Experimental Investigation of the Effect of Reducing the Drag Coefficient on the Cylinder by Hot-Wire Anemometry

Similar documents
Journal of Fluid Science and Technology

Vortex shedding from slender surface mounted pyramids

International Conference on Methods of Aerophysical Research, ICMAR 2008

Numerical Simulation of Unsteady Flow with Vortex Shedding Around Circular Cylinder

Experimental Study of Near Wake Flow Behind a Rectangular Cylinder

NIHON. Experimental and Computational Study of Boundary Layer Transition by Two-Dimensional Roughness (January 1997) NIHON

Numerical Investigation of the Fluid Flow around and Past a Circular Cylinder by Ansys Simulation

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT

Effect of orientation on the wake of a square cylinder at low Reynolds numbers

Dual Vortex Structure Shedding from Low Aspect Ratio, Surface-mounted Pyramids

Influence of Rotation on the Heat and Fluid Flow around a Circular Cylinder

EFFECT OF FLARE ANGLE AND NATURAL VENTILATION ON THE AERODYNAMIC CHARACTERISTICS OF A TYPICAL RE-ENTRY BODY AT SUBSONIC AND TRANSONIC MACH NUMBERS

Experimental study of parameters and high-order values of velocity in the behind wake of a vehicle model

Numerical Investigation of Laminar Flow over a Rotating Circular Cylinder

PROPERTIES OF THE FLOW AROUND TWO ROTATING CIRCULAR CYLINDERS IN SIDE-BY-SIDE ARRANGEMENT WITH DIFFERENT ROTATION TYPES

4' DTIC. ,.94 jl _ AD-A I ELEC -, ANNUAL REPORT 1 OCT 92 THROUGH 30 SEPT 93 C OFFICE OF NAVAL RESEARCH OCEAN TECHNOLOGY PROGRAM

Comptes Rendus Mecanique

1) the intermittence of the vortex-shedding regime at the critical angle of incidence in smooth flow; ) the inversion of the lift coefficient slope at

Experimental Investigation of the Aerodynamic Forces and Pressures on Dome Roofs: Reynolds Number Effects

INFLUENCE OF ACOUSTIC EXCITATION ON AIRFOIL PERFORMANCE AT LOW REYNOLDS NUMBERS

Numerical Investigation of Vortex Induced Vibration of Two Cylinders in Side by Side Arrangement

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

SPECTRAL ANALYSIS APPLICATION IN HOT-WIRE ANEMOMETER INVESTIGATIONS OF PHENOMENA APPEARING IN VORTEX FLOW METER

Determination of the Blockage Effect on a Thermal Anemometer using a Small Open Jet Wind Tunnel

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

Investigation of fluid flow around a cylinder with EHD actuation on inclined plates behind the cylinder

58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014

Control of Flow over a Bluff Body

UNIT 4 FORCES ON IMMERSED BODIES. Lecture-01

Validation 3. Laminar Flow Around a Circular Cylinder

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Forced Convection Around Obstacles

Syllabus for AE3610, Aerodynamics I

Circular Rotating Cylinder in Cross Flow

LASER-DOPPLER ANEMOMETRY IN TURBULENT BOUNDARY LAYERS INDUCED BY DIFFERENT TRIPPING DEVICES COMPARED WITH RECENT THEORIES

Measuring the Vortex-Shedding Frequency Behind Staggered Cylinders in Cross-Flow

Flow Characteristics around an Inclined Circular Cylinder with Fin

Vortex Induced Vibrations

Effect of Blockage on Spanwise Correlation in a Circular Cylinder Wake

1. Introduction, tensors, kinematics

Simulation of Flow around a Surface-mounted Square-section Cylinder of Aspect Ratio Four

Module 3: Velocity Measurement Lecture 15: Processing velocity vectors. The Lecture Contains: Data Analysis from Velocity Vectors

Experimental Aerodynamics. Experimental Aerodynamics

Boundary-Layer Theory

Chapter 5 Phenomena of laminar-turbulent boundary layer transition (including free shear layers)

Journal of Fluids and Structures

LDA-Measurements of Jets in Crossflow for Effusion Cooling Applications

Applied Thermal and Fluid Engineering. Energy Engineering (Thermal Engineering Laboratory)

CFD Time Evolution of Heat Transfer Around A Bundle of Tubes In Staggered Configuration. G.S.T.A. Bangga 1*, W.A. Widodo 2

