Supporting Information. for

Similar documents
Complex Promoted by Electron-Deficient Alkenes. Brian V. Popp and Shannon S. Stahl*

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Supplementary Materials for

Supporting Information

Supporting Information

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Structure Report for J. Reibenspies

Electronic Supplementary Information

Synthesis of Vinyl Germylenes

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Reactivity of (Pyridine-Diimine)Fe Alkyl Complexes with Carbon Dioxide. Ka-Cheong Lau, Richard F. Jordan*

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting Information. Table of Contents

Supporting Information

Binuclear Rare-Earth Polyhydride Complexes Bearing both

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Supporting Information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

Copper Mediated Fluorination of Aryl Iodides

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Supporting Information. Table of Contents

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Stereoselective Synthesis of (-) Acanthoic Acid

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Stoichiometric Reductions of Alkyl-Substituted Ketones and Aldehydes to Borinic Esters Lauren E. Longobardi, Connie Tang, and Douglas W.

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Stabilization of a Reactive Polynuclear Silver Carbide Cluster through the Encapsulation within Supramolecular Cage

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Catalytic hydrogenation of liquid alkenes with a silica grafted hydride. pincer iridium(iii) complex: Support for a heterogeneous mechanism

Supporting Information for the Article Entitled

Crystal structure analysis of N,2-diphenylacetamide

Selective total encapsulation of the sulfate anion by neutral nano-jars

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

Seth B. Harkins and Jonas C. Peters

Supplementary Information

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Supporting information

Supplementary Information. Single Crystal X-Ray Diffraction

Supporting Information

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Copper(I) β-boroalkyls from Alkene Insertion: Isolation and Rearrangement

Table S2a. Crystal data and structure refinement for 2 Table S2b. Selected bond lengths and angles for 2 Figure S3.

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Supporting Information

Supporting Information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Supplementary Information

Electronic Supplementary Information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Supporting information for Eddaoudi et al. (2002) Proc. Natl. Acad. Sci. USA 99 (8), ( /pnas ) Supporting Information

Supporting Information

Electronic Supplementary Information

Supporting Information

Supporting Information

Supporting Information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Supporting Information

Manganese-Calcium Clusters Supported by Calixarenes

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Supporting Information

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Supporting Information

Sulfuric Acid-Catalyzed Conversion of Alkynes to Ketones in an Ionic Liquid Medium under Mild Reaction Conditions

metal-organic compounds

Electronic Supplementary Information (ESI)

Supporting Information

Decomposition of Ruthenium Olefin Metathesis. Catalysts

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Supporting Information

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Reversible uptake of HgCl 2 in a porous coordination polymer based on the dual functions of carboxylate and thioether

High-performance Single-crystal Field Effect Transistors of Pyreno[4,5-a]coronene

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Controllable Growth of Bulk Cubic-Phase CH 3 NH 3 PbI 3 Single Crystal with Exciting Room-Temperature Stability

Supporting Information for. Controlled Hydrosilylation of Carbonyls and Imines Catalyzed by a Cationic Aluminum Alkyl Complex

SUPPLEMENTARY INFORMATION

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Heterolytic H 2 Activation Mediated by Low Coordinate L 3 Fe-(µ-N)-FeL 3 Complexes to Generate Fe(µ-NH)(µ-H)Fe Species

Transcription:

Supporting Information for "Inverse-Electron-Demand" Ligand Substitution in Palladium(0) Olefin Complexes Shannon S. Stahl,* Joseph L. Thorman, Namal de Silva, Ilia A. Guzei, and Robert W. Clark Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706. Experimental General Procedures. All manipulations were performed under an inert atmosphere of nitrogen using a H. M. Braun glovebox. All solvents were rigorously degassed and dried prior to use. Methylene chloride-d 2, diethyl ether, hexanes, methylene chloride, and toluene were dried by passage through a column of activated alumina. (bc)pd(dba) was prepared according to the published procedure. 1 The following compounds, β-nitrostyrene derivatives, bathocuproine (Aldrich) were obtained from commercial sources and used as received. 1 H NMR data were recorded at 27.0 ºC, unless otherwise stated using a Varian Unity ( 1 H: 500 MHz), a Bruker Avance ( 1 H: 360 MHz), or Bruker Inova ( 1 H: 300 MHz) spectrometers. Chemical shifts were referenced to residual protons in the deuterated solvent (i.e., CDHCl 2 : δ 5.32). Synthesis of (bc)pd(ns X ) derivatives. Each of these complexes (bc = bathocuproine, 2,9- dimethyl-4,7-diphenyl-1,10-phenananthroline; ns X = p-x-trans-β-nitrostyrene, X = CH 3 O, CH 3, H, Br, CF 3 ) were all synthesized in an analogous manner. Representative procedure for (bc)pd(ns CH3 ): In a glovebox at ambient temperature (ca. 23 C), a 100 ml round bottom flask was charged with 1 Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188-7189.

(bc)pd(dba) (215.5 mg, 0.307 mmol), p-methyl-trans-β-nitrostyrene (60.6 mg, 0.37 mmol), and dichloromethane (ca. 10 ml) to give a light orange solution. After 10 minutes the solution was filtered over a celite pad and the filtrate reduced in volume under vacuum (ca. 1 ml). Et 2 O (ca. 10 ml) was then added and placed in freezer (-30 C) for 30 minutes, after which the mixture was filtered. The solid was then dissolved in minimal CH 2 Cl 2 (ca. 2 ml) and hexanes added (ca. 15 ml), mixed thoroughly and placed in the freezer (-30 C) for 15 minutes. This solution was then filtered and dried under vacuum to yield pure product (153 mg, 71 % yield). Analytically pure samples could be obtained by layering a toluene solution with hexanes (1:2 V:V), allowing to stand at -25 C, filtering, and drying the solid in vacuo. Crystals suitable for X-ray diffraction analysis were obtained by dissolving solid sample in a minimum of CH 2 Cl 2, layering with hexane and allowing to stand undisturbed at 30 C. Crystallographic data are provided below. 1 H NMR (δ, CD 2 Cl 2, 360 MHz): (bc)pd(ns OCH3 ):7.81 (m, 2H, bc Ar-H), 7.69 (s, 1H, bc Ar-H), 7.57 (s, 1H, bc Ar-H), 7.53 (m, 10H, bc Ar-H), 7.33 (d, 2H, 3 J H-H = 9 Hz, ns OCH3 Ar-H), 6.68 (d, 2H, 3 J H-H = 9 Hz, ns OCH3 Ar-H), 5.94 (d, 2H, 3 J H-H = 8 Hz, ns OCH3 CH=CH), 4.64 (d, 2H, 3 J H-H = 8 Hz, ns OCH3 CH=CH), 3.68 (s, 3H, ns OCH3 CH 3 ).3.11 (s, 3H, bc CH 3 ), 2.81 (s, 3H, bc CH 3 ). (bc)pd(ns CH3 ):7.79 (m, 2H, bc Ar-H), 7.71 (s, 1H, bc Ar-H), 7.58 (s, 1H, bc Ar-H), 7.54 (m, 10H, bc Ar-H), 7.36 (d, 2H, 3 J H-H = 8 Hz, ns CH3 Ar-H), 6.96 (d, 2H, 3 J H-H = 8 Hz, ns CH3 Ar-H), 5.96 (d, 2H, 3 J H-H = 8 Hz, ns CH3 CH=CH), 4.73 (d, 2H, 3 J H-H = 8 Hz, ns CH3 CH=CH), 3.21 (s, 3H, bc CH 3 ), 2.89 (s, 3H, bc CH 3 ), 2.17 (s, 3H, ns CH3 CH 3 ). (bc)pd(ns H ):7.80 (m, 2H, bc Ar-H), 7.72 (s, 1H, bc Ar-H), 7.59 (s, 1H, bc Ar-H), 7.6 (m, 12H, bc Ar-H and ns H Ar-H), 7.13 (m, 3H, ns H Ar-H), 5.98 (d, 2H, 3 J H-H = 8 Hz, ns H CH=CH), 4.74 (d, 2H, 3 J H-H = 8 Hz, ns H CH=CH), 3.21 (s, 3H, bc CH 3 ), 2.88 (s, 3H, bc CH 3 ). (bc)pd(ns Br ): 7.80 (m, 2H, bc Ar-H), 7.70 (s, 1H, bc Ar-H), 7.55 (m, 11H, bc Ar-H), 7.38 (d, 2H, 3 J H-H = 8 Hz, ns Br Ar-H), 7.27 (d, 2H, 3 J H-H = 8 Hz, ns Br Ar-H), 5.98 (d, 2H, 3 J H-H = 7 Hz, ns Br CH=CH), 4.76 (d, 2H, 3 J H-H = 7 Hz, ns Br CH=CH), 3.24 (s, 3H, bc CH 3 ), 2.88 (s, 3H, bc CH 3 ). (bc)pd(ns CF3 ): 7.79 (m, 2H, bc Ar-H), 7.68 (s, 1H, bc Ar-H), 7.5 (m, 15H, bc Ar-H and ns CF3 Ar- 2

