On the two-pole interpretation of HADES data

Similar documents
Current theoretical topics on K - pp quasi-bound state

arxiv: v3 [nucl-th] 8 Jun 2018

Meson-baryon interactions and baryon resonances

Chiral dynamics and baryon resonances

What we know about the Λ(1405)

Construction of K N potential and structure of Λ(1405) based on chiral unitary approach

arxiv: v1 [hep-ph] 3 Oct 2015

S-wave exotic resonances induced by chiral interaction

Wave functions and compositeness for hadron resonances from the scattering amplitude

1. Introduction. 2. Recent results of various studies of K pp. 3. Variational cal. vsfaddeev

Application of the complex scaling method to hadronic resonances Λ(1405) and K - pp resonances

Author(s) Jido, Daisuke; Kanada-En yo, Yoshik. Citation Hyperfine Interactions (2009), 193(

KbarN and KbarNN INTERACTIONS - Theory Status -

8 September Dear Paul...

arxiv: v1 [nucl-th] 14 Sep 2009

Exotic baryon resonances in the chiral dynamics

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Hadronic few-body systems in chiral dynamics ~ few-body systems in hadron physics ~ D. Jido (Yukawa Institute, Kyoto)

PoS(BORMIO2010)052. Measurement of the Λ(1405) in proton proton reactions with HADES

The KN KΞ reac*on in a chiral NLO model

Structure of near-threshold s-wave resonances

Nature of the sigma meson as revealed by its softening process

Physikalisches Institut Universität Bonn BOSEN Vera Kleber. Λ(1405) Photoproduction at CB-ELSA. Vera Kleber Bosen,

Calculations of kaonic nuclei based on chiral meson-baryon coupled channel interaction models

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Structure and compositeness of hadrons

Compositeness for the N* and Δ* resonances from the πn scattering amplitude

Compositeness of the Δ(1232) resonance in πn scatterings

DYNAMICAL BARYON RESONANCES FROM CHIRAL UNITARITY

Elementarity of composite systems

Properties of the Λ(1405) Measured at CLAS

Nuclei with Antikaons

Status of K - pp search experiments

arxiv:nucl-th/ v1 27 Nov 2002

Signature of the (1405) resonance in neutron spectra from the reaction. J. Révai Wigner RCP, Budapest BLTP, JINR, Dubna

Structure and compositeness of hadrons

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

arxiv:hep-ph/ v1 10 Aug 2005

TitleHadronic Few-Body Systems in Chiral. Citation Few-Body Systems (2013), 54(7-10):

arxiv: v3 [nucl-th] 12 Jul 2013

Experimental Study of the Kaonic Bond State

MENU Properties of the Λ(1405) Measured at CLAS. Kei Moriya Reinhard Schumacher

arxiv:hep-ph/ v2 24 Mar 2006

arxiv: v2 [nucl-th] 11 Feb 2009

arxiv: v1 [nucl-th] 19 Feb 2018

Compositeness of Dynamically Generated Resonances

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Universidad Complutense de Madrid September 8-9, In collaboration with A. Feijoo Aliau, A. Ramos & E. Oset

Coupled-channel Bethe-Salpeter

arxiv: v2 [nucl-th] 6 Jul 2011

arxiv: v2 [nucl-th] 9 Jan 2017

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv: v3 [hep-ph] 13 Dec 2018

Analyticity and crossing symmetry in the K-matrix formalism.

Meson-baryon interaction in the meson exchange picture

F. S.Navarra Instituto de Física, Universidade de São Paulo, C.P , São Paulo, SP, Brazil.

Physik Department, Technische Universität München D Garching, Germany. Abstract

Low lying axial-vector mesons as dynamically generated resonances

A K-Matrix Tutorial. Curtis A. Meyer. October 23, Carnegie Mellon University

Search for the η-mesic Helium bound state with the WASA-at-COSY facility

Light nuclear systems with an antikaon

Sub Threshold strange hadron production in UrQMD

XVII International Conference on Hadron Spectroscopy and Structure - Hadron September, 2017 University of Salamanca, Salamanca, Spain

Decay. Scalar Meson σ Phase Motion at D + π π + π + 1 Introduction. 2 Extracting f 0 (980) phase motion with the AD method.

Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuanquanlu, Shijingshan district, Beijing, , China

Θ + and exotic hadrons

arxiv: v2 [hep-lat] 14 Nov 2012

Theory of ANTIKAON interactions with NUCLEONS and NUCLEI a state-of-the-art report

(958)-nucleus bound states and their formations by missing mass spectroscopies

arxiv: v1 [hep-ph] 22 Apr 2008

Triangle Singularities in the Λ b J/ψK p Reaction

Resonance properties from finite volume energy spectrum

2 Meson Spectroscopy at LEAR with the Crystal Barrel. In collaboration with: Academy of Science (Budapest); Universities of Bochum, Bonn,

Continuum Shell Model

Measurement of Observed Cross Sections for e + e hadrons non-d D. Charmonium Group Meeting

arxiv:nucl-th/ v1 3 Jan 2006

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

Department of Physics, Liaoning Normal University, Dalian , China

Determining the Θ + quantum numbers through the K + p π + K + n reaction

Overview of Light-Hadron Spectroscopy and Exotics

p 3 A = 12 C s A = 16 O s d E η m η (MeV)

arxiv: v1 [hep-ph] 12 Feb 2019

Atsushi Sakaguchi (Osaka University) for the J-PARC E10 Collaboration

Study of η N interaction from η/η production data and in-medium η properties. Shuntaro Sakai (Institute of Theoretical Physics, CAS (Beijing,China))

arxiv:nucl-ex/ v1 21 Dec 2004

Complex amplitude phase motion in Dalitz plot heavy meson three body decay.

Constraint on KK compositeness of the a 0 (980) and f 0 (980) resonances from their mixing intensity

Light by Light. Summer School on Reaction Theory. Michael Pennington Jefferson Lab

arxiv: v2 [nucl-th] 29 Sep 2016

Production of Tetraquarks at the LHC

Hadron Spectroscopy at BESIII

Condensed Kaonic-Proton Ma/er (KPM) composed of Lambda* = K - p

Study of Excited Baryons with the Crystal-Barrel Detector at ELSA

arxiv:nucl-th/ v1 30 Jul 2004

Λ(1405) and Negative-Parity Baryons in Lattice QCD. Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.

Triangle singularities in light axial vector meson decays

Eikonal method for halo nuclei

The light Scalar Mesons: σ and κ

Bottomonium results. K.Trabelsi kek.jp

arxiv: v1 [nucl-th] 5 Nov 2018

Transcription:

J-PARC collaboration September 3-5, 03 On the two-pole interpretation of HADES data Yoshinori AKAISHI

nucl U K MeV 0-50 Σ+ Λ+ -00 K - + p 3r fm Λ(405) E Γ K = -7 MeV = 40 MeV nucl U K MeV 0-50 Σ+ Λ+ -00 K - + pp 3r fm E K Γ KH = -48 MeV = 6MeV 0-50 Σ+ Λ+ nucl U K MeV -00 K - + 3 He 3r fm 3 KH E = -08 MeV K Γ = 0 MeV Shrinkage! -300-300 -300-400N.V. Shevchenko, A. Gal -400 & J. Mares, Phys. Rev. Lett. 98-400 (007) 0830 E = -55~-70 MeV, Γ = 90~0 MeV Y. Ikeda & T. Sato, Phys. Rev. C 76 (007) 03503 E = -80 MeV, Γ = 73 MeV -500-500 -500 DAΦNE Conf. (999) Y. Akaishi & T. Yamazaki, Phys. Rev. C 65 (00) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B 535 (00) 70

Last year! J. Esmaili, Y. Akaishi & T. Yamazaki, Phys. Lett. B 686 (00) 3

K bar N scattering amplitude T. Hyodo and W. Weise, Phys. Rev. C 77 (008) 03504 Akaishi-Yamazaki Chiral s 405 40 Which is the Λ(405) mass?

Double pole structure of Λ(405) D. Jido, J.A. Oller, E. Oset, A. Ramos & U.G. Meissner, Nucl. Phys. A 75 (003) 8 46 Channel = K - + p 0 Λ + η E = -6 MeV, Γ = 3 MeV 3 MeV D. Jido et al., Nucl. Phys. A 835 (00) 59 E = -4 MeV, Γ = 3 MeV Σ Σ 390 ~60 MeV -00 MeV Channel Σ + + - g W M R Σ R g R Σ iγ R R R gσ gσ + / W MR iγr / Breit-Wigner amplitudes

High Acceptance Di-Electron Spectrometer Λ(405) from HADES@GSI G. Agakishiev et al., Phys. Rev. C 87 (03) 050 3.5 GeV The peak structure of Λ(405) appears below 400 MeV/c!

