Suggestions for Further Reading

Similar documents
INDEX 481. Joule-Thomson process, 86, 433. Kosterlitz-Thouless transition, 467

Statistical Mechanics

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Table of Contents [ttc]

Contents. 2 Thermodynamic Concepts Introduction The System Thermodynamic Equilibrium Temperature...

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

Principles of Equilibrium Statistical Mechanics

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Physics 380 Thermal and Statistical Physics Gustavus Adolphus College Version

Statistical Mechanics

PH4211 Statistical Mechanics Brian Cowan

1. Thermodynamics 1.1. A macroscopic view of matter

List of Comprehensive Exams Topics

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

01. Equilibrium Thermodynamics I: Introduction

Part II Statistical Physics

PART I: PROBLEMS. Thermodynamics and Statistical Physics

Elementary Lectures in Statistical Mechanics

424 Index. Eigenvalue in quantum mechanics, 174 eigenvector in quantum mechanics, 174 Einstein equation, 334, 342, 393

Topics for the Qualifying Examination

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

PHY 6500 Thermal and Statistical Physics - Fall 2017

Syllabus and Topics Thermal Physics I Fall 2007

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

CH 240 Chemical Engineering Thermodynamics Spring 2007

Thermodynamics and Statistical Physics WS 2018/19

Molecular Driving Forces

INTRODUCTION TO MODERN THERMODYNAMICS

PHASE TRANSITIONS AND CRITICAL PHENOMENA

Syllabus and Topics Statistical Mechanics Thermal Physics II Spring 2009

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Syllabus and Topics Statistical Mechanics Spring 2011

Introduction to Statistical Physics

FISES - Statistical Physics

Physics and Astronomy

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Syllabus and Topics Statistical Mechanics Spring 2010

Thermodynamics (Lecture Notes) Heat and Thermodynamics (7 th Edition) by Mark W. Zemansky & Richard H. Dittman

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Hari Dass, N.D. The principles of thermodynamics digitalisiert durch: IDS Basel Bern

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Preface Introduction to the electron liquid

!!"#!$%&' coefficient, D, naturally vary with different gases, but their

Many-Body Problems and Quantum Field Theory

Summary Part Thermodynamic laws Thermodynamic processes. Fys2160,

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Ideal gas From Wikipedia, the free encyclopedia

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

Quantum Mechanics: Fundamentals

NANO/MICROSCALE HEAT TRANSFER

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

PHL556: STATISTICAL MECHANICS

The Oxford Solid State Basics

The Methodology of Statistical Mechanics

c 2010 by Harvey Gould and Jan Tobochnik 25 August 2010

Statistical Mechanics I

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Phys Midterm. March 17

THERMODYNAMICS CONTENTS

Statistical Physics a second course

STATISTICAL MECHANICS

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

Lecture 20: Spinodals and Binodals; Continuous Phase Transitions; Introduction to Statistical Mechanics

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

Elements of Statistical Mechanics

Theoretical Statistical Physics

Chemical Engineering Thermodynamics

Teaching Statistical and Thermal Physics Using Computer Simulations


IV. Classical Statistical Mechanics

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

Course Prerequisites: PHYS 3313 and MATH 2326, or instructor s consent.

5. Systems in contact with a thermal bath

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Collective Effects. Equilibrium and Nonequilibrium Physics

Thermodynamics & Statistical Mechanics

An Introduction to Computer Simulation Methods

Physics 119A Final Examination

Thermodynamics & Statistical Mechanics SCQF Level 9, U03272, PHY-3-ThermStat. Thursday 24th April, a.m p.m.

Electrical Transport in Nanoscale Systems

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

In-class exercises. Day 1

LECTURES ON QUANTUM MECHANICS

NOTES ON ELEMENTARY STATISTICAL MECHANICS. Federico Corberi

DEPARTMENT OF PHYSICS

18.13 Review & Summary

STATISTICAL PHYSICS. Statics, Dynamics and Renormalization. Leo P Kadanoff. Departments of Physics & Mathematics University of Chicago

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

Review of differential and integral calculus and introduction to multivariate differential calculus.

Physical Chemistry Using Mathcad

MOLECULAR SPECTROSCOPY

Many-Particle Systems

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

to satisfy the large number approximations, W W sys can be small.

Transcription:

Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing Work and the Quality of Energy......................... 4 1.4 Some Simple Simulations................................ 5 1.5 Measuring the Pressure and Temperature................... 15 1.6 Work, Heating, and the First Law of Thermodynamics............ 19 1.7 *The Fundamental Need for a Statistical Approach.................. 19 1.8 *Time and Ensemble Averages............................. 21 1.9 Models of Matter..................................... 22 1.9.1 The ideal gas................................... 22 1.9.2 Interparticle potentials.............................. 22 1.9.3 Lattice models.................................. 23 1.10 Importance of Simulations................................ 23 1.11 Dimensionless Quantities................................ 24 1.12 Summary......................................... 25 1.13 Supplementary Notes................................... 26 1.13.1 Approach to equilibrium............................. 26 1.13.2 Mathematics refresher.............................. 27 Vocabulary........................................... 27 Additional Problems...................................... 28 Suggestions for Further Reading............................... 29 i

