Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Similar documents
Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Supporting Information

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Supporting Information

Supporting Information

Supporting Information. Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation. of Sulfoxonium Ylides. Xingwei Li*, Table of Contents

Maksim A. Kolosov*, Olesia G. Kulyk, Elena G. Shvets, Valeriy D. Orlov

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Supporting Information

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by reusable

hydroxyanthraquinones related to proisocrinins

Supporting Information for

Supporting Information

Accessory Information

Supporting Information

Supplementary Information

Supporting Information

Supporting Information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information

SUPPORTING INFORMATION

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Thermally Activated Delayed Fluorescence from Azasiline Based Intramolecular

Electronic Supplementary Material

Electronic Supplementary Information

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical

Supporting Material. 2-Oxo-tetrahydro-1,8-naphthyridine-Based Protein Farnesyltransferase Inhibitors as Antimalarials

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Supporting information for Bulk nanostructure of the prototypical good and poor

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Chia-Shing Wu, Huai-An Lu, Chiao-Pei Chen, Tzung-Fang Guo and Yun Chen*

Supporting Information

Supporting Information

Trisulfur Radical Anion as the Key Intermediate for the. Synthesis of Thiophene via the Interaction between Elemental.

A fluorinated dendritic TsDPEN-Ru(II) catalyst for asymmetric transfer hydrogenation of prochiral ketones in aqueous media

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Supporting Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Supporting Information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

Supporting Information

Supporting Information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

How to build and race a fast nanocar Synthesis Information

Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Appendix A. Supplementary Information. Design, synthesis and photophysical properties of 8-hydroxyquinoline-functionalized

Supplementary Information. Mapping the Transmission Function of Single-Molecule Junctions

Stereoselective Synthesis of a Topologically Chiral Molecule: The Trefoil Knot

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

SUPPLEMENTARY INFORMATION

An improved preparation of isatins from indoles

SUPPORTING INFORMATION

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Compound Number. Synthetic Procedure

Supporting Information

Supporting information

Supporting Information. Cells. Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Supporting Information

SUPPLEMENTARY INFORMATION

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Air-Stable (Phenylbuta-1,3-diynyl)palladium(II) Complexes: Highly Active Initiators for Living Polymerization of Isocyanides

Fluorescent nanoparticles from PEGylated polyfluorenes - Supporting Information

Table of Contents for Supporting Information

Sequential dynamic structuralisation by in situ production of

Synthesis of borinic acids and borinate adducts using diisopropylaminoborane

Supporting Information for

SYNTHESIS OF A 3-THIOMANNOSIDE

Halogen halogen interactions in diiodo-xylenes

Electronic Supplementary Information

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Supporting Information

Supporting Information for

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Supporting Information. An AIE active Y-shaped diimidazolylbenzene: aggregation and

Total Synthesis of (±)-Vibsanin E. Brett D. Schwartz, Justin R. Denton, Huw M. L. Davies and Craig. M. Williams. Supporting Information

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

A General and Mild Copper-Catalyzed Arylation of Diethyl Malonate

Electronic Supplementary Information (12 pages)

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Photolysis for Vitamin D Formation. Supporting Information

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Supporting Information For:

Supporting Information

Supplementary Information. for. Stable Supramolecular Helical Structure of C 6 -Symmetric

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Supporting Information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Transcription:

Supporting Information for A rapid and efficient synthetic route to terminal arylacetylenes by tetrabutylammonium hydroxide- and methanol-catalyzed cleavage of 4-aryl-2-methyl-3- butyn-2-ols Jie Li and Pengcheng Huang* Address: Department of Polymer Materials and Composites, School of Materials Science and Engineering, Beihang University, Beijing 100191, China Email: Jie Li - lijie1159@mse.buaa.edu.cn; Pengcheng Huang* - huangpc@buaa.edu.cn * Corresponding author General experimental methods, analytical data, 1 H and 13 C NMR spectra of compounds 1a k and 2a k. S1