H), 6.00 (d, 2H, 3 J H-H = 8 Hz, ns CF3 CH=CH), 4.68 (d, 2H, 3 J H-H = 8 Hz, ns CF3 CH=CH), 3.10 (s, 3H, bc CH 3 ), 2.78 (s, 3H, bc CH 3 ), 13 C NMR (δ, CD 2 Cl 2, 90.5 MHz): (bc)pd(ns OCH3 ): 161.9, 161.7, 157.6, 150.5, 150.4, 147.2, 137.5, 130.1, 130.0, 129.6, 129.4, 128.3, 126.4, 126.3, 126.2, 124.0, 123.9, 81.33, 55.7, 47.0, 29.9, 28.7. (bc)pd(ns CH3 ): 161.9, 161.7, 150.5, 150.3, 147.2, 146.6, 142.2, 137.6, 134.6, 130.1, 130.0, 129.6, 129.4, 127.2, 126.4, 126.2, 124.0, 123.9, 81.4, 47.2, 30.0, 28.8, 21.5. (bc)pd(ns H ): 161.9, 161.7, 150.5, 150.4, 147.2, 146.6, 145.4, 137.6, 137.5, 130.1, 130.0, 129.6, 129.4, 129.3, 128.9, 127.3, 126.4, 126.2, 124.9, 124.0, 123.9, 81.3, 47.2, 30.0, 28.8. (bc)pd(ns Br ): 162.0, 161.6, 150.6, 150.5, 147.2, 146.7, 144.8, 137.5, 137.4, 131.8, 130.1, 130.0, 129.6, 129.4, 129.4, 128.9, 126.4, 126.4, 126.2, 124.1, 124.0, 117.8, 80.9, 46.1, 30.1, 28.8. (bc)pd(ns CF3 ): 162.0, 161.6, 150.7, 150.6, 150.0, 147.2, 143.4, 137.4, 135.5, 131.0, 130.0, 129.7, 129.5, 129.4, 128.9, 127.3, 126.4, 126.2, 126.1, 124.8, 124.0, 80.8, 46.0, 30.1, 28.9. X-ray: (see data below). Line-broadening investigations: All data were collected on a Varian Unity 500 with sw=8000, nt=32, d1=5 s. A representative run follows: An NMR tube was charged with 1,3,5-tritert-butylbenzene (2.92 µmol), (bc)pd(ns CF3 ) (3.6 mg, 5.21 µmol), ns CF3 (7.35 mg, 33.86 µmol), and CD 2 Cl 2 (555 µl total volume). Spectra were obtained at the desired temperature after allowing at least 25 min for temperature equilibration. Lineshape simulations for the methine resonances of the bound olefin were carried out with GNMR v4.1 and compared with the experimental spectra to calculate the line width at half height. Equilibrium constant investigations: All data were collected on the Bruker Avance 360 with ds=2, sw=15 ppm, ns=32, d1=10 s. Baseline correction and line broadening, 0.3 Hz, were utilized. A representative run follows: An NMR tube was charged with 1,3,5-tri-tert-butylbenzene (3.06 µmol), (bc)pd(ns CF3 ) (3.9 mg, 5.68 µmol), ns Br (7.4 mg, 32.66 µmol), and CD 2 Cl 2 (489 µl total 3

volume). Spectra were taken at the desired temperature after allowing at least 25 min for temperature equilibration. Integrations of the bound olefin resonances were used to obtain the equilibrium constants. UV-visible Kinetics of Olefin Exchange. UV-visible data were acquired on a pccontrolled Cary 3E spectrophotometer with WinUV 2.01 software. Temperature was maintained with a Cary 1x1 peltier temperature controller. A representative kinetics experiment follows: Stock solutions of (bc)pd(ns CH3 ) (1mM) and ns CF3 (2mM) were prepared in the glovebox and removed from the glovebox in a schlenk tube equipped with a 4mm Kontes Teflon valve. The (bc)pd(ns CH3 ) stock solution was maintained at -78 C in between kinetic runs to avoid decomposition, which takes place slowly over several hours in solution. A gastight UV-visible cell equipped with a side-arm reservoir was employed to allow both stock solutions to be added to the cell under a nitrogen atmosphere prior to initiating the reaction. The palladium stock solution (300 µl) and CH 2 Cl 2 (2.55 ml) were added via syringe to the UV-visible cell, and the ns CF3 solution (150 µl) was added to the side-arm. After obtaining the initial absorbance reading of the (bc)pd(ns CH3 ) solution, the contents of the cell and sidearm were mixed rapidly and single-wavelength (425nm) data collection was initiated. Most reactions were complete (> 5 half-lives) within 5 minutes. A text file of the data was imported into Microsoft Excel for data fitting. For data fitting, a kinetic model based on bimolecular approach to equilibrium was employed, and the data were fit by minimizing the sum of the squared deviations between the experimental data and a fourth-order Runge-Kutta numerical simulation of bimolecular kinetic model. The equilibrium constants for olefin binding were required for fitting and these data were obtained by 1 H NMR experiments, as described above. A representative data set and fit is shown in Figure 3 of the main text. 4

X-ray data for (bc)pd(ns H ), (bc)pd(ns CH3 ), (bc)pd(ns Br ). (bc)pd(ns H ): Data Collection An orange air-sensitive crystal with approximate dimensions 0.15 x 0.08 x 0.03 mm 3 was selected under oil under ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = 0.71073 Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 30 seconds per frame. A total of 44 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 3913 strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of 15900data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 120 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were uniquely consistent for the space group P2 1 /n that yielded chemically reasonable and computationally stable results of refinement. 3 A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. All phenyl groups were refined with idealized geometries. The phenyl groups at atom C(17) is disordered over two positions in a 55:45 ratio. There is also 0.5 solvate molecule of dichloromethane disordered over a crystallographic center per Pd complex in the lattice. The solvate molecule was refined with soft constraints and restraints. The final least-squares refinement of 317 parameters against 4493 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of 0.0897 and 0.1874, respectively. The final difference Fourier map was featureless. The ORTEP diagrams are drawn with 30% probability ellipsoids. 2 Blessing, R.H. Acta Cryst. 1995, A51, 33-38 3 All software and sources of the scattering factors are contained in the SHELXTL (version 5.1) program library (G. 5

Figure S1. ORTEP drawing of the β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns H ). Sheldrick, Bruker Analytical X-Ray Systems, Madison, WI). 6

Table S1. Crystal data and structure refinement for (bc)pd(ns H ). Identification code sta05 Empirical formula C 34 H 27 N 3 O 2 Pd 1/2 CH 2 Cl 2 Formula weight 658.45 Temperature 173(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2 1 /n Unit cell dimensions a = 9.6598(14) Å α= 90. b = 17.800(3) Å β= 94.371(3). c = 16.853(3) Å γ = 90. Volume 2889.5(7) Å 3 Z 4 Density (calculated) 1.514 Mg/m 3 Absorption coefficient 0.772 mm -1 F(000) 1340 Crystal size 0.15 x 0.08 x 0.03 mm 3 Theta range for data collection 2.29 to 24.00. Index ranges -7<=h<=11, -20<=k<=16, -19<=l<=19 Reflections collected 12879 Independent reflections 4493 [R(int) = 0.0948] Completeness to theta = 24.00 99.2 % Absorption correction Empirical with SADABS Max. and min. transmission 0.9772 and 0.8930 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 4493 / 8 / 317 Goodness-of-fit on F 2 1.060 Final R indices [I>2sigma(I)] R1 = 0.0897, wr2 = 0.1686 R indices (all data) R1 = 0.1545, wr2 = 0.1874 Largest diff. peak and hole 0.737 and -0.574 e.å -3 7

Table S2. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd(1) 2840(1) 1301(1) 3808(1) 42(1) Cl(1) 6293(5) 384(3) 217(4) 160(2) O(1) 4595(10) 1417(6) 1853(5) 102(3) O(2) 4938(9) 2337(6) 2648(7) 93(3) N(1) 2130(8) 1165(4) 4985(5) 44(2) N(2) 3527(8) 184(4) 4141(4) 38(2) N(3) 4216(13) 1818(7) 2378(6) 71(3) C(1) 1679(16) 2488(6) 5216(8) 102(5) C(2) 1564(13) 1668(6) 5433(7) 60(3) C(3) 922(11) 1460(6) 6117(6) 58(3) C(4) 788(10) 716(6) 6330(6) 44(3) C(5) 139(7) 521(4) 7073(3) 44(3) C(6) -1186(7) 791(3) 7177(4) 55(3) C(7) -1826(6) 615(4) 7864(5) 62(3) C(8) -1142(8) 170(4) 8448(4) 64(3) C(9) 183(8) -99(3) 8344(3) 56(3) C(10) 823(5) 76(4) 7656(4) 49(3) C(11) 1373(10) 163(5) 5838(6) 41(2) C(12) 1265(10) -623(5) 5971(6) 42(3) C(13) 1991(10) -1112(5) 5550(6) 46(3) C(14) 2834(10) -865(5) 4946(5) 40(2) C(15) 2817(9) -109(5) 4740(5) 33(2) C(16) 2071(10) 427(5) 5193(5) 38(2) C(17) 3693(9) -1353(5) 4537(5) 40(2) C(18) 3866(8) -2151(3) 4793(4) 55(2) C(19) 4290(10) -2405(4) 5553(4) 55(2) C(20) 4428(10) -3170(4) 5700(4) 55(2) C(21) 4141(9) -3683(3) 5087(5) 55(2) C(22) 3718(11) -3429(4) 4327(4) 55(2) C(23) 3580(10) -2663(4) 4180(3) 55(2) C(18A) 3646(8) -2182(3) 4665(4) 55(2) C(19A) 4775(7) -2475(4) 5124(5) 55(2) C(20A) 4793(7) -3229(4) 5338(5) 55(2) C(21A) 3682(9) -3691(3) 5092(5) 55(2) C(22A) 2552(8) -3398(4) 4633(6) 55(2) C(23A) 2534(8) -2644(4) 4420(6) 55(2) C(24) 4458(10) -1048(6) 3971(6) 45(3) C(25) 4344(10) -278(6) 3768(5) 41(3) C(26) 5157(10) 47(6) 3130(6) 52(3) C(27) 2889(11) 1697(6) 2675(6) 54(3) C(28) 2266(10) 2249(6) 3147(6) 48(3) C(29) 778(6) 2474(4) 3040(4) 47(3) C(30) 392(8) 3136(4) 3402(4) 63(3) C(31) -985(10) 3369(4) 3326(5) 89(5) C(32) -1976(6) 2941(6) 2889(6) 97(5) C(33) -1589(8) 2280(6) 2527(5) 91(4) C(34) -213(9) 2046(4) 2602(5) 69(3) C(35) 4527(16) 344(18) 307(19) 142(14) 8

