Moduli-induced axion problem

Similar documents
Inflation from a SUSY Axion Model

String Compactifications and low-energy SUSY: The last attempts?

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Moduli Problem, Thermal Inflation and Baryogenesis

Soft Supersymmetry Breaking Terms in String Compactifications

Hierarchy Problems in String Theory: An Overview of the Large Volume Scenario

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Moduli and Axions in the X-ray Universe

Phenomenological Aspects of LARGE Volume Models

Inflaton decay in supergravity and the new gravitino problem

Revisiting gravitino dark matter in thermal leptogenesis

The LARGE Volume Scenario: a status report

Theory Group. Masahiro Kawasaki

High Scale Inflation with Low Scale Susy Breaking

3.5 kev X-ray line and Supersymmetry

Deflected Mirage Mediation

Big Bang Nucleosynthesis and Particle Physics

Moduli stabilization and supersymmetry breaking for string phenomenology

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Dynamics of the Peccei-Quinn Scale

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Gravitino Dark Matter in D3/D7 µ-split supersymmetry

arxiv:hep-ph/ v1 16 Mar 1994

The Cosmological Moduli Problem and Non-thermal Histories of the Universe

Strings and Phenomenology: Chalk and Cheese?

Phenomenological Aspects of Local String Models

Strings, SUSY and LHC

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

Realistic Inflation Models and Primordial Gravity Waves

Gravitino LSP as Dark Matter in the Constrained MSSM

Candidates for Inflation in Type IIB/F-theory Flux Compactifications

Moduli induced cogenesis of baryon asymmetry and dark matter

Supersymmetric Fine-tuning Problem and Little Hierarcy in Mixed Modulus-Anomaly Mediation. Ken-ichi Okumura Department of Physics, Kyushu University

Higgs Signals and Implications for MSSM

Theory and phenomenology of hidden U(1)s from string compactifications

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

Supersymmetry in Cosmology

Strings and Particle Physics

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

GUTs, Inflation, and Phenomenology

Non-Thermal Dark Matter and the Moduli Problem in String Frameworks

Will Planck Observe Gravity Waves?

A Minimal Supersymmetric Cosmological Model

Matter vs Anti-matter

The Matter-Antimatter Asymmetry and New Interactions

Light hidden U(1)s in LARGE volume string compactifications

Making Light from the Dark Universe

Inflation from supersymmetry breaking

SaxiGUTs and their Predictions

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

arxiv: v1 [hep-ph] 22 Mar 2017

String Moduli Stabilization and Large Field Inflation

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

arxiv: v2 [hep-ph] 28 Nov 2008

Astroparticle Physics and the LC

arxiv: v3 [hep-ph] 11 Aug 2015

Split SUSY and the LHC

Axino Phenomenology in the Kim-Nilles mechanism

Implications of a Heavy Z Gauge Boson

Astroparticle Physics at Colliders

Trilinear-Augmented Gaugino Mediation

How high could SUSY go?

The Cosmological Moduli Problem (revisited)

of Local Moduli in Local Models

Inflationary cosmology. Andrei Linde

Thermal production of gravitinos

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Towards Matter Inflation in Heterotic Compactifications

The first one second of the early universe and physics beyond the Standard Model

arxiv:hep-ph/ v1 20 Jul 2005

Introduction to Supersymmetry

A Domino Theory of Flavor

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Inflation! Starobinsky, 1980 modified gravity, R + R 2 a complicated but almost working model!

arxiv:hep-ph/ v1 6 Feb 2004

Triple unification of inflation, dark matter and dark energy

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Stringy Corrections, SUSY Breaking and the Stabilization of (all) Kähler moduli

Astronomy 182: Origin and Evolution of the Universe

Naturalizing SUSY with the relaxion and the inflaton

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Dark Radiation from Particle Decay

Dynamics of the Peccei-Quinn Scale

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Supersymmetry, Dark Matter, and Neutrinos

