Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Similar documents
Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

2010 Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Earth s Atmosphere About 10 km thick

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE. Review next time? Exam next week

AST 105 Intro Astronomy The Solar System

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE

General Comments about the Atmospheres of Terrestrial Planets

Outline. Planetary Atmospheres. General Comments about the Atmospheres of Terrestrial Planets. General Comments, continued

Today. Events. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres. Homework DUE next time

Planetary Atmospheres (Chapter 10)

Unit 3 Review Guide: Atmosphere

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Website Lecture 3 The Physical Environment Part 1

The greenhouse effect

Planetary Temperatures

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

The Atmosphere - Chapter Characteristics of the Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Directed Reading. Section: Solar Energy and the Atmosphere RADIATION. identical point on the next wave. waves

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

FCAT Review Earths Systems

[17] Magnetic Fields, and long-term changes in climate (10/26/17)

Assessment Schedule 2017 Earth and Space Science: Demonstrate understanding of processes in the atmosphere system (91414)

The Solar System. Earth as a Planet

COMPOSITION OF THE ATMOSPHERE

Today. Jovian planets. but first - a little more Climate change

2/22/ Atmospheric Characteristics

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Environmental Science Chapter 13 Atmosphere and Climate Change Review

Website Lecture 3 The Physical Environment Part 1

Investigating Planets Name: Block: E1:R6

ATMOSPHERE M E T E O R O LO G Y

25-Nov-14. The Structure of Earth s Interior. What unique features of Earth are important for life as we know it?

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

Chapter 9 Atmosphere Study Guide

Grades 9-12: Earth Sciences

The Layered Atmosphere:

K32: The Structure of the Earth s Atmosphere

[16] Planetary Meteorology (10/24/17)

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1%

Unit 2 Meteorology Test **Please do not write on this test** 5. El Nino & La Nina 6. Photosynthesis 7. Coriolis Effect 8.

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

Today. Events Homework DUE next time. Terrestrial Planet Geology - Earth. Terrestrial Planet Atmospheres

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Science Chapter 13,14,15

The Sun and Planets Lecture Notes 6.

IV. Atmospheric Science Section

The Atmosphere and Atmospheric Energy Chapter 3 and 4

In the space provided, write the letter of the description that best matches the term or phrase. as waves. thermosphere

Today. Jovian planets

WEATHER. Review Note Cards

Astro 1010 Planetary Astronomy Sample Questions for Exam 4

Name Team Period. Station #1 (drawing)

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc.

Lecture 3: Global Energy Cycle

Lecture Outlines PowerPoint. Chapter 16 Earth Science 11e Tarbuck/Lutgens

The Atmosphere. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

The Atmosphere of Earth

Terrestrial Atmospheres

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY:

Chapter 20 Earth: The Standard of Comparative Planetology

Let s Think for a Second

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Section 2: The Atmosphere

Physical Geography 1st Exam

Atmosphere. Transfer in the Atmosphere

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Inner Planets (Part II)

Shape and Size of the Earth

Common Elements: Nitrogen, 78%

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Planetary Atmospheres

The Atmosphere: Structure and Temperature

Meteorology Pretest on Chapter 2

Table of Contents. Chapter: Atmosphere. Section 1: Earth's Atmosphere. Section 2: Energy Transfer in the Atmosphere. Section 3: Air Movement

Astronomy 1140 Quiz 3 Review

The Transfer of Heat

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

The Atmosphere. 1 Global Environments: 2 Global Environments:

Clouds and Rain Unit (3 pts)

Atmosphere and Weather

Concepts of energy and heat

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Lecture 2: Global Energy Cycle

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

Transcription:

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular nitrogen (N 2 ) and oxygen (O 2 ) 1

Atmospheric Pressure Atmospheric Pressure Pressure and density decrease with altitude because the weight of overlying layers is less Earth s pressure at sea level is 1 bar (15 lbs per sq. inch) Planetary Temperature Determined by balance between the energy of sunlight it absorbs and the energy of outgoing thermal radiation Hotter when closer to the Sun A planet s albedo is the fraction of incoming sunlight it reflects Planets with low albedo absorb more sunlight, leading to hotter temperatures Clouds tend to increase albedo Greenhouse Effect Visible light passes through atmosphere and warms planet s surface Atmosphere absorbs infrared light from surface, trapping heat Thought Question If Earth didn t have an atmosphere, what would happen to its temperature? a) It would go up a little. b) It would go up a lot. c) It would go down a little. d) It would go down a lot. e) It would not change. Thought Question If Earth didn t have an atmosphere, what would happen to its temperature? a) It would go up a little. b) It would go up a lot. c) It would go down a little. d) It would go down a lot. e) It would not change. 2

Effects of Atmospheres Create pressure that determines whether liquid water can exist on surface Absorb and scatter light Interact with solar wind to create a protective magnetosphere Can make planetary surfaces warmer through greenhouse effect Create wind, weather (fast), climate (slow) Circulation Cells: No Rotation Heated air rises at equator Cooler air descends at poles Without rotation, these motions would produce two large circulation cells Coriolis Effect Coriolis Effect on Earth Air moving from pole to equator is going farther from axis and begins to lag Earth s rotation Conservation of angular momentum causes a ball s apparent path on a spinning platform to change direction Air moving from equator to pole goes closer to axis and moves ahead of Earth s rotation Circulation Cells with Rotation Prevailing Winds Coriolis effect deflects north-south winds into east-west winds Deflection breaks each of the two large no-rotation cells breaks into three smaller cells Prevailing surface winds at mid-latitudes blow from W to E because Coriolis effect deflects S to N surface flow of mid-latitude circulation cell 3