Table S3. Bond lengths [Å] and angles [ ] for (bc)pd(ns H ). Pd(1)-C(27) 2.040(10) C(14)-C(17) 1.415(12) Pd(1)-C(28) 2.075(9) C(15)-C(16) 1.447(12) Pd(1)-N(2) 2.156(7) C(17)-C(24) 1.362(12) Pd(1)-N(1) 2.161(8) C(17)-C(18) 1.491(10) Cl(1)-C(35) 1.726(14) C(17)-C(18A) 1.493(10) Cl(1)-C(35)#1 1.726(14) C(18)-C(19) 1.3900 O(1)-N(3) 1.215(12) C(18)-C(23) 1.3900 O(2)-N(3) 1.224(12) C(19)-C(20) 1.3900 N(1)-C(2) 1.317(12) C(20)-C(21) 1.3900 N(1)-C(16) 1.364(11) C(21)-C(22) 1.3900 N(2)-C(25) 1.330(11) C(22)-C(23) 1.3900 N(2)-C(15) 1.368(11) C(18A)-C(19A) 1.3900 N(3)-C(27) 1.427(14) C(18A)-C(23A) 1.3900 C(1)-C(2) 1.510(14) C(19A)-C(20A) 1.3900 C(2)-C(3) 1.400(14) C(20A)-C(21A) 1.3900 C(3)-C(4) 1.380(13) C(21A)-C(22A) 1.3900 C(4)-C(11) 1.431(12) C(22A)-C(23A) 1.3900 C(4)-C(5) 1.483(11) C(24)-C(25) 1.416(13) C(5)-C(6) 1.3900 C(25)-C(26) 1.494(12) C(5)-C(10) 1.3900 C(27)-C(28) 1.427(14) C(6)-C(7) 1.3900 C(28)-C(29) 1.490(11) C(7)-C(8) 1.3900 C(29)-C(30) 1.3900 C(8)-C(9) 1.3900 C(29)-C(34) 1.3900 C(9)-C(10) 1.3900 C(30)-C(31) 1.3900 C(11)-C(16) 1.404(13) C(31)-C(32) 1.3900 C(11)-C(12) 1.423(12) C(32)-C(33) 1.3900 C(12)-C(13) 1.352(12) C(33)-C(34) 1.3900 C(13)-C(14) 1.421(13) C(35)-Cl(1)#1 1.726(14) C(14)-C(15) 1.390(12) 9

C(27)-Pd(1)-C(28) 40.6(4) C(27)-Pd(1)-N(2) 122.2(4) C(28)-Pd(1)-N(2) 162.6(4) C(27)-Pd(1)-N(1) 158.4(4) C(28)-Pd(1)-N(1) 119.5(4) N(2)-Pd(1)-N(1) 76.8(3) C(35)-Cl(1)-C(35)#1 66.1(15) C(2)-N(1)-C(16) 118.8(9) C(2)-N(1)-Pd(1) 128.7(7) C(16)-N(1)-Pd(1) 111.4(6) C(25)-N(2)-C(15) 117.5(8) C(25)-N(2)-Pd(1) 129.0(6) C(15)-N(2)-Pd(1) 112.5(6) O(1)-N(3)-O(2) 121.3(13) O(1)-N(3)-C(27) 119.7(13) O(2)-N(3)-C(27) 119.0(11) N(1)-C(2)-C(3) 121.5(10) N(1)-C(2)-C(1) 118.5(10) C(3)-C(2)-C(1) 120.0(10) C(4)-C(3)-C(2) 121.6(9) C(3)-C(4)-C(11) 117.4(9) C(3)-C(4)-C(5) 119.9(9) C(11)-C(4)-C(5) 122.6(8) C(6)-C(5)-C(10) 120.0 C(6)-C(5)-C(4) 118.6(6) C(10)-C(5)-C(4) 121.4(6) C(5)-C(6)-C(7) 120.0 C(6)-C(7)-C(8) 120.0 C(9)-C(8)-C(7) 120.0 C(8)-C(9)-C(10) 120.0 C(9)-C(10)-C(5) 120.0 C(16)-C(11)-C(12) 119.7(8) C(16)-C(11)-C(4) 117.0(9) C(12)-C(11)-C(4) 123.3(9) C(13)-C(12)-C(11) 120.2(9) C(12)-C(13)-C(14) 121.8(9) C(15)-C(14)-C(17) 117.9(9) C(15)-C(14)-C(13) 118.7(9) C(17)-C(14)-C(13) 123.3(9) N(2)-C(15)-C(14) 123.8(9) N(2)-C(15)-C(16) 115.8(8) C(14)-C(15)-C(16) 120.3(8) N(1)-C(16)-C(11) 123.6(9) N(1)-C(16)-C(15) 117.9(8) C(11)-C(16)-C(15) 118.5(8) C(24)-C(17)-C(14) 117.8(9) C(24)-C(17)-C(18) 121.8(9) C(14)-C(17)-C(18) 120.0(8) C(24)-C(17)-C(18A) 121.3(9) C(14)-C(17)-C(18A) 120.7(8) C(18)-C(17)-C(18A) 11.41(8) C(19)-C(18)-C(23) 120.0 C(19)-C(18)-C(17) 126.5(4) C(23)-C(18)-C(17) 113.5(5) C(20)-C(19)-C(18) 120.0 C(21)-C(20)-C(19) 120.0 C(20)-C(21)-C(22) 120.0 C(23)-C(22)-C(21) 120.0 10

C(22)-C(23)-C(18) 120.0 C(19A)-C(18A)-C(23A) 120.0 C(19A)-C(18A)-C(17) 114.8(4) C(23A)-C(18A)-C(17) 125.0(4) C(18A)-C(19A)-C(20A) 120.0 C(21A)-C(20A)-C(19A) 120.0 C(20A)-C(21A)-C(22A) 120.0 C(23A)-C(22A)-C(21A) 120.0 C(22A)-C(23A)-C(18A) 120.0 C(17)-C(24)-C(25) 121.3(9) N(2)-C(25)-C(24) 121.5(9) N(2)-C(25)-C(26) 117.7(9) C(24)-C(25)-C(26) 120.9(9) N(3)-C(27)-C(28) 121.3(11) N(3)-C(27)-Pd(1) 117.8(7) C(28)-C(27)-Pd(1) 71.0(6) C(27)-C(28)-C(29) 124.2(9) C(27)-C(28)-Pd(1) 68.4(6) C(29)-C(28)-Pd(1) 120.0(6) C(30)-C(29)-C(34) 120.0 C(30)-C(29)-C(28) 117.6(7) C(34)-C(29)-C(28) 122.4(7) C(29)-C(30)-C(31) 120.0 C(30)-C(31)-C(32) 120.0 C(31)-C(32)-C(33) 120.0 C(34)-C(33)-C(32) 120.0 C(33)-C(34)-C(29) 120.0 Cl(1)-C(35)-Cl(1)#1 113.9(15) Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z 11

Table S4. Anisotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd(1) 43(1) 34(1) 48(1) 7(1) -4(1) -7(1) Cl(1) 141(4) 115(4) 224(6) -16(4) 17(4) 31(3) O(1) 116(8) 136(9) 59(6) 30(6) 31(5) 38(7) O(2) 64(6) 82(7) 135(9) 28(6) 17(6) -9(5) N(1) 59(6) 27(5) 44(5) 4(4) 2(4) -1(4) N(2) 43(5) 28(5) 40(5) 2(4) -2(4) 0(4) N(3) 103(10) 73(9) 41(6) 22(6) 17(6) 9(7) C(1) 207(17) 32(7) 73(9) 10(7) 42(10) 17(9) C(2) 97(10) 36(7) 48(7) -1(6) 4(6) 6(6) C(3) 78(8) 36(8) 60(7) -5(6) 14(6) 15(6) C(4) 47(7) 39(7) 45(6) 0(5) -2(5) 1(5) C(5) 54(7) 31(6) 47(6) -6(5) -1(5) 0(5) C(6) 40(7) 64(8) 60(7) -23(6) -1(6) 7(6) C(7) 57(8) 50(8) 80(9) -21(7) 12(7) 1(6) C(8) 82(10) 50(8) 65(8) -22(6) 37(7) -3(7) C(9) 90(10) 34(7) 43(7) -11(5) 0(6) -4(6) C(10) 43(7) 44(7) 59(7) -9(6) 5(6) -3(5) C(11) 48(6) 32(6) 42(6) -6(5) 2(5) 13(5) C(12) 41(6) 33(6) 52(6) 6(5) 1(5) 4(5) C(13) 59(7) 20(6) 59(7) 7(5) 1(5) 3(5) C(14) 46(7) 36(6) 37(6) 8(5) 1(5) -2(5) C(15) 21(5) 39(6) 37(5) 12(5) -3(4) 1(4) C(16) 43(6) 28(6) 41(6) 4(5) -5(5) -2(5) C(17) 41(6) 33(6) 46(6) 1(5) 1(5) 6(5) C(18) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(19) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(20) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(21) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(22) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(23) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(18A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(19A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(20A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(21A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(22A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(23A) 68(4) 40(3) 53(4) 4(3) -17(3) 11(3) C(24) 36(6) 49(7) 49(6) 1(5) 2(5) 11(5) C(25) 36(6) 50(7) 37(6) 1(5) -6(5) -8(5) C(26) 44(7) 62(8) 52(7) 11(6) 9(5) -5(6) C(27) 48(7) 69(8) 44(6) 20(6) 5(5) -3(6) C(28) 46(7) 43(7) 52(7) 21(5) -3(5) -10(5) C(29) 41(7) 40(7) 60(7) 16(5) 0(5) -3(5) C(30) 54(8) 54(8) 81(9) 11(7) 19(6) 2(6) C(31) 62(9) 78(10) 130(13) 44(9) 21(9) 20(8) C(32) 60(10) 97(13) 132(14) 59(11) 6(9) 20(9) C(33) 78(11) 72(11) 120(12) 28(9) -5(9) -15(8) C(34) 58(8) 43(7) 105(10) 14(7) 4(7) -6(7) C(35) 100(20) 220(40) 120(30) -90(30) 50(20) 20(20) 12

