Algebra 2A. Algebra 2A- Unit 5

Similar documents
Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors

2012 GCE A Level H2 Maths Solution Paper Let x,

ME 3600 Control Systems Frequency Domain Analysis

Suppose we have observed values t 1, t 2, t n of a random variable T.

ECSE Partial fraction expansion (m<n) 3 types of poles Simple Real poles Real Equal poles

Neutron Slowing Down Distances and Times in Hydrogenous Materials. Erin Boyd May 10, 2005

By the end of this section you will be able to prove the Chinese Remainder Theorem apply this theorem to solve simultaneous linear congruences

Chapter 3.1: Polynomial Functions

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

m = Mass flow rate The Lonely Electron Example 0a:

Chapter Finite Difference Method for Ordinary Differential Equations

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

MATHEMATICIA GENERALLI

Outline. Review Homework Problem. Review Homework Problem II. Review Dimensionless Problem. Review Convection Problem

Derivatives of Inverse Trig Functions

Zero Level Binomial Theorem 04

MATH Midterm Solutions

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

Relations on the Apostol Type (p, q)-frobenius-euler Polynomials and Generalizations of the Srivastava-Pintér Addition Theorems

Chapter 8. Exploring Polynomial Functions. Jennifer Huss

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Math 110 Midterm 1 Study Guide October 14, 2013

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

Sequences and series Mixed exercise 3

Properties and Tests of Zeros of Polynomial Functions

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

1 Fundamental Concepts From Algebra & Precalculus

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

( ) ( ) Weibull Distribution: k ti. u u. Suppose t 1, t 2, t n are times to failure of a group of n mechanisms. The likelihood function is

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

FBD of SDOF Base Excitation. 2.4 Base Excitation. Particular Solution (sine term) SDOF Base Excitation (cont) F=-(-)-(-)= 2ζω ωf

MATHS FOR ENGINEERS ALGEBRA TUTORIAL 8 MATHEMATICAL PROGRESSIONS AND SERIES

Comparing Different Estimators for Parameters of Kumaraswamy Distribution

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Modelling and Solution for Assignment Problem

Big O Notation for Time Complexity of Algorithms

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

Transient Radial Flow Toward a Well Aquifer Equation, based on assumptions becomes a 1D PDE for h(r,t) : Transient Radial Flow Toward a Well

An alternating series is a series where the signs alternate. Generally (but not always) there is a factor of the form ( 1) n + 1

is monotonically decreasing function of Ω, it is also called maximally flat at the

Practice Problems: Taylor and Maclaurin Series

and lim lim 6. The Squeeze Theorem

= 4 and 4 is the principal cube root of 64.

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Scratch Ticket Game Closing Analysis SUMMARY REPORT

Moment Generating Function

Steiner Hyper Wiener Index A. Babu 1, J. Baskar Babujee 2 Department of mathematics, Anna University MIT Campus, Chennai-44, India.

Section 5: Chain Rule

ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

LESSON 15: COMPOUND INTEREST

08257 ANSWER KEY. Page 1 Page 2 cake key pie boat glue cat sled pig fox sun dog fish zebra. Page 3. Page 7. Page 6

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

Chemistry 1B, Fall 2016 Topics 21-22

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

5.1 Angles and Their Measure

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

At the end of this topic, students should be able to understand the meaning of finite and infinite sequences and series, and use the notation u

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

LIMITS OF FUNCTIONS (I)

Department of Civil Engineering-I.I.T. Delhi CEL 899: Environmental Risk Assessment HW5 Solution

Math 421, Homework #9 Solutions

The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type. S. Khademloo and H. Mohammadnia. afrouzi

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1

x c the remainder is Pc ().

CE 1010 HW: S13 C siti n F ncti ns

K3 p K2 p Kp 0 p 2 p 3 p

Parts Manual. EPIC II Critical Care Bed REF 2031

Unit 2 Functions HW #1 Mrs. Dailey

On a Problem of Littlewood

4. PERMUTATIONS AND COMBINATIONS

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Extremal graph theory II: K t and K t,t

Relative and Circular Motion

8 Further theory of function limits and continuity

Modeling Micromixing Effects in a CSTR

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

MATH /19: problems for supervision in week 08 SOLUTIONS

N! AND THE GAMMA FUNCTION

171S2.2q The Algebra of Functions. February 13, MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Final Exam. Tuesday, December hours, 30 minutes

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

1 FUNCTIONS _ 5 _ 1.0 RELATIONS

APPLIED THERMODYNAMICS D201. SELF ASSESSMENT SOLUTIONS TUTORIAL 2 SELF ASSESSMENT EXERCISE No. 1

E o and the equilibrium constant, K

CLAIM No, HOLE No, FOOTAGE

SOME NOTES ON INEQUALITIES

Transcription:

Algeba 2A Algeba 2A- Ui 5

ALGEBRA 2A Less: 5.1 Name: Dae: Plymial fis O b j e i! I a evalae plymial fis! I a ideify geeal shapes f gaphs f plymial fis Plymial Fi: ly e vaiable (x) V a b l a y a :, ze a 0: : All he expes ae mbes. qai Algeba 2A- Ui 5 2

