Past, present and space-time

Similar documents
Space-time XFEM for two-phase mass transport

Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

High Order Unfitted Finite Element Methods for Interface Problems and PDEs on Surfaces

Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport

Preconditioned space-time boundary element methods for the heat equation

A VOLUME MESH FINITE ELEMENT METHOD FOR PDES ON SURFACES

A Finite Element Method for the Surface Stokes Problem

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Numerical Methods for the Navier-Stokes equations

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

WELL POSEDNESS OF PROBLEMS I

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

INTRODUCTION TO PDEs

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

AN EXTENDED FINITE ELEMENT METHOD APPLIED TO LEVITATED DROPLET PROBLEMS

A FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS ON SURFACES

Efficient FEM-multigrid solver for granular material

On a Discontinuous Galerkin Method for Surface PDEs

Discontinuous Galerkin Methods

arxiv: v1 [math.na] 13 Aug 2014

Hybridized Discontinuous Galerkin Methods

Finite Element Clifford Algebra: A New Toolkit for Evolution Problems

Solving PDEs with freefem++

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

Simulation of free surface fluids in incompressible dynamique

Spline Element Method for Partial Differential Equations

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

Nitsche XFEM with Streamline Diffusion Stabilization for a Two Phase Mass Transport Problem

c 2014 Society for Industrial and Applied Mathematics

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

Projection Methods for Rotating Flow

Space-time Finite Element Methods for Parabolic Evolution Problems

Une méthode de pénalisation par face pour l approximation des équations de Navier-Stokes à nombre de Reynolds élevé

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

Local Mesh Refinement with the PCD Method

Juan Vicente Gutiérrez Santacreu Rafael Rodríguez Galván. Departamento de Matemática Aplicada I Universidad de Sevilla

FINITE ELEMENT APPROXIMATION OF STOKES-LIKE SYSTEMS WITH IMPLICIT CONSTITUTIVE RELATION

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

Analysis of a high order trace finite element method for PDEs on level set surfaces

The CG1-DG2 method for conservation laws

Discretization of PDEs and Tools for the Parallel Solution of the Resulting Systems

Numerical Methods for PDEs

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

Advanced numerical methods for nonlinear advectiondiffusion-reaction. Peter Frolkovič, University of Heidelberg

NUMERICAL SIMULATION OF INCOMPRESSIBLE TWO-PHASE FLOWS WITH A BOUSSINESQ-SCRIVEN INTERFACE STRESS TENSOR

An introduction to the mathematical theory of finite elements

Subdiffusion in a nonconvex polygon

On Surface Meshes Induced by Level Set Functions

Due Tuesday, November 23 nd, 12:00 midnight

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

A space-time Trefftz method for the second order wave equation

A Primal-Dual Weak Galerkin Finite Element Method for Second Order Elliptic Equations in Non-Divergence Form

Lecture No 1 Introduction to Diffusion equations The heat equat

Question 9: PDEs Given the function f(x, y), consider the problem: = f(x, y) 2 y2 for 0 < x < 1 and 0 < x < 1. x 2 u. u(x, 0) = u(x, 1) = 0 for 0 x 1

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

A review of stability and dynamical behaviors of differential equations:

Space time finite element methods in biomedical applications

Finite Volume Schemes: an introduction

A non-standard Finite Element Method based on boundary integral operators

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

On some nonlinear parabolic equation involving variable exponents

Conservation Laws of Surfactant Transport Equations

c 2009 Society for Industrial and Applied Mathematics

Space-time sparse discretization of linear parabolic equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

Borel Summability in PDE initial value problems

PDEs, part 1: Introduction and elliptic PDEs

Getting started: CFD notation

Space-time Discontinuous Galerkin Methods for Compressible Flows

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Laplace s Equation FEM Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy, Jaime Peraire and Tony Patera

Finite Volume Method

Discontinuous Petrov-Galerkin Methods

Unified A Posteriori Error Control for all Nonstandard Finite Elements 1

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A method of Lagrange Galerkin of second order in time. Une méthode de Lagrange Galerkin d ordre deux en temps

The Navier-Stokes Equations with Time Delay. Werner Varnhorn. Faculty of Mathematics University of Kassel, Germany

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Some remarks on grad-div stabilization of incompressible flow simulations

Discontinuous Galerkin Time Discretization Methods for Parabolic Problems with Linear Constraints

Interaction of Incompressible Fluid and Moving Bodies

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

Global well-posedness and decay for the viscous surface wave problem without surface tension