Table S5. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns H ). x y z U(eq) H(1A) 1927 2782 5698 154 H(1B) 787 2664 4968 154 H(1C) 2398 2550 4842 154 H(3) 569 1840 6442 69 H(6) -1654 1095 6778 66 H(7) -2732 799 7935 74 H(8) -1580 50 8918 77 H(9) 650-403 8743 67 H(10) 1728-108 7585 59 H(12) 682-806 6357 50 H(13) 1935-1634 5660 56 H(19) 4486-2054 5972 66 H(20) 4717-3344 6219 66 H(21) 4235-4206 5187 66 H(22) 3522-3779 3908 66 H(23) 3291-2490 3660 66 H(19A) 5535-2159 5292 66 H(20A) 5565-3429 5651 66 H(21A) 3694-4206 5238 66 H(22A) 1792-3714 4465 66 H(23A) 1762-2444 4106 66 H(24) 5079-1358 3708 54 H(26A) 4518 258 2709 78 H(26B) 5716-349 2907 78 H(26C) 5769 444 3357 78 H(27) 2213 1441 2285 64 H(28) 2895 2686 3277 57 H(30) 1069 3428 3701 75 H(31) -1249 3821 3574 107 H(32) -2917 3101 2837 116 H(33) -2267 1987 2228 109 H(34) 51 1594 2355 82 H(35A) 4104 824 118 171 H(35B) 4362 290 877 171 13

(bc)pd(ns CH3 ): Data Collection A yellow air-sensitive crystal with approximate dimensions 0.4 x 0.3 x 0.2 mm 3 was selected under oil under ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = 0.71073 Å) radiation and the diffractometer to crystal distance of 4.9 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 44 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 7790 strong reflections from the actual data collection. The data were collected by using the hemisphere data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of 24919 data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 90 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were consistent for the space groups P1 and P1. 3 The E- statistics strongly suggested the centrosymmetric space group P1 that yielded chemically reasonable and computationally stable results of refinement. A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. There are two symmetry independent molecules of the complex in the lattice. There was one solvate molecule present in the asymmetric unit. A significant amount of time was invested in identifying and refining the disordered molecule. Bond length restraints were applied to model that molecule but the resulting isotropic displacement coefficients suggested the molecules were mobile. In addition, the refinement was computationally unstable. Option SQUEEZE of program PLATON [3] was used to correct the diffraction data for diffuse scattering effects and to identify the solvate molecule. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 321.0 Å 3, or 10.7% of the unit cell volume. The program calculated 57 electrons in the unit cell for the diffuse species. This roughly corresponds to 1.35 molecules of diethyl ether per two molecules of the Pd complex. Please note that all derived results in the following tables are based on known contents. No data are given for the diffusely scattering species. The final least-squares refinement of 745 parameters against 9373 data resulted in residuals R (based on F 2 for 14

I 2σ) and wr (based on F 2 for all data) of 0.0741 and 0.1515, respectively. The ORTEP diagrams are drawn with 30% probability ellipsoids. 15

Figure S2. ORTEP drawing of the p-methyl-β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns CH3 ). 16

Table S6. Crystal data and structure refinement for sta04. Identification code sta04 Empirical formula C 35 H 29 N 3 O 2 Pd. solvent Formula weight 630.01 Temperature 173(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P1 Unit cell dimensions a = 14.7731(15) Å a= 66.130(2). b = 14.8918(15) Å b= 79.696(2). c = 17.0363(17) Å g = 61.243(2). Volume 3004.1(5) Å 3 Z 4 Density (calculated) 1.393 Mg/m 3 Absorption coefficient 0.653 mm -1 F(000) 1288 Crystal size 0.18 x 0.12 x 0.05 mm 3 Theta range for data collection 1.31 to 24.00. Index ranges -16<=h<=16, -15<=k<=17, 0<=l<=19 Reflections collected 24919 Independent reflections 9373 [R(int) = 0.0657] Completeness to theta = 24.00 99.6 % Absorption correction Empirical with SADABS Max. and min. transmission 0.9681 and 0.8915 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 9373 / 0 / 745 Goodness-of-fit on F 2 1.007 Final R indices [I>2sigma(I)] R1 = 0.0741, wr2 = 0.1385 R indices (all data) R1 = 0.1230, wr2 = 0.1515 Largest diff. peak and hole 1.321 and -0.901 e.å -3 17

Table S7. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns CH3 ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd(1) 7622(1) 8116(1) 4737(1) 31(1) Pd(2) 6334(1) 1287(1) 322(1) 29(1) O(1) 8794(5) 6521(6) 6955(4) 65(2) O(2) 8881(4) 8068(5) 6249(4) 52(2) O(1A) 6978(6) 2810(6) 995(4) 64(2) O(2A) 8499(5) 1737(6) 709(5) 78(2) N(1) 6143(5) 8086(5) 5082(4) 28(2) N(2) 6589(5) 9499(5) 3721(4) 28(2) N(3) 8876(5) 7223(7) 6277(5) 47(2) N(1A) 6949(5) -422(5) 1218(4) 31(2) N(2A) 5037(5) 934(5) 513(4) 27(2) N(3A) 7566(7) 2253(7) 581(5) 51(2) C(1) 6842(6) 6359(7) 6317(5) 43(2) C(2) 5935(6) 7340(6) 5741(5) 30(2) C(3) 4952(6) 7412(7) 5902(5) 35(2) C(4) 4119(6) 8297(7) 5387(5) 32(2) C(5) 4307(6) 9141(6) 4706(5) 28(2) C(6) 3495(6) 10173(6) 4199(5) 29(2) C(7) 3717(6) 10909(6) 3546(5) 28(2) C(8) 4765(6) 10718(6) 3312(5) 26(2) C(9) 5044(6) 11450(6) 2585(5) 27(2) C(10) 6076(6) 11162(7) 2467(5) 32(2) C(11) 6822(6) 10201(6) 3038(5) 28(2) C(12) 7961(5) 9914(7) 2893(5) 39(2) C(13) 5332(5) 8967(6) 4572(5) 23(2) C(14) 5562(6) 9758(6) 3844(5) 25(2) C(15) 3069(6) 8341(7) 5543(6) 40(2) C(16) 2448(7) 8628(7) 4866(6) 50(3) C(17) 1500(8) 8649(8) 5021(8) 66(3) C(18) 1148(8) 8383(9) 5854(9) 72(4) C(19) 1744(8) 8080(8) 6518(8) 64(3) C(20) 2695(7) 8063(7) 6360(6) 43(2) C(21) 4298(6) 12486(6) 1971(5) 29(2) C(22) 4455(6) 13418(7) 1656(5) 36(2) C(23) 3788(7) 14398(7) 1052(5) 41(2) C(24) 2948(7) 14484(7) 739(6) 51(3) C(25) 2780(6) 13564(7) 1024(6) 46(2) C(26) 3440(6) 12578(7) 1641(5) 37(2) C(27) 8930(6) 7031(7) 5485(5) 35(2) C(28) 9175(6) 7753(7) 4718(5) 37(2) C(29) 9802(6) 7300(7) 4051(5) 35(2) C(30) 9871(6) 6379(7) 3956(6) 43(2) C(31) 10489(7) 5999(8) 3318(6) 55(3) C(32) 11021(6) 6530(7) 2756(5) 38(2) C(33) 10973(6) 7440(8) 2841(6) 46(2) C(34) 10378(7) 7813(7) 3490(6) 48(2) C(35) 11590(7) 6151(8) 2035(6) 63(3) C(1A) 8771(6) -860(7) 1078(6) 47(2) 18

C(2A) 7920(6) -1157(7) 1479(5) 34(2) C(3A) 8149(6) -2192(7) 2123(5) 39(2) C(4A) 7387(6) -2494(6) 2551(5) 31(2) C(5A) 6349(6) -1703(6) 2294(5) 28(2) C(6A) 5489(6) -1909(7) 2669(5) 36(2) C(7A) 4519(6) -1192(6) 2346(5) 35(2) C(8A) 4325(5) -220(6) 1605(5) 25(2) C(9A) 3351(6) 481(6) 1180(5) 26(2) C(10A) 3288(6) 1310(6) 420(5) 30(2) C(11A) 4124(6) 1544(6) 106(5) 30(2) C(12A) 4003(6) 2532(6) -693(5) 37(2) C(13A) 6178(6) -726(6) 1611(5) 25(2) C(14A) 5144(6) 36(6) 1237(5) 26(2) C(15A) 7663(6) -3620(7) 3202(6) 39(2) C(16A) 8269(7) -4512(8) 2944(7) 63(3) C(17A) 8520(8) -5570(8) 3521(8) 73(3) C(18A) 8203(7) -5752(8) 4371(7) 57(3) C(19A) 7698(9) -4909(8) 4625(7) 69(3) C(20A) 7412(8) -3814(8) 4031(6) 58(3) C(21A) 2397(6) 359(6) 1540(5) 30(2) C(22A) 1862(6) 183(7) 1082(6) 40(2) C(23A) 926(7) 174(8) 1363(6) 48(3) C(24A) 544(7) 328(8) 2120(6) 52(3) C(25A) 1065(7) 492(8) 2590(6) 54(3) C(26A) 2007(7) 498(8) 2306(6) 51(3) C(27A) 7162(7) 2174(7) -100(6) 39(2) C(28A) 6108(6) 2884(6) -374(5) 32(2) C(29A) 5812(7) 3396(7) -1295(5) 41(2) C(30A) 6355(7) 2944(8) -1893(6) 47(2) C(31A) 6015(10) 3463(10) -2738(7) 70(3) C(32A) 5107(12) 4431(11) -3008(7) 75(4) C(33A) 4546(9) 4884(9) -2419(7) 68(3) C(34A) 4901(7) 4388(8) -1576(6) 50(3) C(35A) 4738(12) 4935(11) -3938(7) 125(6) 19