Λ(405) shift in HADES data J. Siebenson & L. Fabbietti, arxiv:306.583v [nucl-ex] T iφ Λ( 405) = Cp.s. BW m) e + BW( m) BW ( m) i ( q = Ai m mi Fitting constraint + im Γ i i c.m. Assume a maximal interference between the Λ(405) and non-resonant contributions. (3.3 μb / total 9 μb) (Main part is non-resonant.)

Interpretation of the Λ(405) shift in HADES data J. Siebenson & L. Fabbietti, arxiv:306.583v [nucl-ex] T iφ Λ( 405) = Cp.s. BW m) e + BW( m) BW ( m) i ( q = Ai m mi + im Γ i i c.m. Best fit

T iφ Λ( 405) = Cp.s. BW m) e + BW( m) ( q c.m. Geng-Oset z =46-i4 MeV z =375-i73 MeV φ =05 deg. Best fit z =48-i9 MeV z =375-i73 MeV φ =78 deg. 30 340 360 380 400 40 440 460 480 30 340 360 380 400 40 440 460 480 Mai-Meissner z =47-i0 MeV z =490-i84 MeV φ =64 deg. Not compatible with HADES "z dominance" Physical property of poles (Ikeda-Hyodo-Weise) z =44-i6 MeV z =38-i8 MeV φ =78 deg. "z dominance" 30 340 360 380 400 40 440 460 480 30 340 360 380 400 40 440 460 480

Author's conclusions Possible explanations of the Λ(405) mass shift in HADES : Peak structure below 400 MeV/c Interference between resonant and non-resonant contributions Coherent sum of two pole contributions with a rather large contribution from the low-mass broad pole Questions Origins of the resonance poles : Feshbach resonance ; pole on [+,-] sheet > K bar N threshold effect Strongly energy-dependent chiral interaction ; decaying-state moving poles > non Breit-Wigner amplitude What physics is obtained from the "chiral HADES" analysis?

Peak position of the st pole in M Σ spectrum T k Hyodo-Weise s two-channel model 43-7i, 398-73i st pole nd pole ch.-cut Peak Observation on [+, +] sheet KN threshold 400 40 40 430 440 s / MeV ch.- & ch.-cuts The peak position differs from the pole position. K bar N threshold effect st pole on [ +, - ] sheet physical, unphysical L405/Zychor.f m B c =4000 MeV

Chiral SU(3) dynamics and the nd pole Weinberg-Tomozawa term I = 0 c ij c ij 3 = ω + ω 3 i 4f 4 j 3 KN Σ ω s i M i Energy dependent interaction with a large positive imaginary part (source term) Im ω 0-00 MeV Σ channel 00 MeV Re ω nd pole T = V VG VG = 0 V = ; WT { V ij } Total 0 channels G T = V + V T T = V G Resonance (bound) states nd pole st pole Full ch. 400-i76 48-i7 ch. 398-i73 43-i7 ch. 388-i96 Hyodo-Weise

Σ-Σ invariant-mass spectrum Hyodo-Weise's chiral SU(3) dynamics U = [ T = U + UGT ] U = T + G T ( Ξ ) U( Ξ ) G( Ξ ) T Shift due to U(E pole ) - U(E) nd pole peak = T ( Ξ pole) U( Ξ pole) G( Ξ pole) = 0 = T ( E) U( Ξ pole) G( E) 09 + i 73 f = Breit-Wigner T ( E) U( E) G( E) MeV no longer BW Moving pole of decaying state, PJA B84 (008) 64 nd pole position 300 350 400 450 500 550 600 st pole position M Σ [MeV/c ]

Σ invariant mass spectrum.5.0.5 Scattering amplitude TΣ, Σ( s ) q -Imω source 96.4 [MeV].0 90.0 0.5 80.0 0.0 70.0 Born 50.0 30.0 0.0 0.0-0.5 -.0 300 30 340 360 380 400 40 440 Hyodo-Weise Fig. 300 30 340 360 380 400 40 440 460 s / [MeV]