Towards pressure-robust mixed methods for the incompressible Navier Stokes equations

A Two-grid Method for Coupled Free Flow with Porous Media Flow

A Higher Order Finite Element Method for Partial Differential Equations on Surfaces

Approximation of Geometric Data

The Plane Stress Problem

Simple Examples on Rectangular Domains

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Computer simulation of multiscale problems

BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES PROBLEM

ANALYSIS OF THE FEM AND DGM FOR AN ELLIPTIC PROBLEM WITH A NONLINEAR NEWTON BOUNDARY CONDITION

Numerical Solutions to Partial Differential Equations

Stability and Geometric Conservation Laws

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

The incompressible Navier-Stokes equations in vacuum

Transcription:

Past, present and space-time Arnold Reusken Chair for Numerical Mathematics RWTH Aachen Utrecht, 12.11.2015 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 1 / 20

Outline Past. Past present. Space-time. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 2 / 20

Past I: 1983-1984 Diploma thesis Stabiliteit en instabiliteit van een Hopscotchmethode Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 3 / 20

Past II: 1984-1988 (PhD thesis) Convergence Analysis of Nonlinear Multigrid Methods Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 4 / 20

Past present A: 1978-1989 UU, B: 1989-1997 TUE C: 1997-present RWTH Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 5 / 20

Space-time Finite Element Method for PDEs on Evolving Surfaces Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 6 / 20

Motivation: simulation of two-phase incompressible flows system: n-butanol/water Model: Navier-Stokes equations + coupling conditions Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 7 / 20

Rising droplet with surfactant transport solution gravity-driven butanol-droplet in water Velocity field determined from NS-equations. + surfactant eqn. Ṡ D Γ Γ S + ( Γ u)s = 0 Elliptic PDE on evolving surface Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 8 / 20

Surfactant PDE Γ(0) smooth surface in R 3, Γ(t) =. Γ(t), t [0, T ], advected by smooth w = w(x, t) R 3. Model for diffusive mass transport on Γ(t): Diffusion equation u + (div Γ w)u Γ u = 0 on Γ(t), t (0, T ] with u = u t + w u. Initial condition u(x, 0) = u 0 (x) for x Γ(0). Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 9 / 20

Weak formulations Space-time manifold Γ = Γ(t) {t}, Γ R 4 t (0,T ] Suitable (Sobolev) spaces W (trial), H (test) on Γ. a(u, v) = ( Γ u, Γ v) L 2 (Γ ), u, v H. Well-posed weak formulation determine u W such that u, v + a(u, v) = (f, v) L 2 (Γ ) for all v H. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 10 / 20

Weak formulations Space-time manifold Γ = Γ(t) {t}, Γ R 4 t (0,T ] Suitable (Sobolev) spaces W (trial), H (test) on Γ. a(u, v) = ( Γ u, Γ v) L 2 (Γ ), u, v H. Well-posed weak formulation determine u W such that u, v + a(u, v) = (f, v) L 2 (Γ ) for all v H. Theorem [Olshanskii,R. SINUM 2014] Weak formulation is well-posed. Analysis based on continuity and inf-sup property Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 10 / 20

A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 11 / 20

A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 11 / 20

A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 11 / 20

A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) N u, v b = u n, v n n n=1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 11 / 20

A time-discontinuous Eulerian weak formulation Time slabs: t j = j t, I n := (t n 1, t n ], Γ n := t In Γ(t). Broken space W b := N n=1 W n. N a(u, v) = a n (u, v), a n (u, v) = n=1 tn t n 1 Γ(t) Γ u Γ v ds dt N d(u, v) = d n (u, v), d n (u, v) = [u] n 1 v+ n 1 ds n=1 Γ(t n 1 ) N u, v b = u n, v n n n=1 Time-discontinuous weak formulation (allows time-stepping) Find u W b such that u, v b + a(u, v) + d(u, v) = F (v) for all v W b. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 11 / 20

Galerkin FEM based on time-discontinuous formulation Key ideas: W b replaced by FE space Wh Γ on Γ. For FE space we use trace of standard outer space-time FE space. Γ n is approximated (zero level of discrete level set function). Γ(t n ) t n Γ(t n 1 ) t n 1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 12 / 20

Trace FE spaces Space-time slab: Q n = Ω (t n 1, t n ] R d+1. T n : triangulation of Ω. V n : standard FE space on T n (piecewise linears). Γ(t n ) t n Γ(t n 1 ) t n 1 Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 13 / 20