Table S8. Bond lengths [Å] and angles [ ] for (bc)pd(ns CH3 ). Pd(1)-C(27) 2.045(8) C(24)-C(25) 1.385(12) Pd(1)-C(28) 2.087(8) C(25)-C(26) 1.397(11) Pd(1)-N(2) 2.145(6) C(27)-C(28) 1.436(11) Pd(1)-N(1) 2.175(6) C(28)-C(29) 1.498(11) Pd(2)-C(27A) 2.057(8) C(29)-C(30) 1.400(11) Pd(2)-C(28A) 2.066(8) C(29)-C(34) 1.401(11) Pd(2)-N(2A) 2.159(6) C(30)-C(31) 1.408(11) Pd(2)-N(1A) 2.182(6) C(31)-C(32) 1.368(11) O(1)-N(3) 1.238(8) C(32)-C(33) 1.387(12) O(2)-N(3) 1.244(9) C(32)-C(35) 1.507(11) O(1A)-N(3A) 1.226(9) C(33)-C(34) 1.408(12) O(2A)-N(3A) 1.220(9) C(1A)-C(2A) 1.491(10) N(1)-C(2) 1.337(9) C(2A)-C(3A) 1.398(11) N(1)-C(13) 1.360(9) C(3A)-C(4A) 1.389(11) N(2)-C(11) 1.335(9) C(4A)-C(5A) 1.420(10) N(2)-C(14) 1.373(9) C(4A)-C(15A) 1.486(11) N(3)-C(27) 1.469(11) C(5A)-C(13A) 1.385(10) N(1A)-C(2A) 1.334(9) C(5A)-C(6A) 1.428(10) N(1A)-C(13A) 1.389(9) C(6A)-C(7A) 1.353(10) N(2A)-C(11A) 1.332(9) C(7A)-C(8A) 1.423(10) N(2A)-C(14A) 1.366(9) C(8A)-C(14A) 1.406(10) N(3A)-C(27A) 1.463(11) C(8A)-C(9A) 1.414(10) C(1)-C(2) 1.523(10) C(9A)-C(10A) 1.359(10) C(2)-C(3) 1.388(10) C(9A)-C(21A) 1.498(10) C(3)-C(4) 1.382(11) C(10A)-C(11A) 1.399(10) C(4)-C(5) 1.429(10) C(11A)-C(12A) 1.504(10) C(4)-C(15) 1.501(11) C(13A)-C(14A) 1.457(10) C(5)-C(13) 1.399(10) C(15A)-C(20A) 1.342(12) C(5)-C(6) 1.439(10) C(15A)-C(16A) 1.395(12) C(6)-C(7) 1.332(10) C(16A)-C(17A) 1.379(13) C(7)-C(8) 1.444(10) C(17A)-C(18A) 1.397(14) C(8)-C(14) 1.401(10) C(18A)-C(19A) 1.320(13) C(8)-C(9) 1.432(10) C(19A)-C(20A) 1.419(12) C(9)-C(10) 1.372(10) C(21A)-C(22A) 1.376(11) C(9)-C(21) 1.469(10) C(21A)-C(26A) 1.382(11) C(10)-C(11) 1.395(10) C(22A)-C(23A) 1.385(11) C(11)-C(12) 1.523(10) C(23A)-C(24A) 1.374(12) C(13)-C(14) 1.447(10) C(24A)-C(25A) 1.359(12) C(15)-C(20) 1.376(11) C(25A)-C(26A) 1.393(11) C(15)-C(16) 1.398(12) C(27A)-C(28A) 1.428(11) C(16)-C(17) 1.364(12) C(28A)-C(29A) 1.479(11) C(17)-C(18) 1.387(15) C(29A)-C(30A) 1.370(12) C(18)-C(19) 1.348(15) C(29A)-C(34A) 1.403(12) C(19)-C(20) 1.372(12) C(30A)-C(31A) 1.382(13) C(21)-C(22) 1.390(10) C(31A)-C(32A) 1.383(15) C(21)-C(26) 1.402(10) C(32A)-C(33A) 1.364(15) C(22)-C(23) 1.387(11) C(32A)-C(35A) 1.523(14) C(23)-C(24) 1.367(12) C(33A)-C(34A) 1.386(13) 20

C(27)-Pd(1)-C(28) 40.7(3) C(27)-Pd(1)-N(2) 160.4(3) C(28)-Pd(1)-N(2) 120.0(3) C(27)-Pd(1)-N(1) 123.4(3) C(28)-Pd(1)-N(1) 164.0(3) N(2)-Pd(1)-N(1) 76.0(2) C(27A)-Pd(2)-C(28A) 40.5(3) C(27A)-Pd(2)-N(2A) 159.3(3) C(28A)-Pd(2)-N(2A) 118.8(3) C(27A)-Pd(2)-N(1A) 123.8(3) C(28A)-Pd(2)-N(1A) 163.1(3) N(2A)-Pd(2)-N(1A) 76.7(2) C(2)-N(1)-C(13) 117.0(6) C(2)-N(1)-Pd(1) 128.3(5) C(13)-N(1)-Pd(1) 114.7(5) C(11)-N(2)-C(14) 116.8(6) C(11)-N(2)-Pd(1) 127.1(5) C(14)-N(2)-Pd(1) 115.7(5) O(1)-N(3)-O(2) 122.9(8) O(1)-N(3)-C(27) 116.5(8) O(2)-N(3)-C(27) 120.6(8) C(2A)-N(1A)-C(13A) 117.4(7) C(2A)-N(1A)-Pd(2) 129.8(5) C(13A)-N(1A)-Pd(2) 112.6(5) C(11A)-N(2A)-C(14A) 117.3(6) C(11A)-N(2A)-Pd(2) 129.1(5) C(14A)-N(2A)-Pd(2) 112.8(5) O(2A)-N(3A)-O(1A) 123.1(9) O(2A)-N(3A)-C(27A) 116.6(9) O(1A)-N(3A)-C(27A) 120.3(8) N(1)-C(2)-C(3) 123.2(7) N(1)-C(2)-C(1) 116.9(7) C(3)-C(2)-C(1) 119.9(7) C(4)-C(3)-C(2) 120.7(8) C(3)-C(4)-C(5) 117.5(7) C(3)-C(4)-C(15) 120.2(7) C(5)-C(4)-C(15) 122.3(7) C(13)-C(5)-C(4) 117.4(7) C(13)-C(5)-C(6) 119.3(7) C(4)-C(5)-C(6) 123.2(7) C(7)-C(6)-C(5) 120.6(7) C(6)-C(7)-C(8) 122.4(7) C(14)-C(8)-C(9) 118.0(7) C(14)-C(8)-C(7) 117.6(7) C(9)-C(8)-C(7) 124.5(7) C(10)-C(9)-C(8) 117.2(7) C(10)-C(9)-C(21) 118.6(7) C(8)-C(9)-C(21) 124.2(7) C(9)-C(10)-C(11) 121.3(7) N(2)-C(11)-C(10) 123.0(7) N(2)-C(11)-C(12) 117.0(7) C(10)-C(11)-C(12) 119.9(7) N(1)-C(13)-C(5) 124.1(7) N(1)-C(13)-C(14) 117.0(6) 21

C(5)-C(13)-C(14) 118.9(7) N(2)-C(14)-C(8) 123.7(7) N(2)-C(14)-C(13) 115.7(6) C(8)-C(14)-C(13) 120.6(7) C(20)-C(15)-C(16) 117.4(8) C(20)-C(15)-C(4) 121.3(8) C(16)-C(15)-C(4) 121.3(8) C(17)-C(16)-C(15) 120.5(10) C(16)-C(17)-C(18) 119.9(11) C(19)-C(18)-C(17) 120.5(10) C(18)-C(19)-C(20) 119.4(11) C(19)-C(20)-C(15) 122.1(10) C(22)-C(21)-C(26) 116.8(7) C(22)-C(21)-C(9) 120.1(7) C(26)-C(21)-C(9) 123.0(7) C(23)-C(22)-C(21) 121.7(8) C(24)-C(23)-C(22) 121.1(8) C(23)-C(24)-C(25) 118.9(9) C(24)-C(25)-C(26) 120.3(9) C(25)-C(26)-C(21) 121.2(8) C(28)-C(27)-N(3) 116.4(8) C(28)-C(27)-Pd(1) 71.2(4) N(3)-C(27)-Pd(1) 112.4(5) C(27)-C(28)-C(29) 118.6(7) C(27)-C(28)-Pd(1) 68.1(4) C(29)-C(28)-Pd(1) 115.2(6) C(30)-C(29)-C(34) 117.1(8) C(30)-C(29)-C(28) 124.4(8) C(34)-C(29)-C(28) 118.5(8) C(29)-C(30)-C(31) 120.8(8) C(32)-C(31)-C(30) 121.5(9) C(31)-C(32)-C(33) 118.8(8) C(31)-C(32)-C(35) 119.2(9) C(33)-C(32)-C(35) 121.9(8) C(32)-C(33)-C(34) 120.3(8) C(29)-C(34)-C(33) 121.5(8) N(1A)-C(2A)-C(3A) 121.1(7) N(1A)-C(2A)-C(1A) 119.0(7) C(3A)-C(2A)-C(1A) 119.8(7) C(4A)-C(3A)-C(2A) 122.4(7) C(3A)-C(4A)-C(5A) 116.8(7) C(3A)-C(4A)-C(15A) 120.8(7) C(5A)-C(4A)-C(15A) 122.3(7) C(13A)-C(5A)-C(4A) 117.9(7) C(13A)-C(5A)-C(6A) 119.1(7) C(4A)-C(5A)-C(6A) 122.8(7) C(7A)-C(6A)-C(5A) 121.4(8) C(6A)-C(7A)-C(8A) 120.9(7) C(14A)-C(8A)-C(9A) 117.4(7) C(14A)-C(8A)-C(7A) 119.5(7) C(9A)-C(8A)-C(7A) 123.0(7) C(10A)-C(9A)-C(8A) 117.8(7) C(10A)-C(9A)-C(21A) 119.4(7) C(8A)-C(9A)-C(21A) 122.8(7) 22