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

The Standard Model and Beyond

Heterotic Supersymmetry

Flux Compactification and SUSY Phenomenology

Particle Physics and Cosmology II: Dark Matter

Realistic Inflation Models

Naturalness and mixed axion-higgsino dark matter

Inflation in String Theory. mobile D3-brane

Cosmological Signatures of a Mirror Twin Higgs

Yasunori Nomura. UC Berkeley; LBNL

The discrete beauty of local GUTs

Transcription:

Moduli-induced axion problem Kazunori Nakayama (University of Tokyo) T.Higaki, KN, F.Takahashi, JHEP1307,005 (2013) [1304.7987] SUSY2013 @ ICTP, Trieste, Italy (2013/8/26)

What we have shown : Kahler moduli : T j = τ j + ia j moduli axion Moduli decays into very light axion : Too much axionic dark radiation τ j 2a j in light of PLANCK

Brief review of moduli problem

Moduli Problem [ Coughlan et al. (1983), Ellis et al. (1986), Banks et al. (1993), de Carlos et al. (1993) ] Moduli = Light scalar field in compactification of extra dimensions in String theory At H~m, moduli begins to oscillate around minimum with typical amplitude M P V (T ) M P T

Moduli Problem Moduli abundance ρ T s = 1 8 T R zi M P 2 10 5 GeV TR 10 6 GeV zi M P 2 Moduli lifetime T : reheat temperature R : moduli initial amplitude z i τ T m 3 T M 2 P 1 10 4 sec 1TeV m T 3 Big bang nucleosynthesis constraint ρ T s 10 14 GeV [ Kawasaki, Kohri, Moroi (2004) ]

Moduli Problem Moduli abundance ρ T s = 1 8 T R zi M P Moduli lifetime τ T m 3 T M 2 P 2 10 5 GeV 1 10 4 sec 1TeV Big bang nucleosynthesis constraint T : reheat temperature R : moduli initial amplitude z i m T 3 TR 10 6 GeV Moduli problem zi M P 2 ρ T s 10 14 GeV [ Kawasaki, Kohri, Moroi (2004) ]

Heavy moduli? Moduli decay before BBN (m T O(10) TeV) Heavy SUSY moduli (e.g., KKLT) m T m 3/2 Heavy non-susy moduli m T m 3/2

Heavy moduli? Moduli decay before BBN (m T O(10) TeV) Heavy SUSY moduli (e.g., KKLT) m T m 3/2 Moduli decay into gravitino Moduli-induced gravitino problem [Endo, Hamaguchi, Takahashi (2006), Nakamura,Yamaguchi (2006) ] Heavy non-susy moduli m T m 3/2

Heavy moduli? Moduli decay before BBN (m T O(10) TeV) Heavy SUSY moduli (e.g., KKLT) m T m 3/2 Moduli decay into gravitino Moduli-induced gravitino problem [Endo, Hamaguchi, Takahashi (2006), Nakamura,Yamaguchi (2006) ] Heavy non-susy moduli m T m 3/2 Moduli decay into its axionic partner Moduli-induced axion problem [ Cicoli, Conlon, Quevedo (2012), Higaki, Takahashi (2012), Higaki, KN, Takahashi (2013) ]

Heavy moduli? Moduli decay before BBN (m T O(10) TeV) Heavy SUSY moduli (e.g., KKLT) m T m 3/2 Moduli decay into gravitino Moduli-induced gravitino problem [Endo, Hamaguchi, Takahashi (2006), Nakamura,Yamaguchi (2006) ] Heavy non-susy moduli m T m 3/2 Moduli decay into its axionic partner Moduli-induced axion problem [ Cicoli, Conlon, Quevedo (2012), Higaki, Takahashi (2012), Higaki, KN, Takahashi (2013) ]