Vale f a fi: f ( k ) = Oe way evalae plymial fis is se die sbsii. Ahe way evalae a plymial is se syhei sbsii. V a b l a y Real Zes f a plymial fi: Maximm mbe f eal zes is eqal he degee. Real zes: whee he gaph sses he x-axis. f(x) = x + 2 g(x) = x 2 4 Hw may zes d he fllwig fis have? Zes may be eal mplex... The Fdameal Theem f Algeba: h degee plymial eqai has exaly slis. Ed behavi f a plymial fi: A B C D a x x + A) psiive eve B) psiive dd C) egaive eve D) egaive dd f (x) f (x) Algeba 2A- Ui 5 3

I s Example 1: Deide whehe he fi is a plymial fi. If i is, wie he fi i sadad fm ad sae is degee, ype ad leadig effiie. 1. f (x) = ½ x 2 3x 4 7 3. f (x) = x 3 + 3 x 2. f (x) = 6x 2 + 2 x 1 + x 4. f (x) = 0.5 x + π x 2 2 Y Y T 1: Wha ae he degee ad leadig effiie f a) 3x 2-2x 4 7 + x 3 ) 4x 2 3xy + 16y 2 b) 100-5x 3 + 10x 7 d) 4x 6 + 6x 4 + 8x 8 10x 2 + 20 I s Example 2: Vale f a fi sig Die Sbsii f (x) = 2 x 4-8 x 2 + 5 x - 7 whe x = 3. Sli: Example 3: Vale f a fi sig Syhei Sbsii f (x) = 2 x 4-8 x 2 + 5 x - 7 whe x = 3. Sli: Y T Y T 2: Use die sbsii If f(x)= 2x 2-3x + 1 a) f(-4) Y T 4: Usig Syhei Sbsii. Fid f(2) a) 3x 2 2x 4 7 + x 3 Y T 3: Use die sbsii If f(x)= x 2-4x 5 b) f(a 2-1) Y T 5: Usig Syhei Sbsii. Fid f(-5) b) 100 5x 3 + 10x 4 Algeba 2A- Ui 5 4

F eah gaph belw, desibe he ed behavi, deemie whehe i epeses a dd-degee a eve-degee fi. sae he mbe f eal zes. f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= f(x)= Algeba 2A- Ui 5 5

Y T 6: Y T 7: Y T Degee: # eal zes: Degee: # eal zes: Ed behavi: Ed behavi: Y T 8: Y T 9: Y w: Degee: # eal zes: Degee: # eal zes: Ed behavi: Ed behavi: Algeba 2A- Ui 5 6

Clse 5.1 Wam-p 5.1 p(3) = p(-5) = p(3) = p(-5) = Algeba 2A- Ui 5 7

ALGEBRA 2A Less: 5.2 Name: Dae: Gaphig Plymial Fis O b j e! I a gaph plymial fis ad lae hei eal zes! I a fid he maxima ad miima f plymial fis We have leaed hw gaph fis wih he fllwig degees: V a b l a y 0 Example: f(x) = 2 hizal lie 1 Example: f(x) = 2x 3 lie 2 Example: f(x) = x 2 + 2x 3 paabla Hw d y gaph plymial fis wih degees highe ha 2? We ll make a able f vales, he gaph... Gaphs f Plymial Fis: ae is (hee ae beaks) have smh s wih degee, have a ms 1 s Fllws ed behavi adig (eve dd) ad a (psiive egaive). Algeba 2A- Ui 5 8

I I s s i i Example 1: Gaph by makig a able f vales ad fid he eal zes, x-diae f elaive Example maxima 2 : Gaph & by miima. makig Desibe a able he f vales ed behavi ad fid f he he zes, gaph. x-diae f elaive maxima & miima. Desibe he ed behavi f he gaph. f (x) = x 3 + x 2 4 x 1 f (x) = x 4 2x 3 + 2x 2 + 4x. : a : # s: a ms # al zes: : a : # s: a ms # al zes: # eal zes: a ms # eal zes: a ms Ed Behavi: Ed Behavi: # Real zes: (x-diae) # Real zes: (x-diaes) Zes: bewee ad Zes: bewee ad bewee ad bewee ad bewee ad bewee ad Relaive maxima & miima Relaive maxima & miima Maxima a Maxima a Miima a Miima a Fid he appximae zes ( he eaes hdedhs) Algeba 2A- Ui 5 9

Y T 1: f(x) = 3x 3 9x + 1 x -3-2 -1 0 1 2 3 f(x) Relaive maxima & miima: Maxima a Miima a # Real zes: Zes: bewee ad bewee ad bewee ad Y T 2: f(x) = x 3 + 4x x -4-3 -2-1 0 1 2 3 f(x) Relaive maxima & miima: Maxima Real a zes: Miima a # Real zes: Zes: bewee Maxima: ad bewee Miima: ad bewee ad Algeba 2A- Ui 5 10