ii 2 Thermodynamic Concepts 31 2.1 Introduction........................................ 31 2.2 The System........................................ 32 2.3 Thermodynamic Equilibrium.............................. 32 2.4 Temperature....................................... 34 2.5 Pressure Equation of State............................... 36 2.6 Some Thermodynamic Processes............................ 38 2.7 Work............................................ 39 2.8 The First Law of Thermodynamics........................... 43 2.9 Energy Equation of State................................ 45 2.10 Heat Capacities and Enthalpy.............................. 46 2.11 Quasistatic Adiabatic Processes............................. 49 2.12 The Second Law of Thermodynamics........................ 53 2.13 The Thermodynamic Temperature......................... 55 2.14 The Second Law and Heat Engines........................... 57 2.15 Entropy Changes..................................... 64 2.16 Equivalence of Thermodynamic and Ideal Gas Scale Temperatures......... 70 2.17 The Thermodynamic Pressure............................ 71 2.18 The Fundamental Thermodynamic Relation...................... 72 2.19 The Entropy of an Ideal Classical Gas......................... 74 2.20 The Third Law of Thermodynamics.......................... 74 2.21 Free Energies....................................... 75 2.22 Thermodynamic Derivatives............................... 80 2.23 *Applications to Irreversible Processes......................... 84 2.23.1 Joule or free expansion process......................... 85 2.23.2 Joule-Thomson process............................. 86 2.24 Supplementary Notes................................... 88 2.24.1 The mathematics of thermodynamics...................... 88 2.24.2 Thermodynamic potentials and Legendre transforms......... 91 Vocabulary........................................... 93 Additional Problems...................................... 94 Suggestions for Further Reading............................... 103

iii 3 Concepts of Probability 106 3.1 Probability in Everyday Life............................... 106 3.2 The Rules of Probability................................. 109 3.3 Mean Values....................................... 113 3.4 The Meaning of Probability............................... 116 3.4.1 Information and uncertainty........................... 118 3.4.2 *Bayesian inference................................ 122 3.5 Bernoulli Processes and the Binomial Distribution.................. 127 3.6 Continuous Probability Distributions.......................... 140 3.7 The Central Limit Theorem (or Why Thermodynamics Is Possible)......... 144 3.8 *The Poisson Distribution or Should You Fly?.................... 147 3.9 *Traffic Flow and the Exponential Distribution.................. 148 3.10 *Are All Probability Distributions Gaussian?................... 151 3.11 *Supplementary Notes.................................. 153 3.11.1 Method of undetermined multipliers...................... 153 3.11.2 Derivation of the central limit theorem..................... 155 Vocabulary........................................... 159 Additional Problems...................................... 159 Suggestions for Further Reading............................... 169 4 Statistical Mechanics 172 4.1 Introduction........................................ 172 4.2 A Simple Example of a Thermal Interaction...................... 174 4.3 Counting Microstates................................... 184 4.3.1 Noninteracting spins............................... 184 4.3.2 A particle in a one-dimensional box...................... 185 4.3.3 One-dimensional harmonic oscillator...................... 188 4.3.4 One particle in a two-dimensional box..................... 188 4.3.5 One particle in a three-dimensional box.................... 190 4.3.6 Two noninteracting identical particles and the semiclassical limit.... 191 4.4 The Number of States of Many Noninteracting Particles: Semiclassical Limit... 193 4.5 The Microcanonical Ensemble (Fixed E, V, andn)................. 194 4.6 The Canonical Ensemble (Fixed T, V,andN).................... 200 4.7 Connection Between Thermodynamics and Statistical Mechanics in the Canonical Ensemble207 4.8 Simple Applications of the Canonical Ensemble.................... 208 4.9 An Ideal Thermometer.................................. 211 4.10 Simulation of the Microcanonical Ensemble.................... 215

iv 4.11 Simulation of the Canonical Ensemble......................... 216 4.12 Grand Canonical Ensemble (Fixed T, V, and µ)................... 217 4.13 *Entropy is not a Measure of Disorder......................... 219 4.14 Supplementary Notes................................... 221 4.14.1 The volume of a hypersphere.......................... 221 4.14.2 Fluctuations in the canonical ensemble..................... 222 Vocabulary........................................... 223 Additional Problems...................................... 223 Suggestions for Further Reading............................... 229 5 Magnetic Systems 230 5.1 Paramagnetism...................................... 230 5.2 Noninteracting Magnetic Moments........................... 231 5.3 Thermodynamics of Magnetism............................. 235 5.4 The Ising Model..................................... 236 5.5 The Ising Chain..................................... 237 5.5.1 Exact enumeration................................ 238 5.5.2 Spin-spin correlation function.......................... 241 5.5.3 Simulations of the Ising chain.......................... 244 5.5.4 *Transfer matrix................................. 245 5.5.5 Absence of a phase transition in one dimension................ 248 5.6 The Two-Dimensional Ising Model........................... 248 5.6.1 Onsager solution................................. 249 5.6.2 Computer simulation of the two-dimensional Ising model.......... 254 5.7 Mean-Field Theory.................................... 257 5.7.1 *Phase diagram of the Ising model....................... 263 5.8 *Simulation of the Density of States.......................... 265 5.9 *Lattice Gas....................................... 269 5.10 Supplementary Notes................................... 272 5.10.1 The Heisenberg model of magnetism...................... 272 5.10.2 Low temperature expansion........................... 274 5.10.3 High temperature expansion........................... 276 5.10.4 *Bethe approximation.............................. 278 5.10.5 Fully connected Ising model........................... 281 5.10.6 Metastability and nucleation.......................... 283 Vocabulary........................................... 285 Additional Problems...................................... 286