Aerodynamic Characteristics of Flow over Circular Cylinders with Patterned Surface

Numerical Simulation of Flow Around An Elliptical Cylinder at High Reynolds Numbers

Active Control of Turbulence and Fluid- Structure Interactions

COURSE ON VEHICLE AERODYNAMICS Prof. Tamás Lajos University of Rome La Sapienza 1999

Module 3: Velocity Measurement Lecture 16: Validation of PIV with HWA. The Lecture Contains: Hotwire Anemometry. Uncertainity

EXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013

A Pair of Large-incidence-angle Cylinders in Cross-flow with the Upstream One Subjected to a Transverse Harmonic Oscillation

LOWELL JOURNAL NEWS FROM HAWAII.

other hand, when the upper rivulet is at the position nearest to the leading stagnation point, the rivulet thickness is minimum, and the shear layer s


Experimental characterization of flow field around a square prism with a small triangular prism

Journal of Fluid Science and Technology

Application of a Virtual-Boundary Method for the Numerical Study of Oscillations Developing Behind a Cylinder Near A Plane Wall

Hajime NAKAMURA and Tamotsu IGARASHI

Mestrado Integrado em Engenharia Mecânica Aerodynamics 1 st Semester 2012/13

Fluid Mechanics Answer Key of Objective & Conventional Questions

Introduction to Turbulence AEEM Why study turbulent flows?

Time-Varying Flow Investigation of Synthetic Jet Effects on a Separating Boundary Layer

Hot Wire Anemometry Laboratory

Chapter 9 Flow over Immersed Bodies

VORTEX SHEDDING IN FLOW PAST AN INCLINED FLAT PLATE AT HIGH INCIDENCE

Observations of the wind tunnel blockage effects on the mean pressure distributions around rectangular prisms in smooth and grid turbulent flows

The Effect of Endplates on Rectangular Jets of Different Aspect Ratios

STEADY, UNSTEADY AND LINEAR STABILITY OF FLOW PAST AN ELLIPTIC CYLINDER S.J.D. D'ALESSIO

Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh

Boundary Layer Transition on the Suction Side of a Turbine Blade

BOUNDARY LAYER FLOWS HINCHEY

DAY 19: Boundary Layer

Drag on flat plates of arbitrary porosity

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

Lagrangian analysis of the laminar flat plate boundary layer

Numerical study of the steady state uniform flow past a rotating cylinder

Module 2: External Flows Lecture 12: Flow Over Curved Surfaces. The Lecture Contains: Description of Flow past a Circular Cylinder

EXPERIMENTS OF CLOSED-LOOP FLOW CONTROL FOR LAMINAR BOUNDARY LAYERS

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Numerical Simulation of a Blunt Airfoil Wake

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

Chapter 9 Flow over Immersed Bodies

Near Wake of a Horizontal Circular Cylinder in Stably Stratified Flows

Flow Control around Bluff Bodies by Attached Permeable Plates

Chapter 3 Lecture 8. Drag polar 3. Topics. Chapter-3

GEOMETRIC ROUGHNESS EFFECTS ON THE AERODYNAMIC CHARACTERISTICS OF A SPINNING CYLINDER IN CROSSFLOW


U a C o & I & I b t - - -, _...

THE ROLE OF LOCALIZED ROUGHNESS ON THE LAMINAR-TURBULENT TRANSITION ON THE OBLIQUE WING

Aerodynamic force analysis in high Reynolds number flows by Lamb vector integration

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

Aerodynamics. Professor: Luís Eça

Numerical Investigation of the Flow Past a Rotating Golf Ball and Its Comparison with a Rotating Smooth Sphere

Transcription:

9 $%& 95 46 75 74 8 9 *) +*)./ 4 )56 ) '('&$ % " # ) '('&$ % " # * * (+ ) ) * :* ; )<=> 4@* 4@* 4 $ ( B?#. #A 7 875 9 : mm 67 9 mm ( ( +./ A 6 ) % ( rpm ( B () ) GH I J * K J* ( B?# CD E% : & P) N % 9 J * K J* E% : O.*. #A 7 (x= mm U'# B ) P. * G ) GH I B : (. ESTB. * Q R W B : * H V: * $ "N # $ "N A I 9 : 9 I J * K X % I 9 ) GH J * K ( B %. U'# E A : U'#. UB : )[. \] ( B : U'# * YZ. ) GH. UB %$ \]. \]) N ) GH I ( R & P) N :/.B Experimental Investigation of the Effect of Reducing the Drag Coefficient on the Cylinder by HotWire Anemometry A. B. Khoshnevis M. J. Ezadi Yzadi Associate Professor Department of Mechanical Engineering Hakim Sabzevari University Sabzevar Iran M.Sc. Student Department of Mechanical Engineering Hakim Sabzevari University Sabzevar Iran Abstract An experimental investigation on the cylinder having a length of 9 mm and a diameter of mm at Reynolds number 875 has been done. At the first mean streamwise velocity profiles then streamwise turbulence intensity profiles fixed and rotating circular cylinder (for spans and rpm) at three stations (x= 6 mm) behind the cylinder are discussed and compared. In order to measure the mean velocity and turbulence intensity the hotwire anemometry has been used. Also the Strouhal number of fixed and rotating cylinders is compared. The results show that by increasing the rotational speed at a constant Reynolds number if the direction of the cylinder is the agree of the fluid movement the width of wake becomes smaller and the Strouhal number of the wake associated with the Karman vortex increases. At the stations of and turbulences the rotating cylinder is more than the fixed cylinder and the second station turbulences fixed cylinder is more than the rotating cylinder. It is found that by increasing the rotational speed the parameters of drag coefficient and velocity defect reduce. By increasing the rotational speed the drag coefficient reduced by about %. Keywords: HotWire Anemometry Fixed and Rotating cylinder Flow wake Drag coefficient. khosh966@yahoo.com : *

: Bl K J*?# E% :?# Jv.A... `N 9 \] B (A9 ( R & P) N l 9 [8] 9 : * + (BA (% / 9. B (. Q E : 9 (9 # ' * 4 BA ( *T? w6 9 x T. BA 9? Jc a ) N B % 9 9 T (gc # [9].* ( ( P.G ) N T: ) GH [Z Jv t: UGH ) B % 9 (:.* ( UB [] ) TB ) G ( B).G ) GH I 9 * d G (BC # ) ( U'# ) B) P. a6b ) GH I. U'# B : : ) GH + [] '. G P (.G E 9 U TB B [] U TB y (: P 9 ( 9 P 9 (.. [] : v B :. B G G./ B).G ) GH [4]. v ) TB B % 9 (A9 ( R & P) N 9 G (?c# B B). Q ) N ( B. X +9 *d G( BA (B( / ) T l 9 Q [5] 7 ) GH ( 9 * (. z# {* \] T $ B P : ( E.* B ) GH 4 / 7 4 / 75 : ( E / 9. \] \] $ E * B B P E f:. I # UB : U'# \]. * UB :. U'# \]. U'# / 5$ : CD a ) N + [6] ) TB ~.G R & P) N % { ) GH D?` 9 ) GH a ) N N 9 E (b J../ " 9 b 6?7 c 9 B. a &? 7K d' ) N. #A 7 T Je f?` 9 (. S ) $ ) N B &Kg: $ Je b (:?$ e 9 : h[g + &"# &B 9B E 9.T E W gb. 9 $ ) N Qc ) N &"# TB "? i] ( 9 (: ) N (: B % 9 J../ N. T )../ ( b# 9$ Eb &B 9B $ ) N 7 $ ) N? 9 ( X + 9? ( E.*.* (: (9 * BU 9 j#b k c ) BU 9 E P 9 BU B? ) BlG ) T G (9?. Q... Z ( B? " ab? + 9 6 * X + ( B m \] ) [] C./ ) gtn ) 9. E ) ( ( (: l * \] ) [] g*. #b \] ) [] ). % 9 : ( ( G ( (b b 6. 7 * + H ( BA *? r ( BA [4] pq/.g $ ( ( $ / ) GH [5]? ( / ( #A X + ( B./ G?*. 659 : N9 * X + 9 E ( ( B./ 9 (: * ( Q$ ( Bg ) JI G./ [6] E./ ) ( 'N JI_ [7]? 9.G C ( # G (9 e `N ( UGH. 7 + (s Jc i] E t: ) e u6 $ g: UGH E.* ) N ( B[Z ( 9 Jv +... \] UB ( ) I_ +