Trace FE spaces Space-time slab: Q n = Ω (t n 1, t n ] R d+1. T n : triangulation of Ω. V n : standard FE space on T n (piecewise linears). Γ(t n ) t n Γ(t n 1 ) t n 1 W n,h := { w : Q n R w(x, t) = φ 0 (x) + tφ 1 (x), φ 0, φ 1 V n } Wn,h Γ := { v : Γ n R v = w Γ n, w W n,h, t }, 1 n N. Wh Γ := N n=1wn,h Γ Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 13 / 20

Galerkin FEM Galerkin trace-fem Find u h = u h, t W Γ h such that u h, v h b + a(u h, v h ) + d(u h, v h ) = F (v h ) for all v h W Γ h Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 14 / 20

Galerkin FEM Galerkin trace-fem Find u h = u h, t W Γ h such that u h, v h b + a(u h, v h ) + d(u h, v h ) = F (v h ) for all v h W Γ h Time-stepping procedure For n = 1,..., N, do: Find u h = u h, t Wn,h Γ such that u h, v h n +a n (u h, v h )+ u h + v h + ds = t n 1 uh n 1 t n 1 v + h ds+f (v h) v h W Γ n,h Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 14 / 20

Error analysis [Olshanskii,AR, SINUM 2014] Discrete stability N u 2 h := u 2 H + max n=1,...,n un 2 t n + [u] n 1 2 t n 1. inf u W b n=1 u, v b + a(u, v) + d(u, v) sup c s v W b v h u h Global stability result. No conditions on t. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 15 / 20

Error analysis [Olshanskii,AR, SINUM 2014] Discrete stability N u 2 h := u 2 H + max n=1,...,n un 2 t n + [u] n 1 2 t n 1. inf u W b n=1 u, v b + a(u, v) + d(u, v) sup c s v W b v h u h Global stability result. No conditions on t. Discretization error bounds. Assume t h u u h h ch( u H 2 (Γ ) + u u h H 1 (Γ ) ch 2 ( u H 2 (Γ ) + sup u H 2 (Γ(t))). t [0,T ] sup u H 2 (Γ(t))). t [0,T ] Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 15 / 20

Experiment: diffusion on a moving+deforming ellipsoid Γ(t) is zero level of φ(x, y, z, t) = ( x ) 2 + y 2 + z 2 1, t [0, 4]. 1 + 0.25 sin(t) cos(t) Velocity field w(x, y, z, t) = 0.25 1+0.25 sin(t) (x, 0, 0)T. Solution prescribed: u(x, y, z, t) = e t xy. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 16 / 20

Structure of the algorithm Coarse regular tetrahedral triangulation of Ω = [ 1.5, 1.5] 3. FE space V h : piecewise linears. Per time slab Local spatial refinement close to Γ n. Outer space-time FE space; linear in t. Approximation of space-time surface Γ n. FE space on Γ n : trace space. Apply Galerkin discretization with this FE space. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 17 / 20

Results: discrete L t L 2 x-errors max t [0,4] e h L2 (Γ(t)) 1 1 0.1 0.1 0.01 0.01 0.001 1 2 3 4 5 6 0.0001 0.01 0.1 1 -log 2 h x 0 0.001 1 2 3 4 5 6 0.0001 0.01 0.1 1 -log 2 h t h x = h constant h t = t constant. Observations: very stable method; second order convergence. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 18 / 20

Evolving surface with topological singularity h = 1/16, t = 1/128 Domain Ω = ( 3, 3) ( 2, 2) 2, t [0, 1]. Prescribed level set function φ, determines Γ(t). Space-time interpolation yields Γ n. Surfactant transport equation. h = 1/16, t = 1/4 u 0 (x) = 3 x 1 for x 1 0, zero otherwise. Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 19 / 20

Summary and outlook The space-time journey started with the Hopscotch stability (1983-1984) under the supervision of Gerard Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 20 / 20

Summary and outlook The space-time journey started with the Hopscotch stability (1983-1984) under the supervision of Gerard Bedankt voor de zeer motiverende begeleiding... Ik wens je alle goeds voor de tijd die komen gaat Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 20 / 20

Summary and outlook The space-time journey started with the Hopscotch stability (1983-1984) under the supervision of Gerard Bedankt voor de zeer motiverende begeleiding... Ik wens je alle goeds voor de tijd die komen gaat Past present future Reusken (RWTH Aachen) Past, present and space-time Utrecht, 12.11.2015 20 / 20