Moduli-induced axion problem T.Higaki, KN, F.Takahashi, 1304.7987

Moduli in typeiib string Kahler moduli : Shift symmetry : T T T + iα cf) 10d gauge symmetry C 4 C 4 + dλ Kahler potential : K = K(T + T ) T T τ + ia 2KTT axion Suppose that moduli stabilization does not give axion mass

General analysis on moduli decay T.Higaki, KN, F.Takahashi, 1304.7987 axion Γ(τ 2a) = 1 64π K 2 TTT K 3 TT m 3 τ τ gauge boson Γ(τ A µ A µ ) = N g 128π T f vis 2 (Ref vis ) 2 m 3 τ K TT f vis (T ) : gauge kinetic function Higgs boson Γ(τ HH) 1 8π g 2 T K TT Z u Z d m 3 τ K g(t + T )(H u H d +h.c.) Note : decay into their superpartners can also be sizable

General analysis on moduli decay T.Higaki, KN, F.Takahashi, 1304.7987 axion Γ(τ 2a) = 1 64π K 2 TTT K 3 TT m 3 τ τ Branching ratio into axion gauge boson (B a ) Higgs boson generally O(1) is Γ(τ A µ A µ ) = f vis (T ) Γ(τ HH) 1 8π N g 128π T f vis 2 (Ref vis ) 2 m 3 τ K TT : gauge kinetic function g 2 T K TT Z u Z d m 3 τ K g(t + T )(H u H d +h.c.) Note : decay into their superpartners can also be sizable

Planck constraint on Neff Radiation energy density ρ rad = 1+ 7 8 N eff 4/3 4 11 ρ γ CMB constraint: N eff =3.36 +0.68 0.64 @ 95%CL Planck+WMAP pol+ high l [Ade et al. 1303.5076] Axion dark radiation abundance: N eff = 43 7 1/3 10.75 g (T d ) B a 1 B a B a 0.2 Constraint on moduli stabilization model

Let us see some examples. 1. Large Volume Scenario 2. KKLT String axion model

Ex 1) Large Volume Scenario [ Balasubramanian et al. (2005), Conlon, Quevedo, Suruliz (2005) ] Swiss-Cheeze CY: V = V 0 V hole τ b The simplest : V 0 =(T b + T b )3/2 Kahler and Superpotential V hole =(T s + T s ) 3/2 D7 τ s K = 2 ln(v + ξ) W = W 0 + A s e 2πT s

Ex 1) Large Volume Scenario [ Balasubramanian et al. (2005), Conlon, Quevedo, Suruliz (2005) ] Swiss-Cheeze CY: V = V 0 V hole τ b The simplest : V 0 =(T b + T b )3/2 Kahler and Superpotential V hole =(T s + T s ) 3/2 D7 τ s K = 2 ln(v + ξ) W = W 0 + A s e 2πT s Stabilized a la KKLT m τs m as

Ex 1) Large Volume Scenario [ Balasubramanian et al. (2005), Conlon, Quevedo, Suruliz (2005) ] Swiss-Cheeze CY: V = V 0 V hole τ b The simplest : V 0 =(T b + T b )3/2 Kahler and Superpotential V hole =(T s + T s ) 3/2 D7 τ s K = 2 ln(v + ξ) W = W 0 + A s e 2πT s Stabilized a la KKLT m τs m as Stabilized by alpha correction. Im T b = a b Volume axion ( ) remains massless

Ex 1) Large Volume Scenario τs b 2 s A s 2 e 2b sτ s V = V Swiss-Cheeze CY: V = V 0 V hole V τ 3/2 e 2πτ s e 2πξ gs 1 b Minimization The simplest : V 0 =(T b + T b )3/2 Kahler and Superpotential b s A s W 0 τ s e b sτ s V 2 + ξ W 0 2 [ Balasubramanian et al. (2005), Conlon, Quevedo, Suruliz (2005) ] V hole =(T s + T s ) 3/2 gs 3/2 V 3 2/3 D7 τ b Large Volume Scenario (LVS) τ s K = 2 ln(v + ξ) W = W 0 + A s e 2πT s Stabilized a la KKLT m τs m as Stabilized by alpha correction. Im T b = a b Volume axion ( ) remains massless