(' (' NT/ C*G e: ) 9 b 9 K / 95 : 9 )*G.* 7' K ) N [] ) TB (+.G ) GH $ X & 9 Q K ) N (9* #?7 9 B Jv ) #A X + 9 : UGH : K ) N B A. * % G ( B) P. I ( B ) N \] A. )' 9 : U'# ). U'# \] \] + [4] ) J`fA.G 9 9 : / (B e 9 : ( ) GH [5] (:?$ E [6] C. 7 E. ` (b C Je b ( G ( ) [7] * ( B ( BUBf ) GH bc E% :?# \] G 5. gz (B $( \] UB + [8] ) TB C*G 9 l K & g ( ( ( ( N 4 4 ( 9 & B).G : ) B) P. \[ \] ) N (" $ w6 9 ( \] 9 (T. (?: (. a c d' &) N (b 6 [9]( ) QjK ]: ) N ) GH $ (b Je b?* & $ Je b?$ O.G ). Q / ) T l 9 % C U'# \] : U'# *. UB \] $ *? (b./ E 9 ] $./. * G ) GH ( * Q? R & P) N + l * + J * K J* ( : JI. ( E% N.* :?# 875 ( 9 : ) GH ] $ ( 9 E * X + J../ UGH JI E $ ) N B) (? * P.#A 7 ( i b* "N Bl K : 6c \] Jv U'# U'# w6 ( ) B) P. * U 6c \]. ( BA (: + [7] ( B) ab.g ) GH a ) N ) N ( B% B : ( B. GH : \$ (A9 ) N ) [8] A T: ) GH ( (.G #A 7 A 9 : ' ) N "N? 7 Jv h G 9 : (: G./. B ) N (% [9] a9n 9 Q./ E.G ) GH $ ) N &? 7 K (b ) N ( (: (9* l ) B) P.* X + ) GH $ k9 \]. v t: UGH.* # $ G ) N [] f A (9* 4 9 : ) GH ) GH./ E.G ' ( B #A7 U 9 = 9 QgZ ( BUGH ) N : 6/ : Jc ) 7 H B ). = U U * b 9. UB E% ( U'# UGH 9 (: Q* ) N [] (9 P gz 9 : P ) GH (. (: l 9 Q gz GH :. 9 Q ' ( BA (9* l 9 " P.* Q O E ( A T * 9 &B UGH U'# &B ( U'# ( ) UB 9 : U'#. UB 9 : U'# U'# UGH U'# *? ( BA 9 ESTB. U'# 9 : U'# UGH $ ) N + b 6 [] ) TB r? b# BA `N.G ) GH ( ) B) P.* X + NonNewtoninan power low

./ E \]. N A O BZ P (I_ \ &B aspect ratio( β = L D = in [] E g./ ) ( 9?c $ P ) Z T: ( :* (5). b (.&b * Q ( B 9 Jc : [Z ) = U U = Dω U :& #b (6) ( B: 875 9 : Bl K J*.* gz ) 4.) ) N Q T" J * K J* :* ) 9 J * K J*. YZ %Tu = U u = U U V: [ [ (W ) : )[.( B ().* )?* (b / )... \] UB ( ) I_ + F$ G*).HI*JK L@ 9 i 9 U 9 E Q? fa g CN 9 9 7 ( %.* 4cm i Q 4cm V: 68cm : (A9 gc ( B' 9 R & P: [/ (BA N.* ) N (O/ 9 A Q* ( B) N U 9 X + ) % E # i 9./ E * Q P:.* B J * K E% : (A9 I?*. 9 * d G ( BA C # {* )9 z ˆ ( ) N J * K )' 9 ($. * (A9 c / 9 T U 9 ( B?* B I ( (/ U9 OQ/ * Q (b r. * UT 5µm 67 / 5mm 4 (%$ ( BU 9 E 7 X' 9 gz W. r $ (.*. X' E 7. * Q (9 N 9 BU 9 * Q. / mm r mm 67 9mm ( fag CN 9 E G fag 9 Q g:.* (. * O ac BU 9 P w6 (9 JI Q / kw J7 9 # 9 UGH.* 45rpm&T' : ( * G x. ( B +./ E N± $ Jv. * X + {/ (B ) N (B (" TB {* E g Jv + \N ) GH (A9 X %B g N ±/ 9 T )' R & P) N r ) ± / 5 $ (b / ) V: (W ) : )[.( B E : 9 (6 9 : )[. W = U U () U U J C # b ) : 9 B : ) b *? E ( BA St = fd U :* b 9Jc? B i Q &. 67 () 9 T ( ( A.* b (. BG 'H ( 6G & r Z /5 / 5 r Z []??g/ m N.* BG 6G c 9 T \]. z# (? J [Z P (I_ * c / 5 : AT blockage ratio( β = D (4) H = / 5 67 &. (O A ESTB E b N & b * J../ N.*. 9 xetb Maskell 9 E