Experimental procedures and characterization data for the products: General methods Unless otherwise stated, all starting materials were obtained from commercial suppliers and were used without further purification. 4-Aryl-2-methyl-3-butyn- 2-ols were prepared according to the general procedure. Toluene and triethylamine were distilled from CaH 2 prior to use. All reactions were performed under an atmosphere of nitrogen. Melting points were taken on a hot-plate microscope apparatus and are uncorrected. 1 H (300 MHz) and 13 C (75 MHz) NMR spectra were acquired on a Bruker AV 300 NMR spectrometer. General procedure for the synthesis of 4-aryl-2-methyl-3-butyn-2-ols A mixture of aryl bromide (5.0 mmol), 2-methyl-3-butyn-2-ol (1.0 mol per 1 mol bromine atom), copper(i) iodide (38.2 mg, 0.2 mmol), palladium(ii) dichlorobistriphenylphosphine (70.2 mg, 0.1 mmol) and triphenylphosphine (104.9 mg, 0.4 mmol) in triethylamine (25 ml) was placed in a Schlenk flask. The mixture was heated at 65 C for 6 h. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and the organic phase was washed successively with 5% HCl and brine, dried over MgS 4, and then evaporated. The crude product was purified by column chromatography with petroleum ether ethyl acetate mixtures as eluent. S2

General procedure for the synthesis of 2i and 2k using sodium in refluxing toluene 4-Aryl-2-methyl-3-butyn-2-ol (2 mmol) and Na (2 mol per 1 mol 2- hydroxypropyl group) were dissolved in toluene (100 ml). The mixture was stirred at 120 C for 8 h. After cooling to room temperature, the solution was washed successively with 5% HCl and brine, dried over MgS 4, and concentrated in vacuo. The crude product was then purified by column chromatography to afford the product. Characterization data of 1a k and 2a k 4-(4-(Phenylethynyl)phenyl)-2-methyl-3-butyn-2-ol (1a): eluent, petroleum ether ethyl acetate = 10/1; yield: 81%; white solid; mp 135.2 135.7 C; 1 H NMR (CDCl 3 ) δ 7.46 7.53 (m, 4H), 7.34 7.40 (m, 5H), 1.78 (s, 1H), 1.63 (s, 6H); 13 C NMR (CDCl 3 ) δ 31.45, 65.66, 81.87, 88.98, 91.12, 95.51, 122.58, 123.04, 123.19, 128.38, 128.46, 131.44, 131.59, 131.63. 4-(3-Nitrophenyl)-2-methyl-3-butyn-2-ol (1b): CAS N.: 33432-52-9; eluent, petroleum ether ethyl acetate = 5/1; yield: 90%; white solid; mp 51.7 52.2 C; 1 H NMR (CDCl 3 ) δ 8.28 (t, J = 2 Hz, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 8 Hz, 1H), 1.83 (s, 1H), 1.65 (s, 6H); 13 C NMR (CDCl 3 ) δ 31.29, 65.56, 79.84, 96.46, 122.95, 124.63, 126.47, 129.28, 137.29, 148.18. S3

