Process & quality Green chemistry

Similar documents
Services in Chemistry for a Sustainable World

Catalysis a Key to Sustainability Matthias Beller

Abstract Process Economics Program Report 232 CHIRAL INTERMEDIATES (March 2001)

INNOVATIVE MATERIALS FOR RESEARCH AND INDUSTRY. Elena-Oana CROITORU 1

A Compact Reactor-Pump-Cell-Injection System for In-Situ / On- Line Spectroscopic Studies

The Types of Catalysis

Chiral Process Monitoring Using Fourier Transform Microwave Spectroscopy

Examination Catalysis October

Advanced Studies in Physical Chemistry

Fall Organic Chemistry Experiment #6 Fractional Crystallization (Resolution of Enantiomers)

Asymmetric Transfer Hydrogenation: A Suitable Tool for the Synthesis of the Precursors of Pharmaceutical Substances

Silesian University of Technology, Poland Recoverable and recyclable catalysts for sustainable chemical processes

January 19, 2012, Workshop on Chemical Data Reporting (CDR) Rule Case Studies for Byproduct/Recycling Reporting

Bachelor theses. Topics at the Institut für Katalyse (INCA)

CO 2 and CO activation

Heterogeneous chiral catalysis on surfaces, in nanopores and with emulsions

Global Catalyst Market

Model-based Conceptual Design and Tool Support for the Development of Continuous Chemical Processes

Stereochemistry & Polarimetry notes

Green Engineering using Commercial Flow Reaction & Process Intensification Platforms. Vijay Kirpalani. CEO Pi Process Intensification Mumbai

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Institut für Energie und Umwelttechnik e.v.

Towards integration of continuous reactors, separation technology and process analysis

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Technical Paper. Spray Granulation Gives Solid Materials Customized. The properties of spray-granulated products can be as varied as their appearance

BIO & PHARMA ANALYTICAL TECHNIQUES. Chapter 5 Particle Size Analysis

ALE 1. Chemical Kinetics: Rates of Chemical Reactions

Abstracts. p67. X. Tan, H. Lv, and X. Zhang. R. Hudson and A. Moores

SpringerMaterials The Landolt-Börnstein Database

Rate of reaction refers to the amount of reactant used up or product created, per unit time. We can therefore define the rate of a reaction as:

SCREENING OF N,N-BIDENTATE PYRIDINE-BASED LIGANDS IN COPPER AND PALLADIUM CATALYSED REACTIONS MAURIZIO SOLINAS

Comprehensive Handbook Pdf

Chemists Do you have the Bayer Spirit?

AMRI COMPOUND LIBRARY CONSORTIUM: A NOVEL WAY TO FILL YOUR DRUG PIPELINE

Catalysis-Science and Technology. Radha V Jayaram Institute of Chemical Technology, Mumbai

Water as Organocatalysis

Incontro per l orientamento alla tesi sperimentale

Introduction to Chemoinformatics

Lecture 25: Manufacture of Maleic Anhydride and DDT

ICIQ s general presentation. Irene Puntí Resp. de Desenvolupament de Negoci

Introduction to Chemistry

Nano-Enabled Catalysts for the Commercially Viable Production of H 2 O 2

Environmental Efficiency of Chemical Processes. Dr. Anuj Kumar Mittal, Head-R&D PI Industries Ltd. IGCW Convention - December 2013

Right. First Time in Fine-Chemical Process Scale-up. Lum(Bert)us A. Hulshof. Avoiding scale-up problems: the key to rapid success

A Novel process concept for the three step Boscalid synthesis. - Supporting Information -

Master Degree in Industrial Chemistry LM-71

MICROSTRUCTURE-BASED PROCESS ENGINEERING AND CATALYSIS

Technical Resource Package 1

Rates of Reaction HL

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Pharmaceutical applications of Jacobsen HKR technology

Green Chemistry & Engineering for Pharmacuetical Industry Impact of Process Research / Route Scouting towards the Environment during API Life Cycle

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

CONTINUOUS FLOW CHEMISTRY (PROCESSING) FOR INTERMEDIATES AND APIs

OCR Chemistry Checklist

Proposed direct cost budget

Levasil and Bindzil colloidal silica dispersions. for the adhesive industry uses and benefits