Mass scales Gravitino mass m 3/2 e K/2 W 0 1 V for W 0 O(1) Moduli masses m τb 1 V 3/2 m ab =0 : Axion Soft mass (sequestered scenario) m soft 1 V 2 ( Moduli-matter coupling : m τs m as 1 V : Lightest modulus K MSSM = Φ i 2 +(zh u H d +h.c.) (T b + T b ) ) E.g., V 10 7 m 3/2 10 11 GeV m τb 10 7 GeV

Moduli decay rate [Cicoli, Conlon, Quevedo (2012), Higaki, Takahashi (2012) Angus, Conlon, Haisch, Powell (2013)] Two axion : τ b 2a Γ a = 1 48π m 3 τ b MP 2 Two Higgs : τ b 2H Γ H = z2 24π m 3 τ b MP 2 Branching ratio into axion: B a = 1 1+2z 2 Independent of moduli mass

Moduli decay rate [Cicoli, Conlon, Quevedo (2012), Higaki, Takahashi (2012) Angus, Conlon, Haisch, Powell (2013)] Two axion : τ b 2a Γ a = 1 48π m 3 τ b MP 2 Two Higgs : τ b 2H Γ H = z2 24π m 3 τ b MP 2 Branching ratio into axion: B a = 1 1+2z 2 Constraint : B a < 0.2 Independent of moduli mass z 2 { Many Higgs doublets cf. z=1 if Higgs has shift symmetry [ Hebecker et al. (2012) ]

Ex 2) QCD axion in KKLT String theoretic QCD axion model [ J.Conlon (2006), K.Choi, K.S.Jeong (2006) ] K = 2lnV [ K.Choi, K.S.Jeong (2006) ] V =(T 0 + T 0 )3/2 κ 1 (T 1 + T 1 )3/2 κ 2 (T 2 + T 2 )3/2 W = Ae αt 0 + Be β(t 1+nT 2 ) + W 0 D7 τ 0 τ 1 τ 2

Ex 2) QCD axion in KKLT String theoretic QCD axion model [ J.Conlon (2006), K.Choi, K.S.Jeong (2006) ] K = 2lnV [ K.Choi, K.S.Jeong (2006) ] V =(T 0 + T 0 )3/2 κ 1 (T 1 + T 1 )3/2 κ 2 (T 2 + T 2 )3/2 W = Ae αt 0 + Be β(t 1+nT 2 ) + W 0 Stabilized a la KKLT D7 τ 0 τ 1 τ 2

Ex 2) QCD axion in KKLT String theoretic QCD axion model [ J.Conlon (2006), K.Choi, K.S.Jeong (2006) ] K = 2lnV [ K.Choi, K.S.Jeong (2006) ] V =(T 0 + T 0 )3/2 κ 1 (T 1 + T 1 )3/2 κ 2 (T 2 + T 2 )3/2 W = Ae αt 0 + Be β(t 1+nT 2 ) + W 0 Stabilized a la KKLT D7 τ 0 is stabilized after uplifting, τ τ 1 2 while ImA a remains massless. A nt 1 T 2

SM brane wraps cycle T2 SM gauge kinetic function : L = A nt 1 T 2 s + ia f vis = T 2 4π d 2 θf vis W a W a +h.c. s τ 2 G a µνg µνa + a τ 2 G a µν G µνa SM D7 brane

SM brane wraps cycle T2 SM gauge kinetic function : L = A nt 1 T 2 s + ia f vis = T 2 4π d 2 θf vis W a W a +h.c. s τ 2 G a µνg µνa + a τ 2 G a µν G µνa QCD axion to solve strong CP problem SM D7 brane