4-(3-Bromo-5-nitrophenyl)-2-methyl-3-butyn-2-ol (1c): eluent, petroleum ether ethyl acetate = 5/1; yield: 68%; white solid; mp 68.2 68.8 C; 1 H NMR (CDCl 3 ) δ 8.28 (t, J = 1.8 Hz, 1H), 8.17 (t, J = 1.8 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 2.32 (s, 1H), 1.63 (s, 6H); 13 C NMR (CDCl 3 ) δ 31.20, 65.54, 78.65, 97.95, 122.59, 125.10, 126.14, 126.18, 139.93, 148.58. 4-(3-(Phenylethynyl)phenyl)-2-methyl-3-butyn-2-ol (1d): eluent, petroleum ether ethyl acetate = 6/1; yield: 63%; white solid; mp 67 67.5 C; 1 H NMR (CDCl 3 ) δ 7.62 (s, 1H), 7.46 7.53 (m, 3H), 7.30 7.39 (m, 5H), 1.72 (s, 1H), 1.64 (s, 6H); 13 C NMR (CDCl 3 ) δ 31.46, 65.62, 81.39, 88.48, 90.01, 94.39, 123.02, 123.11, 123.58, 128.39, 128.46, 131.31, 131.65, 134.71. 4-(4-ctyloxyphenyl)-2-methyl-3-butyn-2-ol (1e): CAS N.: 125151-57-7; eluent, petroleum ether ethyl acetate = 10/1; yield: 75%; white solid; mp 63.1 63.2 C; 1 H MNR (CDCl 3 ) δ 7.33 (d, J = 9 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 3.93 (t, J = 6.9 Hz, 2H), 2.12 (s, 1H), 1.72 1.81 (m, 2H), 1.60 (s, 6H), 1.29 1.46 (m, br, 10H), 0.89 (t, J = 6.9 Hz, 3H); 13 C NMR (CDCl 3 ) δ 14.05, 22.63, 26.00, 29.18, 29.19, 29.32, 31.59, 31.79, 65.65, 68.08, 82.13, 92.32, 114.44, 114.59, 133.04, 159.20. 4-Phenyl-2-methyl-3-butyn-2-ol (1f): CAS N.: 1719-19-3; eluent, petroleum ether ethyl acetate = 10/1; yield: 82%; white solid; mp 52.4 53 C; 1 H MNR (CDCl 3 ) δ 7.40 7.43 (m, 2H), 7.28 7.30 (m, 3H), 2.07 (s, 1H), 1.62 S4

(s, 6H); 13 C NMR (CDCl 3 ) δ 31.50, 65.62, 82.25, 93.82, 122.78, 128.24, 131.65. 4-(4-Bromophenyl)-2-methyl-3-butyn-2-ol (1g): CAS N.: 76347-62-1; eluent, petroleum ether ethyl acetate = 6/1; yield: 62%; white solid; mp 59.5 61 C; 1 H MNR (CDCl 3 ) δ 7.42 (d, J = 8.1 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 2.03 (s, 1H), 1.61 (s, 6H); 13 C NMR (CDCl 3 ) δ 31.40, 65.62, 81.16, 94.97, 121.74, 122.49, 131.52, 133.09. 1,3-Bis{3-(3-methyl-3-hydroxy-butynyl)-5-[2-(2-ethoxyethoxy)ethoxy] phenylethynyl}benzene (1h): golden yellow oil; 1 H NMR (CDCl 3 ) δ 7.64 (s, 1H), 7.44 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.18 (s, 2H), 7.00 (s, 2H), 6.93 (s, 2H), 4.08 4.13 (m, 4H), 3.84 (t, J = 4.6 Hz, 4H), 3.70 (t, J = 4.6 Hz, 4H), 3.59 (t, J = 4.6 Hz, 4H), 3.52 (q, J = 6.9 Hz, 4H), 2.02 (s, 2H), 1.59 (s, 12H), 1.17 1.22 (m, 6H); 13 C NMR (CDCl 3 ) δ 15.14, 31.43, 65.52, 66.70, 67.81, 69.59, 69.86, 70.97, 81.25, 88.77, 89.15, 94.32, 117.95, 118.21, 123.38, 124.08, 124.14, 127.65, 128.54, 131.50, 134.68, 158.46. 1-Ethynyl-3,5-bis[(2-hydroxyprop-2-yl)ethynyl]benzene (1i): white solid; mp 129.7 130.3 C (lit. [1] 95 97 C); 1 H MNR (CDCl 3 ) δ 7.42 7.44 (m, 3H), 3.06 (s, 1H), 1.82 (s, 2H), 1.56 (s, 12H); 13 C NMR (CDCl 3 ) δ 31.36, 65.54, 78.30, 80.43, 81.89, 95.10, 122.72, 123.44, 134.63, 134.82. 1,3,5-Tris[(2-hydroxyprop-2-yl)ethynyl]benzene (1j): eluent, petroleum ether ethyl acetate = 1/1; yield: 89%; white solid; mp 169 170 C (lit. [1] 170 S5