C(9A)-C(10A)-C(11A) 121.6(7) N(2A)-C(11A)-C(10A) 121.9(7) N(2A)-C(11A)-C(12A) 117.5(7) C(10A)-C(11A)-C(12A) 120.6(7) C(5A)-C(13A)-N(1A) 124.1(7) C(5A)-C(13A)-C(14A) 120.0(7) N(1A)-C(13A)-C(14A) 115.9(7) N(2A)-C(14A)-C(8A) 123.6(7) N(2A)-C(14A)-C(13A) 117.5(7) C(8A)-C(14A)-C(13A) 118.8(7) C(20A)-C(15A)-C(16A) 119.1(9) C(20A)-C(15A)-C(4A) 122.9(8) C(16A)-C(15A)-C(4A) 117.8(8) C(17A)-C(16A)-C(15A) 119.8(10) C(16A)-C(17A)-C(18A) 120.1(10) C(19A)-C(18A)-C(17A) 119.5(10) C(18A)-C(19A)-C(20A) 120.8(10) C(15A)-C(20A)-C(19A) 120.4(9) C(22A)-C(21A)-C(26A) 119.4(7) C(22A)-C(21A)-C(9A) 120.0(7) C(26A)-C(21A)-C(9A) 120.5(7) C(21A)-C(22A)-C(23A) 120.9(8) C(24A)-C(23A)-C(22A) 118.8(8) C(25A)-C(24A)-C(23A) 121.3(8) C(24A)-C(25A)-C(26A) 119.8(9) C(21A)-C(26A)-C(25A) 119.7(8) C(28A)-C(27A)-N(3A) 119.6(8) C(28A)-C(27A)-Pd(2) 70.1(4) N(3A)-C(27A)-Pd(2) 114.8(5) C(27A)-C(28A)-C(29A) 120.9(8) C(27A)-C(28A)-Pd(2) 69.4(4) C(29A)-C(28A)-Pd(2) 119.6(6) C(30A)-C(29A)-C(34A) 117.2(9) C(30A)-C(29A)-C(28A) 124.2(9) C(34A)-C(29A)-C(28A) 118.6(9) C(29A)-C(30A)-C(31A) 120.6(10) C(30A)-C(31A)-C(32A) 121.8(11) C(33A)-C(32A)-C(31A) 118.5(11) C(33A)-C(32A)-C(35A) 121.9(13) C(31A)-C(32A)-C(35A) 119.6(14) C(32A)-C(33A)-C(34A) 120.0(11) C(33A)-C(34A)-C(29A) 121.8(10) Symmetry transformations used to generate equivalent atoms: 23

Table S9. Anisotropic displacement parameters (Å 2 x 10 3 ) for sta04. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd(1) 23(1) 32(1) 36(1) -13(1) 1(1) -10(1) Pd(2) 26(1) 31(1) 32(1) -10(1) 4(1) -17(1) O(1) 70(5) 69(5) 45(4) -10(4) 4(4) -35(4) O(2) 43(4) 57(4) 65(5) -34(4) -3(3) -18(3) O(1A) 76(5) 84(6) 58(5) -28(4) 6(4) -56(5) O(2A) 49(5) 75(5) 109(6) -15(5) -25(4) -34(4) N(1) 30(4) 22(4) 35(4) -17(3) 7(3) -12(3) N(2) 26(4) 27(4) 30(4) -11(3) 3(3) -13(3) N(3) 27(4) 45(5) 47(5) -7(5) 7(4) -11(4) N(1A) 26(4) 33(4) 37(4) -20(3) 1(3) -9(3) N(2A) 28(4) 23(4) 33(4) -14(3) 0(3) -9(3) N(3A) 44(5) 55(6) 58(6) 3(5) -1(4) -44(5) C(1) 44(6) 37(5) 34(5) 0(4) -1(4) -18(5) C(2) 31(5) 31(5) 39(5) -19(4) 4(4) -18(4) C(3) 45(5) 35(5) 28(5) -10(4) 10(4) -24(5) C(4) 37(5) 35(5) 34(5) -19(4) 9(4) -23(4) C(5) 27(5) 38(5) 26(5) -19(4) 8(4) -17(4) C(6) 19(4) 38(5) 37(5) -19(4) 5(4) -15(4) C(7) 21(4) 33(5) 38(5) -21(4) 4(4) -13(4) C(8) 26(4) 33(5) 27(5) -20(4) 6(4) -14(4) C(9) 27(5) 25(4) 32(5) -16(4) -2(4) -9(4) C(10) 35(5) 40(5) 28(5) -14(4) 4(4) -21(4) C(11) 20(4) 32(5) 35(5) -18(4) 4(4) -11(4) C(12) 20(4) 43(5) 47(6) -17(5) 7(4) -10(4) C(13) 17(4) 21(4) 31(5) -14(4) 2(3) -5(3) C(14) 22(4) 25(4) 31(5) -13(4) 4(4) -12(4) C(15) 32(5) 34(5) 58(6) -17(5) 15(5) -21(4) C(16) 48(6) 58(6) 54(6) -14(5) -1(5) -36(5) C(17) 43(6) 60(7) 104(10) -34(7) 3(6) -30(6) C(18) 40(7) 62(8) 130(12) -43(8) 28(7) -36(6) C(19) 56(7) 57(7) 93(9) -45(7) 45(7) -38(6) C(20) 49(6) 37(5) 54(6) -21(5) 17(5) -30(5) C(21) 29(5) 26(5) 33(5) -14(4) 5(4) -11(4) C(22) 35(5) 42(6) 31(5) -14(5) 3(4) -17(4) C(23) 40(6) 35(5) 45(6) -11(5) 5(5) -19(5) C(24) 52(6) 32(6) 50(6) -14(5) -4(5) -4(5) C(25) 32(5) 48(6) 50(6) -22(5) -12(5) -5(5) C(26) 42(5) 38(5) 36(5) -23(5) 6(4) -17(4) C(27) 26(5) 39(5) 34(5) -18(4) 5(4) -8(4) C(28) 21(4) 37(5) 43(6) -10(5) 0(4) -8(4) C(29) 25(5) 37(5) 33(5) -10(4) 6(4) -10(4) C(30) 36(5) 33(5) 47(6) -12(5) 3(4) -10(4) C(31) 50(6) 41(6) 49(6) -8(5) -1(5) -9(5) C(32) 23(5) 43(6) 37(6) -7(5) 7(4) -15(4) C(33) 38(5) 54(6) 43(6) -14(5) 14(5) -26(5) C(34) 41(6) 47(6) 54(6) -12(5) 1(5) -24(5) C(35) 52(6) 71(7) 53(7) -26(6) 16(5) -21(6) C(1A) 24(5) 54(6) 56(6) -15(5) 6(4) -20(5) 24

C(2A) 24(5) 41(5) 38(5) -15(5) -3(4) -16(4) C(3A) 23(5) 39(5) 46(6) -15(5) -7(4) -5(4) C(4A) 33(5) 34(5) 33(5) -16(4) -4(4) -15(4) C(5A) 26(4) 24(4) 36(5) -12(4) -5(4) -11(4) C(6A) 49(6) 29(5) 31(5) -9(4) 1(4) -19(4) C(7A) 24(5) 33(5) 43(5) -10(4) 7(4) -15(4) C(8A) 20(4) 26(4) 32(5) -13(4) 6(4) -12(4) C(9A) 24(4) 29(5) 31(5) -15(4) 0(4) -14(4) C(10A) 22(4) 34(5) 37(5) -16(4) -1(4) -12(4) C(11A) 28(5) 33(5) 32(5) -17(4) 2(4) -13(4) C(12A) 29(5) 39(5) 34(5) 0(4) -5(4) -19(4) C(13A) 25(4) 16(4) 36(5) -14(4) 1(4) -6(4) C(14A) 26(4) 23(4) 33(5) -12(4) -2(4) -11(4) C(15A) 30(5) 36(5) 42(6) -10(5) -1(4) -10(4) C(16A) 55(7) 51(7) 63(7) -17(6) -1(6) -12(6) C(17A) 78(8) 34(6) 80(9) -9(6) -8(7) -12(6) C(18A) 55(7) 22(5) 77(8) 4(6) -30(6) -14(5) C(19A) 96(9) 43(7) 46(7) 1(6) -16(6) -25(6) C(20A) 79(8) 36(6) 58(7) -21(6) -2(6) -21(5) C(21A) 25(4) 32(5) 38(5) -14(4) 10(4) -20(4) C(22A) 39(5) 46(6) 45(6) -22(5) 9(4) -26(5) C(23A) 33(5) 68(7) 58(7) -32(6) -4(5) -24(5) C(24A) 32(5) 60(7) 62(7) -18(6) 9(5) -27(5) C(25A) 41(6) 85(8) 52(6) -37(6) 13(5) -35(6) C(26A) 53(6) 87(8) 45(6) -34(6) 22(5) -54(6) C(27A) 42(5) 47(6) 41(5) -15(5) 6(4) -33(5) C(28A) 38(5) 29(5) 34(5) -9(4) -1(4) -19(4) C(29A) 54(6) 43(6) 35(6) 0(5) 0(5) -41(5) C(30A) 55(6) 61(7) 32(6) -13(5) 10(5) -37(5) C(31A) 118(11) 77(9) 50(7) -21(7) 15(7) -77(9) C(32A) 129(12) 74(9) 45(7) 10(7) -28(8) -79(9) C(33A) 93(9) 60(7) 55(8) 9(6) -25(7) -54(7) C(34A) 52(6) 52(6) 45(6) -4(5) -9(5) -33(5) C(35A) 243(19) 109(11) 54(8) 6(8) -52(10) -114(13) 25