Moving pole Σ single channel Re E -50 MeV -00-50 0 50 00 Virtual states Observation T ( E ; V ( E)) Reference spectra T ( z ; V ( Z T ( z ; V ( E ref )) ω = m + Z Observed spectrum obs )) at z = E obs ref Dispersion relation x' Im f ( x') Re f ( x) = P dx' x' x Cross section Optical theorem Im f(e) 0 Re f(e) -00 + i 96.4 MeV source T ( Z ; V ( Z)) Difference in dynamics Weinberg-Tomozawa Reω i Imω F f(z) Analytic continuation + i 0-00 MeV Pole + i 40 + i 60 + i 80 Im E Wpole/poleScut5.f

Σ mass spectrum ; KN ; Σ U opt = U + U.0 G U G f U U Σ + Σ + _ K + N (KN)* Σ + QBS. Decaying-st. pole. Threshold cusp 3. Interference 0.8 0.6 f = 0.5 Escape U U G Uf G -.0 -.0 0.0 0. 0.4 0.5 370 400 430 MeV Re S / f =.0 0.9 0.8-50 MeV 330 350 370 390 40 430 450 470 490 M Σ [MeV/c ] Σ threshold KN threshold 0.9.0 0.8 Im E Superposition of two B-W amplitudes is not a proper explanation.

Im F KN [fm] 4 0 Missing mass spectrum Im T = 4 μ h T KN >Σ invariant mass spectrum q Chiral SU(3) dynamics Two poles 4 05 Σ >Σ invariant mass spectrum

+ + Σ + (660) Σ Λ* T Σ,Σ Σ Σ + (660) Λ* T Σ,NK Σ + T 405 MeV A-Y R.J. Hemingway, Nucl. Phys. B53 (985) 74 Σ + (660) T K - + p C Σ T Σ, q + Σ Interference C' T Σ,NK q Wpole/SpiInv.f 330 380 430 480 530 M Σ [MeV/c ]

Hassanvand et al.'s analysis of HADES data Feshbach resonance on Riemann's [ +, - ] sheet T spectrum and T spectrum K bar N threshold effect on T spectrum Moving pole effect on T spectrum Resonance-continuum interference effect

_ Observables of KN-Σ coupled system Hyodo-Weise's chiral SU(3) dynamics Im T KN missing mass spectrum C T k C T k Arbitrary unit : Σ : KN 40 KN >Σ invariant mass spectrum Two kinds of M inv spectra Σ "Conversion Σ" : T "Scattering Σ" : T 405 Σ >Σ invariant mass spectrum Escape of K Conversion 330 350 370 390 40 430 450 470 490 s / [MeV]

Pole position vs. peak position T k without interference Pole position K - p threshold Γ [MeV] 70 60 50 40 30 0 0 Peak position shifts from the pole position due to K - p threshold effect, when width becomes wide. 30 340 360 380 400 40 440 Carla/HEMING.f M(Σ) [MeV/c ]

Pole position vs. peak position T k with interference Pole position K - p threshold Γ [MeV] 70 60 50 40 30 0 0 See Fig.8 of Hassanvand. Further (small) change of spectrum comes from interference with I=0 L=0 Σ continuum. 30 340 360 380 400 40 440 Carla/HEMING.f M(Σ) [MeV/c ]

Pole position vs. peak position T k with interference Pole position K - p threshold Γ [MeV] 70 60 50 40 30 0 0 Further (large) change of spectrum comes from interference with I=0 L=0 Σ continuum. 30 340 360 380 400 40 440 Carla/HEMING.f M(Σ) [MeV/c ]

Λ(405) from HADES G. Agakishiev et al., Phys. Rev. C 87 (03) 050 M. Hassanvand et al., Phys. Rev. C 87 (03) 0550 PDG 4

Pole position vs. peak position Pole position from pp collision @ 3.5 GeV T k Our best fit M = 405 + -9 MeV/c Γ = 6 +0-0 MeV Γ [MeV] 70 60 50 40 30 0 0 Peak position at Γ =50 MeV The peak position shifts from the pole position. K bar N threshold effect K - p threshold 30 340 360 380 400 40 440 M(Σ) [MeV/c ] Carla/HADES.f

Thank you very much!