172 C); 1 H MNR (CDCl 3 ) δ 7.40 (s, 3H), 1.59 (s, 21H); 13 C NMR (CDCl 3 ) δ 31.37, 65.54, 80.55, 94.93, 123.34, 134.23. 3-Cascade:benzene[3-1,3,5]:5-ethynyl-1,3-bis-[(2-hydroxyprop-2- yl)ethynyl]benzene (1k): white solid; mp >300 C (decompose); 1 H MNR (DMS-d 6 ) δ 7.83 (s, 3H), 7.54 (d, J = 1.5 Hz, 6H), 7.40 (s, 3H), 5.53 (s, 6H), 1.47 (s, 36H); 13 C NMR (DMS-d 6 ) δ 31.39, 63.61, 78.48, 88.59, 89.09, 97.88, 122.91, 123.25, 123.91, 133.33, 134.04, 134.45. 1-Ethynyl-4-(phenylethynyl)benzene (2a): CAS N.: 92866-00-7; eluent, petroleum ether; yield: 97.6%; white solid; mp 91.6 92.1 C; 1 H MNR (CDCl 3 ) δ 7.48 7.54 (m, 6H), 7.35 7.36 (m, 3H), 3.17 (s, 1H); 13 C NMR (CDCl 3 ) δ 78.86, 83.30, 88.84, 91.40, 121.90, 122.99, 123.83, 128.40, 128.54, 131.48, 131.66, 132.08. 1-Ethynyl-3-nitrobenzene (2b): CAS N.: 3034-94-4; eluent, petroleum ether; yield: 88.2%; yellow oil; 1 H MNR (CDCl 3 ) δ 8.27 (t, J = 1.8 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.45 (t, J = 8 Hz, 1H), 3.15 (s, 1H); 13 C NMR (CDCl 3 ) δ 79.90, 81.10, 123.57, 123.95, 126.99, 129.39, 137.77, 148.20. 1-Ethynyl-3-bromo-5-nitrobenzene (2c): eluent, petroleum ether ethyl acetate= 20/1; yield: 85.1%; yellow solid; mp 77.4 77.9 C; 1 H MNR (CDCl 3 ) δ 8.35 (s, 1H), 8.26 (s, 1H), 7.92 (s, 1H), 3.28 (s, 1H); 13 C NMR (CDCl 3 ) δ 79.81, 81.37, 122.70, 125.43, 125.62, 126.86, 140.39, 148.61. S6

1-Ethynyl-3-(phenylethynyl)benzene (2d): eluent, petroleum ether; yield: 88.9%; colorless oil; 1 H MNR (CDCl 3 ) δ 7.68 (s, 1H), 7.45 7.54 (m, 4H), 7.30 7.37 (m, 4H), 3.11 (s, 1H); 13 C NMR (CDCl 3 ) δ 77.79, 82.82, 88.35, 90.25, 122.53, 122.99, 123.72, 128.41, 128.44, 128.51, 131.69, 131.80, 131.86, 135.13. 1-Ethynyl-4-octyloxybenzene (2e): CAS N.: 79887-19-7; eluent, petroleum ether; yield: 95.3%; colorless oil; 1 H MNR (CDCl 3 ) δ 7.43 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.97 (t, J = 6.5 Hz, 2H), 3.01 (s, 1H), 1.76 1.83 (m, 2H), 1.30 1.47 (m, br, 10H), 0.90 (t, J = 6.2 Hz, 3H); 13 C NMR (CDCl 3 ) δ 14.07, 22.64, 26.01, 29.17, 29.22, 29.33, 31.80, 68.09, 75.63, 83.79, 113.94, 114.49, 133.56, 159.59. Ethynylbenzene (2f): CAS N.: 536-74-3; eluent, petroleum ether; yield: 88%; colorless oil; 1 H MNR (CDCl 3 ) δ 7.48 7.50 (m, 2H), 7.30 7.32 (m, 3H), 3.06 (s, 1H); 13 C NMR (CDCl 3 ) δ 77.48, 83.69, 122.18, 128.33, 128.81, 132.17. 4-Bromophenylacetylene (2g): CAS N.: 766-96-1; eluent, petroleum ether; yield: 73.6%; white solid; mp 64.1 65 C; 1 H MNR (CDCl 3 ) δ 7.46 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 3.13 (s, 1H); 13 C NMR (CDCl 3 ) δ 78.33, 82.60, 121.06, 123.25, 131.61, 133.56. 1,3-Bis{[3-ethynyl-5-[2-(2-ethoxyethoxy)ethoxy]phenyl]ethynyl}benzene (2h): eluent, petroleum ether ethyl acetate= 4/1; yield: 74.4%; pale yellow S7