SM brane wraps cycle T2 SM gauge kinetic function : L = A nt 1 T 2 s + ia f vis = T 2 4π d 2 θf vis W a W a +h.c. s τ 2 G a µνg µνa + a τ 2 G a µν G µνa Lightest moduli (saxion) QCD axion to solve strong CP problem SM D7 brane

Moduli (Saxion) decay rate Ms 3 1 n3 κ 2 1 + κ2 2 2 n 3 κ 2 1 V φ 3/2 m3 s Two axion : Γ a (n2 κ 2 1 κ 2 2) 2 768πκ 3 2 M 3 s M 2 P m s O(10 3 )TeV Gauge boson : Γ g κ 2 8π M 3 s M 2 P : Not loop suppressed Decay into gluon is sizable in contrast to (usual) saxion decay in SUSY axion model. [ T.Higaki, KN, F.Takahashi, 1304.7987 ]

Detecting/constraining axionic dark radiation The presence of axionic dark radiation seems to be ubiquitous in string theory N eff O(0.1) Can we probe it? Axion conversion into X-ray photon in galaxy cluster [ J.Conlon, M.C.D.Marsh, 1305.3603] Axion-photon conversion in the early Universe under primordial magnetic field Any other idea? [ T.Higaki, KN, F.Takahashi, 1306.6518]

B Detecting/constraining a axionic dark radiation γ The presence of axionic dark radiation seems L = a M F µν F µν to be ubiquitous in string theory N eff O(0.1) Can we probe it? Axion conversion into X-ray photon in galaxy cluster [ J.Conlon, M.C.D.Marsh, 1305.3603] Axion-photon conversion in the early Universe under primordial magnetic field Any other idea? [ T.Higaki, KN, F.Takahashi, 1306.6518]

Summary Light axions often appear after moduli stabilization Moduli branch into axion is generically O(1) Planck constraint : B a 0.2 The branch does not depend on moduli mass The problem exists even for heavy moduli Cosmological test of compactification Moduli-induced axion problem model (m T O(10) TeV)

Cosmological test of compactification model

Appendix

Possible Solutions to moduli problem 1. Thermal inflation for diluting moduli Dilution of baryon asymmetry Domain wall problem [ Lyth, Stewart (1996) ] 2. Adiabatic suppression mechanism [ A.Linde (1996) ] V c 2 H 2 T 2 + m 2 T (T T 0 ) 2 c 1 Suppression is not exponential but power in c High inflation scale & low reheat temp. is needed. [ KN, F.Takahashi, T.Yanagida (2011) ]

Moduli abundance V (T )=ch 2 T 2 + m 2 T (T z 0 ) 2 (c O(1)) [ For c 1, see KN, Takahashi, Yanagida, 1109.2073 ] H inf m T : T i z 0 ρ T s 1 8 T R z0 M P 2 H inf m T [ cf. Kallosh-Linde bound ] : T i H2 inf m 2 T z 0 ρ T s 1 8 T R z0 M P 2 Hinf m T 2 (m inf m T ) ρ T s 0 (m inf m T ) V (T ) T i z 0 T

General analysis on moduli decay T.Higaki, KN, F.Takahashi, 1304.7987 Moduli T K = K(T + T ) Canonically normalized moduli & axion T T τ + ia 2KTT Moduli decay into axion pair L = K TTT 2K 3/2 TT τ( a) 2 Γ(τ 2a) = 1 64π K 2 TTT K 3 TT m 3 τ Moduli decay into axino pair (if kinematically allowed) L = 1 2 K TTT K 3/2 TT τ iã σ µ µ ã + i( µ ã ) σ µ ã Γ(τ 2ã) = 1 8π K 2 TTT K 3 TT m 2 ãm τ