GCSE CHEMISTRY REVISION LIST

Tailor-made silver particles by microemulsion for use in catalysts. Bachelor of Science Thesis in Chemical Engineering FRIDA ALMQVIST CATHRINE KEMPE

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Comparative Analysis of Homogeneous and Heterogeneous Catalysis

E. Toukoniitty, J. Wärnå, D. Yu. Murzin and T. Salmi. Common in fine chemicals production: Three-phase applications, reactant, solvent (l) -

SCH 302. Tutorial PART B ORGANIC SYNTHESIS

Combinatorial Heterogeneous Catalysis

Computational catalysis for sustainability Evgeny Pidko

Greening The Pharmaceutical Industry To Afford Good Laboratory Practice. Presented By Prof. Dr. Salwa Elmeligie Faculty of Pharmacy, Cairo University

ChromegaChiral TM CSP Media and Columns

Efficient enantioselective hydrogenation of quinolines catalyzed by conjugated microporous polymers with embedded chiral BINAP ligand

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

Notes: Unit 2: Matter

Chiral Supramolecular Catalyst for Asymmetric Reaction

The CECAM Node at Sapienza Supplementary Sapienza-Node Agreement

Heterogeneous Azeotropic Distillation Operational Policies and Control

Route selection. Learning Objectives: By the end of this module you should:

Module overview. The approach. Practical work. ICT resources. The topics. Skills assessment. Health and safety. Advance preparation

Transition-Metal Homogeneous Catalysis

ChromegaChiral TM Columns. The right choice for chiral purification

Pharma and Suppliers: Collaborating on Green Chemistry. Launch of PMI tool. ACS Green Chemistry Institute Pharmaceutical Roundtable

Matter Properties and Changes

From Friday s material

Green nanoscience: Opportunities and challenges for innovation

Green Oxidations with Tungsten Catalysts. by Mike Kuszpit Michigan State University

Chapter 6 Magnetic nanoparticles

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Supramolecular Catalysis

Organometallic Catalysis

EXPERIMENTING WITH MIXTURES, COMPOUNDS, AND ELEMENTS

Chemical Manufacturing

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Marie Skłodowska-Curie ETN program MSCA-ITN-2015-EID. MULTIMAT: A multiscale approach to mesostructured material design.

Fanning. Synthesis of Camphor by the Oxidation of Borneol. Christine Fanning

Strategies to Synthesize Supported Bimetallic Catalysts

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

CO 2 and CO activation

Adoption of Engineering Practices for Maximization of Solvent Recovery

Microwave Irradiated Deep Eutectic Solvent Catalysed Green, Rapid and Efficient Synthesis of Primary Amides

New Specification 2018 Recurring Exam Questions. How Science Works. C1 - Particles. Atom with the same atomic number and different mass number

Sustainable industrial processes based on a C C bond- forming enzyme planorm

Numerical Modelling of the Original and Advanced Version of the TEMKIN-Reactor for Catalysis Experiments in Laboratory Scale

Innovation Project Active Force Material. Alexander V. Frolov Russia, 2012

Transcription:

Process & quality Green chemistry 48 q&more 01.14

Water instead of mineral oil Innovation in chiral catalysis A milestone for the pharmaceutical industry Dipl.-Ing. Sonja Jost and Dr-Ing. Henriette Nowothnick, DexLeChem GmbH, Berlin, Germany q&more 01.14 49