ALGEBRA 2A Less: 5.3 Name: Dae: Slvig Eqais by sig Qadai Tehiqes O b j e i! I a wie expessis i qadai fm! I a se qadai ehiqes slve eqais Qadai Fm: Qadai Fmla: V a b l a I s i Example 1: Wie he give expessi i qadai fm, if pssible. Example 2: Wie he give expessi i qadai fm, if pssible. Algeba 2A- Ui 5 11

I s i Example 3: Wie he give expessi i qadai fm, if pssible. Example 4: Wie he give expessi i qadai fm, if pssible. I y w wds: Wha is eessay f a expessi be wie i qadai fm? Y T 1: Wie eah expessi i qadai fm, if pssible. Y T a) 2x 4 + x 2 + 3 b) x 12 + 5 ) x 6 + x 4 + 1 d) x - 2x 1/2 + 3 Algeba 2A- Ui 5 12

Example 5: Slve: Y T 2: Slve Y x 4-10x 2 + 9 = 0 T Algeba 2A- Ui 5 13

Example 7: Slve. Example 8: Slve. Y T 3: Slve Algeba 2A- Ui 5 14

ALGEBRA 2A Less: 5.4 Name: Dae: The Remaide ad Fa Theems O b j e i! I a deemie whehe a bimial is a fa f a plymial by sig syhei sbsii Use syhei divisi: Example 1: (2x 2 + 3x 4) (x 2) R e v i e w Example 2: (p 3 6) (p 1) Algeba 2A- Ui 5 15

Y T 1: (2x 3 7x 2 8x + 16) (x 4) The bimial (x a) is a fa f he plymial f(x) if ad ly if f(a) = 0. This meas ha he emaide f he syhei divisi lg divisi is. Example 3: Shw ha x+5 is a fa f plymial.. The fid he emaiig fas f he Algeba 2A- Ui 5 16

Example 4: Give ha (x+2) is a fa f f(x), fid he emaiig fas f he plymial Y T 2: Algeba 2A- Ui 5 17

ALGEBRA 2A Less: 5.5 Name: Dae: Rs ad Zes O b j e i! I a fid all he zes (eal & imagiay) f a plymial fi! I a fid exa zes by sig he gaphig alla, syhei sbsii, ad he Qadai Fmla I s i Cmplex Zes ae always i pais! A plymial fi may have ay # f mplex zes. Examples: & (is jgae) & (is jgae) & (is jgae) Algeba 2A- Ui 5 18

Example 1: Fid all he zes f. Sep 1: Ty sme pssible zes by sig syhei sbsii: y may hea wih Gaph.Cal.! Sep 2: Oe y ge a plymial wih degee 2 y a slve he qadai eqai! Sep 3: Give he Aswe: Zes ae Example 2: Fid all he zes f f(x)= x 4 21x 2 + 80 Sep 1: Ty sme pssible zes by sig syhei sbsii: y may hea wih Gaph.Cal.! Ty ahe ze il y ge a depessed plymial wih degee 2. Sep 2: Oe y ge a plymial wih degee 2 y a slve he qadai eqai! Sep 3: Give he Aswe: Zes ae Algeba 2A- Ui 5 19

Y T 1: Fid all he zes f Sep 1: Sep 2: Sep 3: Aswe Example 3: Wie a plymial fi f leas degee wih iege effiies whse zes ilde & (is jgae) Remembe: " Imagiay s always me i pais!!! " If p & q ae s f a eqai, he (x-p) ad (x-q) ae fas!!! S, bease hee ae zes, he leas degee will be:. Ad we ge he plymial fi wih he leas degee by mliplyig: Use FOIL disibive ppey. Hi: Dawig he aws may help y avid misakes! Simplify by mbiig like ems. Remembe: i 2 = -1 Aswe: Algeba 2A- Ui 5 20

Y T 2: Wie a plymial fis f leas degee wih iege effiies whse zes ilde & 4i. Whih e is missig? S, bease hee ae zes, he leas degee will be:. Ad we ge he plymial fi wih he leas degee by mliplyig: Use FOIL disibive ppey. Simplify by mbiig like ems. Aswe: Algeba 2A- Ui 5 21

ALGEBRA 2A Less: 5.6 Name: Dae: Opeais Fis O b j e! I a fid he sm, diffeee, pd, ad qie f fis.! I a fid he mpsii f fis. V a b l a y Cmpsii f Fis Thee is a 40% ff sale a Old Navy ad as a emplyee y eeive a 10% dis, hw mh will y pay a $299 jake? Y d ge 50% ff...his is a example f a mpsie fi. Y will pay 90% f he s (10% dis) afe y pay 60% (40% dis). The w fis lk like his f(x) = 0.9x g(x) = 0.6x We a p hese gehe i a mpsie fi ha lks like his f(g(x)) f f g f x Algeba 2A- Ui 5 22

Example 1: I s i esii: g(x) = 0 bease: Y T 1: Y D fge he esii sie he demia a eve be eqal! T Algeba 2A- Ui 5 23

I s i Example 2: Example 3: If f(x) = x 2 5 ad g(x) = 3x 2 + 1 fid f[g(2)] fid g[f(2)] Y T 2: Y T Y T 3: Algeba 2A- Ui 5 24