Table S10. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns CH3 ). x y z U(eq) H(1A) 7436 6095 5962 65 H(1B) 6650 5766 6652 65 H(1C) 7025 6585 6707 65 H(3) 4850 6848 6371 42 H(6) 2795 10331 4331 35 H(7) 3165 11584 3222 34 H(10) 6288 11626 1988 38 H(12A) 8228 9970 3350 59 H(12B) 8041 10427 2336 59 H(12C) 8347 9159 2902 59 H(16) 2687 8809 4295 60 H(17) 1082 8846 4557 79 H(18) 482 8414 5958 87 H(19) 1507 7881 7089 76 H(20) 3109 7852 6831 52 H(22) 5034 13382 1859 43 H(23) 3916 15021 853 49 H(24) 2488 15162 333 61 H(25) 2212 13604 799 56 H(26) 3306 11959 1840 44 H(27) 9230 6245 5544 43 H(28) 9317 8304 4795 45 H(30) 9495 6006 4326 51 H(31) 10539 5360 3276 65 H(33) 11342 7813 2459 56 H(34) 10368 8425 3549 58 H(35A) 11636 5433 2140 95 H(35B) 12287 6085 2005 95 H(35C) 11218 6689 1491 95 H(1A1) 9083-1164 627 70 H(1A2) 9296-1166 1516 70 H(1A3) 8492-56 827 70 H(3A) 8852-2707 2274 47 H(6A) 5601-2563 3155 44 H(7A) 3959-1341 2618 42 H(10A) 2661 1742 94 36 H(12D) 3990 3103-536 55 H(12E) 3355 2821-992 55 H(12F) 4584 2316-1071 55 H(16A) 8508-4390 2372 75 H(17A) 8908-6176 3340 88 H(18A) 8350-6477 4764 68 H(19A) 7523-5036 5211 82 H(20A) 7042-3215 4222 69 H(22A) 2139 65 564 48 H(23A) 554 64 1039 58 H(24A) -95 319 2320 62 26

H(25A) 786 602 3109 65 H(26A) 2380 598 2637 61 H(27A) 7657 2021-568 47 H(28A) 5720 3393-56 39 H(30A) 6971 2268-1725 56 H(31A) 6416 3147-3145 84 H(33A) 3912 5539-2587 81 H(34A) 4517 4728-1179 60 H(35D) 4680 4389-4080 187 H(35E) 5235 5159-4318 187 H(35F) 4062 5581-4014 187 27

(bc)pd(ns Br ): Data collection. A red air- and moisture-sensitive crystal with approximate dimensions 0.30 x 0.20 x 0.10 mm 3 was selected under oil at ambient conditions and attached to the tip of a glass capillary. The crystal was mounted in a stream of cold nitrogen at 173(2) K and centered in the X-ray beam by using a video camera. The crystal evaluation and data collection were performed on a Bruker CCD-1000 diffractometer with Mo Kα (λ = 0.71073 Å) radiation and a diffractometer to crystal distance of 4.901 cm. The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 20 frames collected at intervals of 0.3º in a 6º range about ω with the exposure time of 10 seconds per frame. A total of 57 reflections was obtained. The reflections were successfully indexed by an automated indexing routine built in the SMART program. The final cell constants were calculated from a set of 7685 strong reflections from the actual data collection. The data were collected by using the multirun data collection routine. The reciprocal space was surveyed to the extent of a full sphere to a resolution of 0.80 Å. A total of 14108 data were harvested by collecting three sets of frames with 0.3º scans in ω with an exposure time 30 sec per frame. This highly redundant dataset was corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. 2 Structure Solution and Refinement The systematic absences in the diffraction data were consistent for the space groups P1 and P1. 3 The E-statistics strongly suggested the centrosymmetric space group P1 that yielded chemically reasonable and computationally stable results of refinement. A successful solution by the direct methods provided most non-hydrogen atoms from the E-map. The remaining non-hydrogen atoms were located in an alternating series of 28

least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients. There is one palladium complex and two solvate molecules of dichloromethane in the asymmetric unit. The final least-squares refinement of 426 parameters against 6935 data resulted in residuals R (based on F 2 for I 2σ) and wr (based on F 2 for all data) of 0.0450 and 0.1255, respectively. The final difference Fourier map was featureless. The ORTEP diagrams are drawn with 30% probability ellipsoids. 29

Figure S3. ORTEP drawing of the p-methyl-β-nitrostyrene adduct of bathocuproine-coordinated palladium(0), (bc)pd(ns Br ). 30

Table S11. Crystal data and structure refinement for (bc)pd(ns Br ). Identification code sta03 Empirical formula C 36 H 30 Br Cl 4 N 3 O 2 Pd Formula weight 864.74 Temperature 173(2) K Wavelength 0.71073 Å Crystal system Triclinic Space group P1 Unit cell dimensions a = 10.5752(8) Å α= 65.989 (1). b = 13.1939(9) Å β= 79.601 (1). c = 13.6535(10) Å γ = 85.841 (1). Volume 1711.6(2) Å 3 Z 2 Density (calculated) 1.678 Mg/m 3 Absorption coefficient 2.060 mm -1 F(000) 864 Crystal size 0.30 x 0.20 x 0.10 mm 3 Theta range for data collection 1.66 to 26.40. Index ranges -12<=h<=13, -14<=k<=16, 0<=l<=17 Reflections collected 14108 Independent reflections 6935 [R(int) = 0.0332] Completeness to theta = 26.40 98.6 % Absorption correction Empirical with SADABS Max. and min. transmission 0.8205 and 0.5770 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 6935 / 0 / 426 Goodness-of-fit on F 2 1.000 Final R indices [I>2sigma(I)] R1 = 0.0450, wr2 = 0.1150 R indices (all data) R1 = 0.0617, wr2 = 0.1255 Largest diff. peak and hole 1.239 and -0.700 e.å -3 31

Table S12. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns Br ). U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Pd 6947(1) 11031(1) 2186(1) 22(1) Br 5501(1) 16749(1) 1488(1) 50(1) Cl(1) 8107(1) 8103(1) 1897(1) 50(1) Cl(2) 9265(2) 8250(1) 3599(1) 54(1) Cl(3) 1073(2) 5636(2) 1701(2) 86(1) Cl(4) 2650(2) 4586(2) 3383(2) 73(1) O(1) 9054(3) 11132(3) 44(3) 42(1) O(2) 7527(4) 11413(3) -884(3) 46(1) N(1) 5722(3) 9584(3) 2984(3) 22(1) N(2) 7254(3) 10395(3) 3860(3) 23(1) N(3) 7973(4) 11470(3) -132(3) 32(1) C(1) 4985(4) 9191(4) 2514(3) 27(1) C(2) 4184(4) 8279(4) 3127(4) 27(1) C(3) 4133(4) 7719(4) 4234(3) 25(1) C(4) 4905(4) 8138(3) 4738(3) 23(1) C(5) 4891(4) 7681(4) 5895(3) 25(1) C(6) 5687(4) 8073(4) 6327(3) 24(1) C(7) 6577(4) 8955(3) 5666(3) 23(1) C(8) 7515(4) 9331(4) 6071(3) 25(1) C(9) 8246(4) 10236(4) 5352(3) 26(1) C(10) 8091(4) 10768(3) 4261(3) 24(1) C(11) 6520(4) 9494(3) 4547(3) 21(1) C(12) 5686(4) 9060(3) 4077(3) 22(1) C(13) 5045(5) 9760(4) 1310(4) 36(1) C(14) 3298(4) 6729(4) 4842(4) 26(1) C(15) 1997(5) 6798(4) 4752(4) 35(1) C(16) 1203(5) 5880(4) 5295(4) 41(1) C(17) 1712(5) 4866(5) 5913(4) 44(1) C(18) 2993(5) 4792(4) 5997(4) 41(1) C(19) 3781(5) 5715(4) 5481(4) 33(1) C(20) 7770(4) 8769(4) 7209(3) 26(1) C(21) 7869(4) 7616(4) 7711(4) 30(1) C(22) 8202(5) 7111(4) 8742(4) 35(1) C(23) 8444(5) 7738(4) 9280(4) 36(1) C(24) 8350(5) 8888(4) 8798(4) 35(1) C(25) 8018(4) 9402(4) 7758(4) 30(1) C(26) 8881(4) 11757(4) 3503(4) 31(1) C(27) 7174(4) 11970(4) 536(3) 28(1) C(28) 7808(4) 12488(4) 1059(3) 28(1) C(29) 7219(4) 13493(4) 1192(3) 28(1) C(30) 5940(4) 13779(4) 1132(3) 29(1) C(31) 5413(5) 14731(4) 1231(4) 35(1) C(32) 6195(5) 15413(4) 1406(4) 36(1) C(33) 7484(5) 15155(4) 1484(4) 34(1) C(34) 7976(4) 14208(4) 1377(4) 31(1) C(35) 9145(5) 8870(4) 2216(4) 41(1) C(36) 1920(7) 5807(6) 2607(7) 72(2) 32