(' (' NT/ C*G e: P) P) / X Y 4)44.MNO )*4 L QQ B I ( (/ 9 ($ 4 E U ref :?# ) GH (. * b7 ( J * K J* E%. * / \] " (A9 875 9 : ) $ ( P : 67 9 :. * ) ( B ( Re = U.D ϑ) * / 9 ) N.* r Z.7 \ 6G ( B: : 67 N / 4 / 94 / 5 #A X + ( ) GH 6 b7 ( (.* I 5?*. * X + y/d=(.b ) UGH "N +) i Q ( y x x/d= / 5 ( B/"N Y X W.5 )9 z UGH "N 5 E y/d => 4? % gt: /c ( J* : x= E% : b?# R & P) N mm ( I ) = ] $ Œl K = [8] A./ P 875 9.*.6?* 97 9 : x= 9mm.5..4.6.8. Tu )9 z ˆ Bl K J* E 997 56 7 68 Tanaka & Nagano present work 486 46 Y X 4 y/d.5.5 U/U ref J* (r) E% : b?#( )(. 6 E [8] A P ] $ 4 5 u rms /U ref b 6 P ( l K 4 5 6 7 8 E# : 'N?* U 9 Q? E 9 6 (9e5 U z ˆ4 ( 9Q (g.) Q 8 )9 z 7 Q

: UB A?G : U'# t: E : U'# A d G 8?* ) TB.* " Jv b N : (B?# * ) : ( BQŽ &`K v Jc BA & 6 TB.* ). r N *? ).K (O/ (B?# &B ' k. $ 8?* E N.* ). xf * & E% : BA? Jc E \g6 G r ( Jc (O/ r ) 9 9 6. ( ) 9 A $.* 9 E% / ) * BA? 6. B E% : O W. : B ) (O/ ( B: ) ). JI ) 9 5 x. ( ) 9 8?*.*T E % TB '` $.* BA? r?g : afg 9 gc # U'# U'# V: # UB d G ( Bgc #.* G E% :?# " # A (B) N `N N g: ' T ) N # 9 )* * ) N.* G?G * # ) &? ( x.7) % E. N? ) N 9 # afg E e? ) N 9 : Jv $ E e : % J : * / / 5 $ 9 U/U (* ) A.( kn : 9 ) N : U ) v 8?*) E 9 ) A E 9 )* P.( B x/d= / 5 b7 (% N? 7 k. : (B?# & $ N * X ) \g6 E g:.* ' Jc E. u6 * + (9 e? (9 e N X ' k. t: (9 e E# E 9 g u6 ( * B) : U'# " + W. ( U'# 9 G I k. \g6 E *.*T J : v + 7 B E% :?# T ) TB 9 gc # U'#?G :. & { * 6 E% :?# P ESTB U U( 8U = / 64y b 6 ( 7 9 :[] yzg* (7) z# # X9e. *. 7?* x= 45mm) ] $ U 9 9. '% N * B 6 TB. (C D = / 8 N [] yzg* 6 ] $ + E G 6 (U ref U) /U ref. ( :?# 7 E./ E * *. 9* ) R$ 5 ) TB 9 : gz b7 ) GH.* G ( B 875 TH M>) ES) ) 5 E% :?# 9 ( E ).5..5..5..5.5.5.5.5 y/b h gz (B: 875 9 :.* G : 6G : B : N.* Eb / 94 / 96 / 69 E. * U T8?* E P J Q ( B (9 E% :?# 8?* P. * ) Jv t: ).* Schlichting E% Present work Schlichting's correlation x/d= / 5 ) B ) 6 ( Bb7 :?# T"... \] UB ( ) I_ + 4