viscous oil; 1 H NMR (CDCl 3 ) δ 7.61 (s, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.26 7.19 (m, 3H), 7.00 6.96 (m, 4H), 4.08 (t, J = 4.5 Hz, 4H), 3.80 (t, J = 4.8 Hz, 4H), 3.65 (t, J = 4.8 Hz, 4H), 3.55 (t, J = 4.8 Hz, 4H), 3.47 (q, J = 6.9 Hz, 4H), 3.01 (s, 2H), 1.15 (t, J = 6.9 Hz, 6H); 13 C NMR (CDCl 3 ) δ 15.16, 66.71, 67.81, 69.58, 69.87, 70.98, 77.68, 82.67, 88.89, 89.02, 118.40, 118.75, 123.32, 123.42, 124.25, 128.03, 128.57, 131.58, 134.70, 158.48. 1,3,5-Triethynylbenzene (2i): CAS N.: 7567-63-7; eluent, petroleum ether; white solid; mp 106 107.2 C; 1 H MNR (CDCl 3 ) δ 7.57 (s, 3H), 3.10 (s, 3H); 13 C NMR (CDCl 3 ) δ 78.67, 81.63, 122.96, 135.65. 1,3,5-Tris[2-(3,5-diethynylphenyl)ethynyl]benzene (2k): eluent, THF. The product was further purified by precipitation of a THF solution into 20 volumes of methanol to give 2k as a white fluffy solid. Yield: 82.6%; 1 H NMR (DMSd 6 ): δ 7.62-7.84 (m, 12H), 4.39(s, 6H); 13 C NMR (DMS-d 6 ) δ 81.31, 82.68, 88.76, 88.85, 123.00, 123.10, 134.49, 134.60, 134.91. References 1. Rodríguez, J. G.; Esquivias, J. Tetrahedron Lett. 2003, 44, 4831 4834. doi:10.1016/s0040-4039%2803%2901137-7 S8

131.627 131.591 131.445 128.463 128.383 123.189 123.037 122.578 95.512 91.126 88.980 81.815 77.429 77.000 76.578 65.667 31.450 7.534 7.527 7.515 7.475 7.456 7.402 7.383 7.356 7.345 7.259 1.776 1.626 4.28 5.25 6.00 7.55 7.50 7.45 7.40 7.35 PPM 1.74 8 7 6 5 4 3 2 1 PPM 160 140 120 100 80 60 40 20 PPM Figure S1: 1 H and 13 C NMR spectra of 1a. S9

148.183 137.286 129.278 126.485 124.637 122.964 96.458 79.844 77.444 77.022 76.600 65.572 31.290 8.290 8.285 8.281 8.189 8.186 8.183 8.168 8.165 8.163 7.741 7.722 7.529 7.509 7.489 7.277 1.832 1.656 2 N 6.61 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 PPM 1.04 1.00 1.08 1.11 1.53 9 8 7 6 5 4 3 2 1 PPM 2 N 160 140 120 100 80 60 40 20 PPM Figure S2: 1 H and 13 C NMR spectra of 1b. S10

148.583 139.927 126.179 126.143 125.102 122.586 97.956 78.651 77.458 77.036 76.607 65.543 31.188 8.289 8.283 8.276 8.179 8.173 8.168 7.851 7.847 7.841 7.275 2.313 1.635 Br 2 N 6.47 1.01 1.02 1.00 8.3 8.2 8.1 8.0 7.9 PPM 0.92 9 8 7 6 5 4 3 2 1 PPM Br 2 N 160 140 120 100 80 60 40 20 0 PPM Figure S3: 1 H and 13 C NMR spectra of 1c. S11