Table S13. Bond lengths [Å] and angles [ ] for (bc)pd(ns Br ). Pd-C(28) 2.057(4) C(7)-C(8) 1.424(6) Pd-C(27) 2.060(4) C(8)-C(9) 1.376(6) Pd-N(1) 2.160(3) C(8)-C(20) 1.490(6) Pd-N(2) 2.169(3) C(9)-C(10) 1.399(6) Br-C(32) 1.897(5) C(10)-C(26) 1.489(6) Cl(1)-C(35) 1.764(5) C(11)-C(12) 1.447(6) Cl(2)-C(35) 1.750(6) C(14)-C(19) 1.387(7) Cl(3)-C(36) 1.744(8) C(14)-C(15) 1.396(6) Cl(4)-C(36) 1.743(8) C(15)-C(16) 1.383(7) O(1)-N(3) 1.225(5) C(16)-C(17) 1.390(8) O(2)-N(3) 1.235(5) C(17)-C(18) 1.372(8) N(1)-C(1) 1.341(5) C(18)-C(19) 1.383(7) N(1)-C(12) 1.360(5) C(20)-C(25) 1.394(6) N(2)-C(10) 1.335(5) C(20)-C(21) 1.396(6) N(2)-C(11) 1.363(5) C(21)-C(22) 1.389(6) N(3)-C(27) 1.453(6) C(22)-C(23) 1.372(7) C(1)-C(2) 1.391(6) C(23)-C(24) 1.390(7) C(1)-C(13) 1.494(6) C(24)-C(25) 1.400(6) C(2)-C(3) 1.379(6) C(27)-C(28) 1.437(6) C(3)-C(4) 1.422(6) C(28)-C(29) 1.488(6) C(3)-C(14) 1.482(6) C(29)-C(30) 1.385(6) C(4)-C(12) 1.400(6) C(29)-C(34) 1.404(6) C(4)-C(5) 1.442(6) C(30)-C(31) 1.384(7) C(5)-C(6) 1.347(6) C(31)-C(32) 1.380(7) C(6)-C(7) 1.433(6) C(32)-C(33) 1.393(7) C(7)-C(11) 1.410(6) C(33)-C(34) 1.372(7) 33

C(28)-Pd-C(27) 40.86(18) C(28)-Pd-N(1) 162.82(15) C(27)-Pd-N(1) 122.72(15) C(28)-Pd-N(2) 120.22(16) C(27)-Pd-N(2) 160.40(16) N(1)-Pd-N(2) 76.59(13) C(1)-N(1)-C(12) 118.4(4) C(1)-N(1)-Pd 126.5(3) C(12)-N(1)-Pd 115.0(3) C(10)-N(2)-C(11) 118.5(3) C(10)-N(2)-Pd 127.2(3) C(11)-N(2)-Pd 114.3(3) O(1)-N(3)-O(2) 121.8(4) O(1)-N(3)-C(27) 120.7(4) O(2)-N(3)-C(27) 117.6(4) N(1)-C(1)-C(2) 121.1(4) N(1)-C(1)-C(13) 118.1(4) C(2)-C(1)-C(13) 120.8(4) C(3)-C(2)-C(1) 122.1(4) C(2)-C(3)-C(4) 117.0(4) C(2)-C(3)-C(14) 119.9(4) C(4)-C(3)-C(14) 123.1(4) C(12)-C(4)-C(3) 118.1(4) C(12)-C(4)-C(5) 118.7(4) C(3)-C(4)-C(5) 123.2(4) C(6)-C(5)-C(4) 120.9(4) C(5)-C(6)-C(7) 121.9(4) C(11)-C(7)-C(8) 117.6(4) C(11)-C(7)-C(6) 118.4(4) C(8)-C(7)-C(6) 124.0(4) C(9)-C(8)-C(7) 117.4(4) C(9)-C(8)-C(20) 119.2(4) C(7)-C(8)-C(20) 123.4(4) C(8)-C(9)-C(10) 121.8(4) N(2)-C(10)-C(9) 121.3(4) N(2)-C(10)-C(26) 117.9(4) C(9)-C(10)-C(26) 120.8(4) N(2)-C(11)-C(7) 123.2(4) N(2)-C(11)-C(12) 117.3(3) C(7)-C(11)-C(12) 119.5(4) N(1)-C(12)-C(4) 123.2(4) N(1)-C(12)-C(11) 116.6(4) C(4)-C(12)-C(11) 120.2(4) C(19)-C(14)-C(15) 118.5(4) C(19)-C(14)-C(3) 121.7(4) C(15)-C(14)-C(3) 119.8(4) C(16)-C(15)-C(14) 120.9(5) C(15)-C(16)-C(17) 119.6(5) C(18)-C(17)-C(16) 119.7(5) C(17)-C(18)-C(19) 120.8(5) C(18)-C(19)-C(14) 120.4(4) C(25)-C(20)-C(21) 118.7(4) C(25)-C(20)-C(8) 119.8(4) C(21)-C(20)-C(8) 121.3(4) C(22)-C(21)-C(20) 120.6(4) C(23)-C(22)-C(21) 120.5(4) C(22)-C(23)-C(24) 120.1(4) C(23)-C(24)-C(25) 119.7(4) C(20)-C(25)-C(24) 120.5(4) C(28)-C(27)-N(3) 117.8(4) C(28)-C(27)-Pd 69.5(2) N(3)-C(27)-Pd 115.0(3) C(27)-C(28)-C(29) 118.8(4) C(27)-C(28)-Pd 69.7(2) C(29)-C(28)-Pd 113.5(3) C(30)-C(29)-C(34) 117.1(4) C(30)-C(29)-C(28) 123.2(4) C(34)-C(29)-C(28) 119.7(4) C(31)-C(30)-C(29) 122.6(4) C(32)-C(31)-C(30) 118.4(5) C(31)-C(32)-C(33) 121.2(5) C(31)-C(32)-Br 118.8(4) C(33)-C(32)-Br 120.0(4) C(34)-C(33)-C(32) 118.9(4) C(33)-C(34)-C(29) 121.9(4) Cl(2)-C(35)-Cl(1) 110.7(3) Cl(4)-C(36)-Cl(3) 112.8(4) Symmetry transformations used to generate equivalent atoms:

Table S14. Anisotropic displacement parameters (Å 2 x 10 3 ) for (bc)pd(ns Br ). The anisotropic displacement factor exponent takes the form: -2π 2 [ h 2 a* 2 U 11 +... + 2 h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Pd 25(1) 24(1) 17(1) -6(1) -4(1) 1(1) Br 53(1) 40(1) 67(1) -30(1) -19(1) 12(1) Cl(1) 52(1) 53(1) 53(1) -27(1) -13(1) -3(1) Cl(2) 54(1) 55(1) 56(1) -21(1) -24(1) 11(1) Cl(3) 109(2) 90(1) 56(1) -24(1) -14(1) -15(1) Cl(4) 81(1) 78(1) 71(1) -40(1) -12(1) 3(1) O(1) 38(2) 49(2) 38(2) -20(2) -6(2) 11(2) O(2) 56(2) 56(2) 35(2) -26(2) -12(2) -2(2) N(1) 24(2) 27(2) 17(2) -10(1) -5(1) 2(1) N(2) 24(2) 25(2) 20(2) -9(2) -4(1) 2(1) N(3) 38(2) 32(2) 25(2) -11(2) -2(2) -1(2) C(1) 26(2) 34(2) 23(2) -13(2) -7(2) 4(2) C(2) 23(2) 34(2) 29(2) -17(2) -6(2) -1(2) C(3) 25(2) 27(2) 26(2) -12(2) -6(2) 2(2) C(4) 21(2) 26(2) 24(2) -12(2) -5(2) 1(2) C(5) 23(2) 26(2) 19(2) -4(2) -1(2) -2(2) C(6) 25(2) 29(2) 15(2) -5(2) -3(2) 0(2) C(7) 24(2) 26(2) 20(2) -9(2) -5(2) 2(2) C(8) 28(2) 26(2) 22(2) -11(2) -7(2) 1(2) C(9) 28(2) 25(2) 26(2) -9(2) -10(2) 0(2) C(10) 25(2) 24(2) 24(2) -11(2) -3(2) 0(2) C(11) 23(2) 24(2) 18(2) -10(2) -4(2) 2(2) C(12) 22(2) 23(2) 20(2) -9(2) -4(2) 5(2) C(13) 37(3) 48(3) 21(2) -10(2) -7(2) -10(2) C(14) 27(2) 30(2) 29(2) -17(2) -6(2) -2(2) C(15) 31(2) 35(3) 41(3) -15(2) -13(2) 1(2) C(16) 28(3) 43(3) 55(3) -21(3) -9(2) -9(2) C(17) 47(3) 41(3) 42(3) -11(2) -5(2) -16(2) C(18) 51(3) 31(3) 37(3) -7(2) -12(2) -4(2) C(19) 31(2) 34(3) 31(2) -10(2) -6(2) -2(2) C(20) 24(2) 31(2) 23(2) -8(2) -7(2) -2(2) C(21) 34(2) 32(2) 26(2) -13(2) -8(2) -5(2) C(22) 42(3) 31(3) 26(2) -3(2) -9(2) -3(2) C(23) 41(3) 40(3) 22(2) -5(2) -11(2) -7(2) C(24) 38(3) 43(3) 32(3) -20(2) -11(2) -1(2) C(25) 33(2) 32(2) 27(2) -10(2) -10(2) -1(2) C(26) 30(2) 35(3) 27(2) -9(2) -5(2) -10(2) C(27) 32(2) 28(2) 20(2) -6(2) -3(2) 1(2) C(28) 29(2) 29(2) 22(2) -7(2) 0(2) -2(2) C(29) 34(2) 27(2) 17(2) -1(2) -3(2) -3(2) C(30) 33(2) 28(2) 24(2) -9(2) -3(2) -2(2) C(31) 36(3) 37(3) 30(2) -11(2) -9(2) 6(2) C(32) 44(3) 33(3) 33(3) -16(2) -7(2) 4(2) C(33) 40(3) 32(3) 31(2) -12(2) -7(2) -4(2) C(34) 29(2) 32(2) 29(2) -8(2) -6(2) -1(2) C(35) 40(3) 33(3) 51(3) -19(2) -6(2) -4(2) C(36) 64(4) 68(5) 90(5) -43(4) -2(4) -9(4)