General analysis on moduli decay Coupling to MSSM sector T.Higaki, KN, F.Takahashi, 1304.7987 Gauge kinetic function f vis (T ) Moduli decay into gauge boson pair L = 1 4 2K TT (Ref vis ) Re( T f vis )τf a µνf µνa Im( T f vis )τf a µν F µνa Γ(τ A µ A µ ) = N g 128π T f vis 2 (Ref vis ) 2 m 3 τ K TT Moduli decay into gaugino pair 1 L = 4 2K TT (Ref vis ) ( T f vis )(FT T + F T T )+( T 2 f vis )F T τλ a λ a +h.c. Γ(τ λλ) N g 128π ( T f vis )(F T T + F T T ) 2 (Ref vis ) 2 m τ K TT Other terms are suppressed by gaugino mass

General analysis on moduli decay Coupling to MSSM sector T.Higaki, KN, F.Takahashi, 1304.7987 K Z u H u 2 + Z d H d 2 + g(t + T )(H u H d +h.c.) Moduli decay into Higgs boson pair L g T 2KTT Z u Z d ( 2 τ)(h u H d +h.c.) Γ(τ HH) 1 8π g 2 T K TT Z u Z d m 3 τ Other terms are suppressed by Higgs masses Moduli decay into higgsino pair L = 1 2KTT Z u Z d (2gT + gk T )m 3/2 + g T (F T T + F T T )+2g TTF T τ H u Hd +h.c Γ(τ H H) = 1 8π c τ h h 2 K TT Z u Z d m τ Other terms are suppressed by higgsino mass

Moduli-MSSM matter coupling SM on singularity Kahler potential : y phys = K MSSM = Φ i 2 +(zh u H d +h.c.) (T b + T b )a ek/2 y = τ 3/2 b Zi Z j Z k τ 3a/2 b Physical Yukawa should not depend on V [ Conlon, Cremades, Quevedo (2006) ] y a =1 No-scale form SM

Soft mass in the no-scale model K = 3ln G T G T =3 T + T 1 3 { Φ 2 + z(h u H d +h.c.)} 3 ln(t + T )+ Φ 2 + z(h u H d +h.c.) T + T T dominantly breaks SUSY m 2 φ = e G φ G k φg k R φ φt T G T G T + K φ φ = m 2 3/2 K φ φ 3K T T (K φ φt T K φ φk T φ φk T φ φ) φ G φ = φ G T =0 =0 mu-term in the no-scale model µ = e G/2 u G d = m 3/2 [g g T K T T K T ]=0 K g(t + T )(H u H d +h.c.) g = z T + T

SM D7 wrapping on 4-cycle T2 Kahler potential : K = (T 2 + T 2 )λ { Q i 2 + z(h u H d +h.c.)} V 2/3 y phys = ek/2 Zi Z j Z k y τ 3λ/2 2 y Yukawa dependence on T2 S DBI Σ 4d S 4d λγ i ( i + A i )λ =1 ψ 6 ψ 6 β for τ 2 βτ 2 y phys y phys β for τ 2 βτ 2 Σ ψ 6 ψ 6 d 4 x ψ 4 γ µ µ ψ 4 + Σ = τ 2 Σ ψ 6 φ 6ψ 6 d 4 xφ 4 ψ4 ψ 4 = y_phys SM D7 brane λ = 1 3 τ 2

Moduli-MSSM Gauge coupling DBI action S DBI = µ p p+1 d p+1 xe φ det (G + B 2πα F ) Dp brane worldvolume α (p 3)/2 4g s (2π) p 2 d p+1 x g tr F µν F µν gauge field on Dp brane Dp brane tension µ p = α (p+1)/2 (2π) p 4d gauge coupling : 1 g 2 YM = α(3 p)/2 g s (2π) p 2 V p 3 Kahler moduli Chern-Simons action S CS = µ p p+1 C q e 2πα F B 2 : Dp-brane R-R fields µ p C p+1 +2πα C p 1 trf +2π 2 α 2 p+1 p+1 p+1 axion C p 3 trf 2