134.711 131.649 131.307 128.456 128.390 123.582 123.109 123.022 94.392 90.006 88.478 81.393 77.444 77.022 76.592 65.616 31.458 1.00 3.07 2.54 6.38 5.84 7.617 7.534 7.525 7.485 7.465 7.394 7.370 7.359 7.319 7.300 7.271 1.717 1.635 7.60 7.55 7.50 7.45 7.40 7.35 7.30 PPM 8 7 6 5 4 3 2 1 PPM 140 120 100 80 60 40 20 PPM Figure S4: 1 H and 13 C NMR spectra of 1d. S12

159.195 133.038 114.592 114.439 92.319 82.128 77.436 77.014 76.585 68.075 65.645 31.785 31.589 29.319 29.195 29.181 25.995 22.627 14.051 7.341 7.312 7.257 6.819 6.789 3.954 3.932 3.910 1.812 2.117 1.789 1.766 1.740 1.718 1.601 1.461 1.438 1.301 1.286 0.906 0.885 0.863 C 8 H 17 10.19 6.11 7.3 7.2 7.1 7.0 6.9 PPM 1.96 2.00 2.00 0.93 2.07 3.01 7 6 5 4 3 2 1 0PPM C 8 H 17 160 140 120 100 80 60 40 20 PPM Figure S5: 1 H and 13 C NMR spectra of 1e. S13

131.649 128.245 122.782 93.824 82.252 77.451 77.029 76.600 65.623 31.501 7.428 7.419 7.408 7.395 7.299 7.289 7.277 7.252 2.074 1.616 6.07 3.19 2.00 7.45 7.40 7.35 7.30 PPM 1.24 8 7 6 5 4 3 2 1 0PPM 140 120 100 80 60 40 20 PPM Figure S6: 1 H and 13 C NMR spectra of 1f. S14

133.089 131.518 122.491 121.742 94.966 81.161 77.436 77.014 76.592 65.623 31.399 7.440 7.412 7.277 7.248 2.031 1.606 Br 6.00 2.00 2.04 7.45 7.40 7.35 7.30 7.25 PPM 1.01 8 7 6 5 4 3 2 1 PPM Br 140 120 100 80 60 40 20 PPM Figure S7: 1 H and 13 C NMR spectra of 1g. S15

158.461 134.675 131.496 128.536 127.648 124.135 124.084 123.379 118.207 117.945 94.319 89.147 88.769 81.248 77.458 77.036 76.614 70.970 69.857 69.588 67.813 66.700 65.522 31.428 15.135 Hl H Hk Ha Hb Hd Hc Hj Hi, Hh Hi Hg Hf He H 160 140 120 100 80 60 40 20 PPM Figure S8: 1 H and 13 C NMR spectra of 1h. S16

134.820 134.631 123.444 122.724 95.097 81.888 80.426 78.302 77.429 77.007 76.585 65.543 31.356 H H 140 120 100 80 60 40 20 PPM Figure S9: 1 H and 13 C NMR spectra of 1i. S17

134.231 123.342 94.930 80.550 77.414 76.993 76.571 65.543 31.370 7.397 7.261 1.611 1.595 21.00 H 3.00 8 7 6 5 4 3 2 1 0 PPM H 140 120 100 80 60 40 20 0PPM Figure S10: 1 H and 13 C NMR spectra of 1j. S18

134.455 134.041 133.334 123.911 123.245 122.905 97.883 89.093 88.586 78.479 63.612 39.830 39.664 39.497 39.331 39.164 31.388 H H H H 140 120 100 80 60 40 20 PPM Figure S11: 1 H and 13 C NMR spectra of 1k. S19

132.078 131.656 131.482 128.536 128.398 123.830 122.986 121.902 91.395 88.842 83.299 78.855 77.436 77.007 76.585 7.542 7.534 7.524 7.477 7.362 7.352 7.260 3.174 6.03 3.00 7.55 7.50 7.45 7.40 PPM 0.91 8 7 6 5 4 3 2 1 0 PPM 140 120 100 80 60 40 20 PPM Figure S12: 1 H and 13 C NMR spectra of 2a. S20

