of acceleration? A. maintaining a constant speed and direction B. speeding up C. slowing down D. turning

2 Answer Section Check The answer is A. Any change of speed or direction results in acceleration.

2 Question 3 Section Check What is the acceleration of a hockey player who is skating at 10 m/s and comes to a complete stop in 2 s? A. 5 m/s 2 B. -5 m/s 2 C. 20 m/s 2 D. -20 m/s 2

2 Answer Section Check The answer is B. Calculate acceleration by subtracting initial velocity (10 m/s) from final velocity (0), then dividing by the time interval (2s). (0 m/s 10 m/s) = 5 m/s 2s

3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable.

3 Motion and Forces Changing Motion A force can cause the motion of an object to change. If you have played billiards, you know that you can force a ball at rest to roll into a pocket by striking it with another ball.

3 Motion and Forces Changing Motion The force of the moving ball causes the ball at rest to move in the direction of the force.

3 Motion and Forces Balanced Forces Force does not always change velocity. When two or more forces act on an object at the same time, the forces combine to form the net force.

3 Balanced Forces The net force on the box is zero because the two forces cancel each other. Forces on an object that are equal in size and opposite in direction are called balanced forces. Motion and Forces

3 Motion and Forces Unbalanced Forces When two students are pushing with unequal forces in opposite directions, a net force occurs in the direction of the larger force.

3 Motion and Forces Unbalanced Forces The net force that moves the box will be the difference between the two forces because they are in opposite directions. They are considered to be unbalanced forces.

3 Motion and Forces Unbalanced Forces The students are pushing on the box in the same direction. These forces are combined, or added together, because they are exerted on the box in the same direction.

3 Motion and Forces Unbalanced Forces The net force that acts on this box is found by adding the two forces together.

1 Friction Newton s Second Law Suppose you give a skateboard a push with your hand. According to Newton s first law of motion, if the net force acting on a moving object is zero, it will continue to move in a straight line with constant speed. Does the skateboard keep moving with constant speed after it leaves your hand?

1 Friction Newton s Second Law Recall that when an object slows down it is accelerating. By Newton s second law, if the skateboard is accelerating, there must be a net force acting on it.

1 Friction Newton s Second Law The force that slows the skateboard and brings it to a stop is friction. Friction is the force that opposes the sliding motion of two surfaces that are touching each other. The amount of friction between two surfaces depends on two factors the kinds of surfaces and the force pressing the surfaces together.

1 Newton s Second Law What causes friction? If two surfaces are in contact, welding or sticking occurs where the bumps touch each other. These microwelds are the source of friction.

1 Newton s Second Law Sticking Together The larger the force pushing the two surfaces together is, the stronger these microwelds will be, because more of the surface bumps will come into contact. To move one surface over the other, a force must be applied to break the microwelds.

1 Newton s Second Law Static Friction Suppose you have filled a cardboard box with books and want to move it. It s too heavy to lift, so you start pushing on it, but it doesn t budge. If the box doesn t move, then it has zero acceleration.

1 Newton s Second Law Static Friction According to Newton s second law, if the acceleration is zero, then the net force on the box is zero. Another force that cancels your push must be acting on the box.

1 Newton s Second Law Static Friction That force is the friction due to the microwelds that have formed between the bottom of the box and the floor. Static friction is the frictional force that prevents two surfaces from sliding past each other.

1 Newton s Second Law Sliding Friction You ask a friend to help you move the box. Pushing together, the box moves. Together you and your friend have exerted enough force to break the microwelds between the floor and the bottom of the box.

1 Newton s Second Law Sliding Friction If you stop pushing, the box quickly comes to a stop. This is because as the box slides across the floor, another force sliding friction opposes the motion of the box. Sliding friction is the force that opposes the motion of two surfaces sliding past each other.

1 Newton s Second Law Rolling Friction As a wheel rolls over a surface, the wheel digs into the surface, causing both the wheel and the surface to be deformed.

1 Newton s Second Law Rolling Friction Static friction acts over the deformed area where the wheel and surface are in contact, producing a frictional force called rolling fiction. Rolling friction is the frictional force between a rolling object and the surface it rolls on.

1 Newton s Second Law Air Resistance When an object falls toward Earth, it is pulled downward by the force of gravity. However, a friction-like force called air resistance opposes the motion of objects that move through the air. Air resistance causes objects to fall with different accelerations and different speeds.

1 Newton s Second Law Air Resistance Air resistance acts in the opposite direction to the motion of an object through air. If the object is falling downward, air resistance acts upward on the object. The size of the air resistance force also depends on the size and shape of an object.

1 Newton s Second Law Air Resistance The amount of air resistance on an object depends on the speed, size, and shape of the object. Air resistance, not the object s mass, is why feathers, leaves, and pieces of paper fall more slowly than pennies, acorns, and apples.

1 Newton s Second Law Terminal Velocity As an object falls, the downward force of gravity causes the object to accelerate. However, as an object falls faster, the upward force of air resistance increases. This causes the net force on a sky diver to decrease as the sky diver falls.

1 Newton s Second Law Terminal Velocity Finally, the upward air resistance force becomes large enough to balance the downward force of gravity. This means the net force on the object is zero. Then the acceleration of the object is also zero, and the object falls with a constant speed called the terminal velocity.

1 Newton s Second Law Terminal Velocity The terminal velocity is the highest speed a falling object will reach. The terminal velocity depends on the size, shape, and mass of a falling object.

3 Question 1 Section Check A force is a. Answer A force is a push or pull. Forces, such as the force of the atmosphere against a person s body, are not always noticeable.

3 Question 2 Section Check When are forces on an object balanced? Answer When forces are equal in size and opposite in direction, they are balanced forces, and the net force is zero.

1 Question 3 Section Check What causes friction? Answer Friction results from the sticking together of two surfaces that are in contact.

Help To advance to the next item or next page click on any of the following keys: mouse, space bar, enter, down or forward arrow. Click on this icon to return to the table of contents. Click on this icon to return to the previous slide. Click on this icon to move to the next slide. Click on this icon to open the resources file. Click on this icon to go to the end of the presentation.

End of Chapter Summary File