v Suggestions for Further Reading............................... 291 6 Many-Particle Systems 293 6.1 The Ideal Gas in the Semiclassical Limit........................ 293 6.2 Classical Statistical Mechanics............................. 302 6.2.1 The equipartition theorem............................ 302 6.2.2 The Maxwell velocity distribution....................... 305 6.2.3 The Maxwell speed distribution......................... 307 6.3 Occupation Numbers and Bose and Fermi Statistics............. 308 6.4 Distribution Functions of Ideal Bose and Fermi Gases................ 310 6.5 Single Particle Density of States............................ 313 6.5.1 Photons...................................... 314 6.5.2 Nonrelativistic particles............................. 315 6.6 The Equation of State of an Ideal Classical Gas: Application of the Grand Canonical Ensemble317 6.7 Blackbody Radiation................................... 319 6.8 The Ideal Fermi Gas................................... 323 6.8.1 Ground state properties............................. 323 6.8.2 Low temperature properties........................... 327 6.9 The Heat Capacity of a Crystalline Solid........................ 332 6.9.1 The Einstein model............................... 332 6.9.2 Debye theory................................... 333 6.10 The Ideal Bose Gas and Bose Condensation.................. 335 6.11 Supplementary Notes................................... 340 6.11.1 Fluctuations in the number of particles.................... 340 6.11.2 Low temperature expansion of an ideal Fermi gas............... 343 Vocabulary........................................... 345 Additional Problems...................................... 345 Suggestions for Further Reading............................... 354 7 The Chemical Potential and Phase Equilibria 356 7.1 Meaning of the chemical potential........................... 356 7.2 Measuring the chemical potential in simulations.................... 360 7.2.1 The Widom insertion method.......................... 360 7.2.2 The chemical demon algorithm......................... 362 7.3 Phase Equilibria..................................... 365 7.3.1 Equilibrium conditions.............................. 366 7.3.2 Simple phase diagrams.............................. 367

vi 7.3.3 Clausius-Clapeyron equation.......................... 369 7.4 The van der Waals Equation of State.......................... 372 7.4.1 Maxwell construction.............................. 372 7.4.2 *The van der Waals critical point........................ 379 7.5 *Chemical Reactions................................... 381 Vocabulary........................................... 385 Additional Problems...................................... 385 Suggestions for Further Reading............................... 386 8 Classical Gases and Liquids 388 8.1 Introduction........................................ 388 8.2 Density Expansion.................................... 388 8.3 The Second Virial Coefficient.............................. 392 8.4 *Diagrammatic Expansions............................... 397 8.4.1 Cumulants.................................... 397 8.4.2 High temperature expansion........................... 398 8.4.3 Density expansion................................ 403 8.4.4 Higher order virial coefficients for hard spheres.............. 405 8.5 The Radial Distribution Function............................ 407 8.6 Perturbation Theory of Liquids............................. 413 8.6.1 The van der Waals equation........................... 416 8.7 *The Ornstein-Zernike Equation and Integral Equations for g(r)... 417 8.8 *One-Component Plasma................................ 421 8.9 Supplementary Notes................................... 424 8.9.1 The third virial coefficient for hard spheres.................. 424 8.9.2 Definition of g(r) in terms of the local particle density............ 426 8.9.3 X-ray scattering and the static structure function............... 427 Vocabulary........................................... 431 Additional Problems...................................... 431 Suggestions for Further Reading............................... 434 9 Critical Phenomena 435 9.1 Landau Theory of Phase Transitions........................ 435 9.2 Universality and Scaling Relations........................... 442 9.3 A Geometrical Phase Transition............................ 444 9.4 Renormalization Group Method for Percolation.................... 450 9.5 The Renormalization Group Method and the One-Dimensional Ising Model.... 454

vii 9.6 The Renormalization Group Method and the Two-Dimensional Ising Model... 458 Vocabulary........................................... 464 Additional Problems...................................... 464 Suggestions for Further Reading............................... 466 A.1 Physical Constants and Conversion Factors...................... 468 A.2 Hyperbolic Functions................................... 469 A.3 Approximations...................................... 469 A.4 Euler-Maclaurin Formula................................ 469 A.5 Gaussian Integrals.................................... 470 A.6 Stirling s Approximation................................. 471 A.7 Bernoulli Numbers.................................... 472 A.8 Probability Distributions................................. 472 A.9 Fourier Transforms.................................... 473 A.10 The Delta Function.................................... 473 A.11 Convolution Integrals.................................. 474 A.12 Fermi and Bose Integrals............................... 475