148.197 137.766 129.394 126.986 123.953 123.568 81.102 79.895 77.444 77.014 76.592 8.273 8.269 8.264 8.152 8.149 8.147 8.144 8.131 8.129 8.126 8.124 7.734 7.732 7.729 7.715 7.712 7.709 7.472 7.452 7.432 7.191 3.150 2 N 0.98 1.00 1.01 1.01 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 PPM 0.97 9 8 7 6 5 4 3 2 1 PPM 2 N 140 120 100 80 60 40 20 PPM Figure S13: 1 H and 13 C NMR spectra of 2b. S21

148.605 140.392 126.855 125.619 125.430 122.702 81.371 79.808 77.444 77.022 76.600 1.00 1.00 1.00 1.00 8.348 8.258 7.924 7.259 3.280 Br 2 N 8.3 8.2 8.1 8.0 PPM 8 7 6 5 4 3 2 1 0 PPM Br 2 N 140 120 100 80 60 40 20 0 PPM Figure S14: 1 H and 13 C NMR spectra of 2c. S22

135.133 131.860 131.795 131.685 128.507 128.448 128.405 123.720 122.986 122.528 90.246 88.347 82.819 77.785 77.451 77.029 76.607 7.682 7.545 7.532 7.511 7.473 7.454 7.374 7.365 7.360 7.344 7.323 7.305 7.271 3.110 4.39 4.36 1.00 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 PPM 1.01 8 7 6 5 4 3 2 1 PPM 140 120 100 80 60 40 20 PPM Figure S15: 1 H and 13 C NMR spectra of 2d. S23

159.588 133.562 114.490 113.937 83.786 77.444 77.022 76.600 75.625 68.089 31.807 29.334 29.217 29.174 26.009 22.642 14.066 7.443 7.421 7.277 6.856 6.834 3.982 3.966 3.949 3.006 1.829 1.812 1.794 1.775 1.758 1.479 1.465 1.447 1.430 1.347 1.334 1.307 0.924 0.910 0.892 C 8 H 17 10.79 1.96 2.00 7.4 7.3 7.2 7.1 7.0 6.9PPM 2.01 0.90 2.04 3.11 8 7 6 5 4 3 2 1 PPM C 8 H 17 160 140 120 100 80 60 40 20 PPM Figure S16: 1 H and 13 C NMR spectra of 2e. S24

132.165 128.805 128.332 122.178 83.692 77.480 77.182 77.051 76.629 7.502 7.496 7.490 7.480 7.320 7.301 3.058 3.37 2.01 1.00 8 7 6 5 4 3 2 1 PPM 140 120 100 80 60 40 20 0 PPM Figure S17: 1 H and 13 C NMR spectra of 2f. S25

133.560 131.612 123.253 121.064 82.603 78.329 77.321 77.002 76.692 7.479 7.458 7.369 7.348 7.269 3.131 Br 2.08 2.00 0.96 7.50 7.45 7.40 7.35 7.30 PPM 8 7 6 5 4 3 2 1 PPM Br 140 120 100 80 60 40 20 PPM Figure S18: 1 H and 13 C NMR spectra of 2g. S26

158.475 134.704 131.576 128.565 128.027 124.251 123.422 123.320 118.752 118.403 89.024 88.893 82.674 77.684 77.487 77.065 76.643 70.984 69.871 69.580 67.813 66.714 15.157 160 140 120 100 80 60 40 20 PPM Figure S19: 1 H and 13 C NMR spectra of 2h. S27

135.650 122.957 81.633 78.666 77.429 77.007 76.578 7.566 7.256 3.102 1.00 0.99 8 7 6 5 4 3 2 1 PPM 140 120 100 80 60 40 20 PPM Figure S20: 1 H and 13 C NMR spectra of 2i. S28

134.909 134.597 134.488 123.097 123.002 88.851 88.764 82.690 81.308 40.355 40.079 39.803 39.526 39.250 38.966 38.697 7.841 7.713 7.619 4.385 3.291 2.488 12.05 6.00 8 7 6 5 4 3 2 1 PPM 140 120 100 80 60 40 20 PPM Figure S21: 1 H and 13 C NMR spectra of 2k. S29