Process & quality Green chemistry Optical active substances made from chiral catalysis form the basis of many drugs. Expensive precious-metal catalysts are required for the chemical production, which due to their thermal instability decompose at high temperatures and can therefore only be used once. The innovative process of DexLeChem GmbH makes it possible for the first time to use these precious-metal catalysts made from rhodium, ruthenium or iridium more than once, without modifying them. At the same time, reaction occurs in aqueous solutions instead of mineral-oil-based solvents, which increases the sustainability of the process. This is a milestone in catalysis and a real opportunity for the pharmaceutical industry. Savings in catalyst costs 80% 60% 40% One half of the pharmaceutical industry s global turnover is obtained through chiral active substances [1]. Chiral molecules have special spatial properties. They behave as an image and its reflection (enantiomers). The property of molecules being able to form enantiomers is called chirality (cheir =hand; Greek). As various enantiomers in the body can often cause a wide variety of reactions, it is important to ensure that only the structure with the healing active substance is present, i.e. that the active substance is enantiomerically pure. Currently, 70 % of all newly licensed drugs are manufactured to be enantiomerically pure, and the trend is increasing [2]. Cost savings 1 2 3 4 5 Recovery rate 98% 80% Catalyst re-using cycles Problem and solution For the manufacture of chiral molecules through homogeneous catalysis, expensive precious-metal catalysts from the platinum group are frequently used, such as rhodium, iridium, ruthenium or palladium, whose complex chiral ligand shells have been laboriously synthesized [3]. In homogeneous catalysis, the reactive materials are present with the catalyst in a single phase during the reaction time. At the end of the reaction, the catalysts cannot easily be separated from the manufactured products and recovered from the solvents used [4]. According to the current state of technology, the product and the solution are generally separated using distillation. High levels of energy must be applied to the solution to achieve this. This leads to the decomposition of the active catalysts; due to their thermal instability at high temperatures, they can only be used for one batch [5]. The catalysts become a waste product, from which only the inactive precious-metal fraction can be recycled from the catalyst residue. This is not inconsiderable with catalyst costs reaching several 100,000 euros per kilogram [6]. DexLeChem has developed a procedure that allows the repeated use of catalysts (re-using). Based on various European patent applications, the company has developed a tailor-made re-using process for industrial catalysts. DexLeChem was split off from the Unifying Concepts in Catalysis (UniCat) excellence cluster at the Berlin University of Technology and is now a leader in the field of catalysis. Fig. 1 Cost savings 50 q&more 01.14

Fig. 2 Catalytic cycle or theoretical modelling. Chiral chemical catalysts are characterised by both the high degree of purity of the product obtained and by the high efficiency of use of the raw materials. So compared with other process variants, in which the catalysts are not present in a dissolved state but are bonded to solids, significantly higher product quality is achieved through the use of dissolved metal complexes [7]. As catalysts only support the production of chiral active substances and do not themselves become part of the product, they can in theory be used as often as required. (However, in reality, due to various factors, each catalyst has just one finite lifespan.) The development results of DexLeChem show that in practice catalysts can be re-used five times without any loss of activity and can be used industrially. It is important to note here, however, that even a single re-using of a catalyst can produce a significant cost saving. Almost 50 % of the catalyst costs are saved in a single re-using at a catalyst recycling rate of 98 %. A second re-using results in a cost saving of 65 % (Fig. 1). Based on quantum chemical calculations, it is possible to access catalyst details at a molecular level and thus obtain a better understanding of catalytic cycles (Fig. 2). This is, in turn, the basis for further developments in the laboratory. In order to ensure that these calculations do not become research projects themselves, DexLeChem is using a combination of various methods. In this way, it will be possible to quickly delimit the solution space being investigated. q&more 01.14 51

Process & quality Green chemistry Sonja Jost (left), born in 1980, studied Industrial Engineering / Technical Chemistry at the Berlin University of Technology. From 2006 to 2011, she received various research fellowships in the field of homogeneous chiral catalysis. From 2011 to 2012, she was the project manager of a project receiving third-party funding on the subject of catalyst re-using at the Berlin University of Technology (EXIST research transfer), from which she founded DexLeChem GmbH together with four other co-partners at the beginning of 2013. She is the CEO. DexLeChem has been a partner in the Unifying Concepts in Catalysis (Uni- Cat) cluster of excellence since the summer of 2013, and has been honoured by the Science4Life start-up initiative, amongst others. The interdisciplinary R&D team (theoretical physics, catalysis, process engineering) around Jost specializes in homogeneous chiral catalysis processes. Henriette Nowothnick (right), born in 1980, studied Chemistry at the Berlin University of Technology. She received a doctorate in 2010 in the research group of Prof. R. Schomäcker on the control of the reaction process of the Suzuki coupling in micro emulsions with the aim of catalyst and product separation. From 2011 to 2012, she worked on the Marie Curie NANO-HOST research project in the field of two-phase catalysis in the group of Prof. D. Vogt at the Eindhoven University of Technology. She has been Head of Catalysis, Research and Development at DexLeChem GmbH since 2013. 52 q&more 01.14