Clouds and Precipitation What factors can cause long-term climate change? Atmospheres of the Terrestrial Planets Climate Change on Mars Seasons on Mars Polar Ice Caps of Mars Axial tilt plus eccentricity of Mars s orbit makes seasons more extreme in the southern hemisphere Carbon dioxide ice of polar cap sublimates as summer approaches and condenses at opposite pole 4

Polar Ice Caps of Mars Dust Storms on Mars Residual ice of polar cap during summer is primarily water ice Seasonal winds can drive dust storms on Mars Dust in the atmosphere sometimes making the sky look brownish-pink Changing Axis Tilt Mars s axis tilt ranges from 0 to 60 over long time periods Variations cause dramatic climate changes Produce alternating layers of ice and dust in polar caps Climate Change on Mars: Wet to dry Mars has not had widespread surface water for 3 billion years Greenhouse effect probably kept surface warmer before that Somehow Mars lost most of its atmosphere Atmosphere of Venus Venus has a very thick carbon dioxide atmosphere with a surface pressure 90 times Earth s 880 F at surface Slow rotation produces very weak Coriolis effect and little weather Atmosphere of Venus Reflective clouds contain droplets of sulfuric acid Upper atmosphere has fast winds that remain unexplained 5

Greenhouse Effect on Venus Runaway Greenhouse Effect Thick carbon dioxide atmosphere produces an extremely strong greenhouse effect Earth escapes this fate because most of its carbon and water is in rocks and oceans Runaway greenhouse effect would account for why Venus has so little water Thought Question What is the main reason why Venus is hotter than Earth? a) Venus is closer to the Sun than Earth. b) Venus is more reflective than Earth. c) Venus is less reflective than Earth. d) Greenhouse effect is much stronger on Venus than on Earth. e) Human activity has led to declining temperatures on Earth. Thought Question What is the main reason why Venus is hotter than Earth? a) Venus is closer to the Sun than Earth. b) Venus is more reflective than Earth. c) Venus is less reflective than Earth. d) Greenhouse effect is much stronger on Venus than on Earth. e) Human activity has led to declining temperatures on Earth. Light s Effects on Atmosphere Ionization: Removal of an electron Dissociation: Destruction of a molecule Scattering: Change in photon s direction Absorption: Photon s energy is absorbed Earth s Atmospheric Structure Troposphere: lowest layer of Earth s atmosphere Temperature drops with altitude Warmed by infrared light from surface and convection 6

Earth s Atmospheric Structure Stratosphere: Layer above the troposphere Temperature rises with altitude in lower part, drops with altitude in upper part Warmed by absorption of ultraviolet sunlight Earth s Atmospheric Structure Thermosphere: Layer at about 100 km altitude Temperature rises with altitude X rays and ultraviolet light from the Sun heat and ionize gases Earth s Atmospheric Structure Exosphere: Highest layer in which atmosphere gradually fades into space Temperature rises with altitude; atoms can escape into space Warmed by X rays and UV light Four Important Questions Why did Earth retain most of its outgassed water? Why does Earth have so little atmospheric carbon dioxide, unlike Venus? Why does Earth s atmosphere consist mostly of nitrogen and oxygen? Why does Earth have a UV-absorbing stratosphere? Earth s Water and CO 2 Earth s temperature remained cool enough for liquid oceans to form Oceans dissolve atmospheric CO 2, enabling carbon to be trapped in rocks Nitrogen and Oxygen Most of Earth s carbon and oxygen is in rocks, leaving a mostly nitrogen atmosphere Plants release some oxygen from CO 2 into atmosphere If all life ceased, oxygen would be gone in 10,000 years 7

Ozone and the Stratosphere Ultraviolet light can break up O 2 molecules, allowing ozone (O 3 ) to form Without plants to release O 2, there would be no ozone in stratosphere to absorb UV light (protects life) Carbon Dioxide Cycle 1. Atmospheric CO 2 dissolves in rainwater 2. Rain erodes minerals which flow into ocean 3. Minerals combine with carbon to make rocks on ocean floor Carbon Dioxide Cycle Earth s Thermostat 4. Subduction carries carbonate rocks down into mantle 5. Rock melts in the mantle and outgas CO 2 back into atmosphere through volcanoes Cooling allows CO 2 to build up in atmosphere Heating causes rain to reduce CO 2 in atmosphere Long-Term Climate Change Changes in Earth s axis tilt might lead to ice ages Widespread ice tends to lower global temperatures by increasing Earth s reflectivity CO 2 from outgassing will build up if oceans are frozen, ultimately raising global temperatures again Dangers of Human Activity Human-made CFCs in atmosphere destroy ozone, reducing protection from UV radiation Human activity is driving many other species to extinction Human use of fossil fuels produces greenhouse gases that can cause global warming 8

Global Warming Earth s average temperature has increased by 0.5 C in past 50 years Concentration of CO 2 is rising rapidly An unchecked rise in greenhouse gases will eventually lead to global warming CO 2 Concentration Global temperatures have tracked CO 2 concentration for last 500,000 years Antarctic air bubbles indicate current CO 2 concentration is highest in at least 500,000 years CO 2 Concentration Modeling of Climate Change Complex models of global warming suggest that recent temperature increase is indeed consistent with human production of greenhouse gases Most of CO 2 increase has happened in last 50 years! Consequences of Global Warming Storms more numerous and intense Rising ocean levels; melting glaciers Uncertain effects on food production, availability of fresh water Next time: Chapter 11: Jovian Planets please read pages 309 334 in text. Potential for social unrest 9