Water instead of mineral oil: Reactions in aqueous solutions Separation Relevant process parameters Numerous solvents used today in industry and research have negative eco-indicators, so new approaches are required [8]. In addition to the re-using of catalysts, the use of sustainable solvents is therefore essential. One possible process design is to replace some of the mineral-oil-based solvents with water, plus solubiliser (such as medium-polar solvents) as the main-reaction media. The solubilisers are important in order to transfer unmodified ligands a substrates, which are often very hard to dissolve in water, into the aqueous solution. The product is then separated using a sustainable organic solvent. Catalyst Product Product Catalyst 1 2 3 Solvent system Reaction conditions Addition of additives In addition, there remains the possibility of carrying out reactions in an organic phase and then removing the product from the catalyst solution through aqueous extraction. The selection of the right additive is crucial here for good product/catalyst separation (Fig. 3). Fig. 3 Controlling the phase behavior. Through skilful selection of the solvent system, the phase behaviour of binary and ternary phases can be controlled by adding an extraction solvent. This is because: In an ideal case, a reaction medium should be homogeneous during the reaction and facilitate an optimal course of reaction without the effects of mass transport, and be able to be switched to a two-phase system for the product separation. [9] Solvent systems that can be controlled by temperature are called thermomorphic. Here the process starts with a mixture of water, an organic phase and a solubiliser. This mixture is homogeneous, i.e. single phase at a specific, generally higher, temperature. With a slight temperature change, a heterogeneous reaction mixture is generated (two-phase or three-phase), which optimally leads to a spatial separation of the product from the catalyst [10]. In this way, it is possible to link the benefits of heterogeneous catalysis (re-using of the catalyst and simple separation) with those of homogeneous catalysis (high selectivity and activity) [11]. The potential uses for the new green procedure are varied and are not just limited to the pharmaceutical area. They can also be transferred to the production of fragrances, so the re-using of catalysts and the use of sustainable solvents offers a broad range of possible uses in the field of homogeneous chiral catalysis. A significant saving in production costs with a simultaneous process conversion according to the principles of green chemistry can be achieved in this way [12]. jost@dexlechem.com nowothnick@dexlechem.com Bibliography [1] Calculations based on Caner, H., Groner, E., Levy, L. (2004) Drug Discovery Today; 9 (3), 105 110; Stinson, S. C. (2001) Chiral Chemistry. C&EN, 79 (20), 45 57; Fundamental rates of growth according to Gatyas, G., Savage, C. IMS Forecasts Global Pharmaceutical Market Growth of 5 8% Annually through 2014; Maintains Expectations of 4 6% Growth in 2010. IMS Health, Norwalk 20.04.2010; Inflation correction according to CPI Inflation Calculator (2010) [2] Analysis according to: Hegde, S., Schmidt, M., Annual Reports in Medicinal Chemistry 2008, Chapter 25 To Market, To Market 2007; 43, 455 497 [3] Saito, T. et al. (2001) Adv. Synth. Catal., 343 (5), 264 267 [4] Röper, M. (2006) Chemie unserer Zeit, 40, p. 127 [5] On thermal instability, see: Akutagawa, S. (1997) Topics in Catalysis, 4, 273 [6] Blaser, H.-U. in: de Vries, Johannes G. / Elsevier, Cornelis J. (editor): The Handbook of Homogeneous Hydrogenation. Wiley-VCH Weinheim 2006, 1281 [7] In chiral heterogeneous catalysts, enantiomeric excesses of less than 90 % are achieved; for example, see also M. L. Crawley (Edt.): Applications of transition metal catalysis in drug discovery and development. Wiley 2012: 385 [8] Jessop, P. G. (2011) Green Chemistry, 13: 1391 1398 [9] Schomäcker, R. et al. (2011) Chemie Ingenieur Technik, 83, 9,1343 1355 [10] Nowothnick, H. et al. (2011) Angewandte Chemie International Edition, 50, 8, 1918 1921; Angewandte Chemie; 123, 8, 1959 1962 [11] On the benefits of catalyst types, see Ronde, N. J., Vogt. D. Separation by Size-Exclusion Filtration, in: D. J. Cole-Hamilton, R. P. Tooze (editor). Catalyst Separation, Recovery and Recycling. Springer Netherlands 2006: 73 [12] Anastas, P.T. & Warner, J.C. (1998) Green Chemistry: Theory and Practice. Oxford University Press. Oxford Photo: Fotolia.com, lily q&more 01.14 53