(' (' NT/ C*G e: x/d=6 b7.* T ' E UB : ) [. : U'# ) JI (x/d= / 5) %. U'#. ) I 9 )* " W /U ref.* B (T ( gz : ( B : )[. T 9 E : J * K Re= 875.VIW L ) 5 9 ( E. * G gz(b: 8759 J Q ( B (9 J * K J* T?* P. * ) J* x/d= / 5 6 ) : U'# B ) J* T N. U'#? 7.6.5.4... U'# t: ESTB.*?G J* T A J * K ) : U'# J * K J * K (O$f B gz (B: * 9 ' m$. ( J * K (= / 96 / 94) e : (B g7 m$. f: J * K J*?# v 9 * B ( ' % m$. *? ( BA b] [Z.* ( J * K J*?# & B ) TB 9 )* * 9 ( & $. E 9 B& * G W. E &B * U B * $ E ESTB BT E % &".B ( ' 9 d G J * K J* x/d=.5 6.5..5..5 9 gc # U'# E $ 6. E. UB CD # U'# 9 * ) E.B ( A (B) N x/d=6 b7 E# E 9? * ) N # Jv 9 ) N `N JI )* & ) N )* G. ( " ( Bb7 ( Bb7. t: E * ) B ) P y ESTB / "N E% :?# &B K g w6 : ) "N &B g: B ) N "N g e w6 ) "N m T E% :?#. t: * ( x/d= b7 ( b7 E%. * y/ : (B?# P gz : (B U'# ' b7 E. _ T U'#?G : E% : (B?# x/d=6 +?7 b7 N (BJ Q x/d= / 5 :.* G b7 * ( [Z X O b7 E.*T B.&T G gz ( B E% : (B?# E 9?* ) N # Jv 9 * ) E )* & ) N )* G A (B) N " ( Bb7 (Bb7 E# 9 N JI b7 h G b] g: i] E. ( E% : (B?# b7 E * y/d x/d=6.b v gz( B: E% :?#k9 8 E.5.5 x/d=.5 \$ =.69.96.94 6 U/U ref Re= 875 ( : ) [. T 9?* P. * ) gz (Bb7 U'# x/d= / 5 (Bb7 B ) 9 )* UB : ) [. 5

(u rms /U ref ) max ( B: J * K J* Jv E Re=875 ( J Q X.) 4> ) 5 R & P) N % J [Z ) TB ( BA C # (A9 7 % E * QA ) 9 Q * 9 * d G r B : ) 67 : 9 * d G ( BA C # (A9 (. C # CD 7?/ r \$ B : Jv?*. )./ E +. * ) A C # : U'# B.A B : U'# + # U'# E St 4 5 5 5.5..5..5.4.5..5..5..5 x/d=.5 6 present results Aoki Re=85..4.6.8. ] $ b 6 P :\$ B : Jv E Re=85 [7] ( + P Re=875 UB CD U'# J * K J* T 9 (?G 9?c# A (B) NN 9 * E.* G ( Bgc # G (B) N ' GH BA b] N.* 9 x/d= b7 UB J * K J* : U'# b7 J * K J* ( BT afg E J * K J* ) &.* g7 A + ) N N 6. v g: e T$ ) GH JI 9 )* * ' ( B J * K?G ESTB. UB N 6. 9 T J* B ) K d G d G 9 ' x/d=6. c / 5 b7 J * K J* T $ = / 69 / 96 / 94 b7 E J* T N. U'# J * K I g U'# &A + g7 (Bb7 J* U'# t: b7 E J * K : (YZ X O b7 E. * Bl K : ( y/d & G J * K J* T.* &B gz (B) ( J Q ( B: Bl K J* k9 E Re=875 ) J * K J* Jv?* 6 x/d=.5 4 u rms /U ref ( B % * B ) TB J * K J* : U'# U'# J * K J* =.69.96.94 6 x/d=. * x/d= / 5 # U'#. # UB :... \] UB ( ) I_ + 6

(' (' NT/ C*G e: b E. " X ) b () b B ) N. E (6. B ). T (A9 7 + ) &. % )) () b N afg J : X % # afg J : ) % + 9. 9 ( BU J : X % X * &N $ # 7 (A9 6 $ # [4] E *ga #A O (b J * K J* Jc () b. `() b 6 (\] p = p b + q \ q \ = ρnu + v +w O C a = = U N U OdH y U E U E L K + =g v + w u hdh y L K U E () b.* B ) N : ]: J % J : E%TB w () (). " X ) * ufc b v J * K J* V# () b Jc * b u \ = v \ = w C a = = U N U OdH y U E U E L K+=u.dH y L K U E :* ) () r R & P) N 9 Q ) $ E ) N "N J * K J* (A9 {.# (b. ( \] : U'# B ) P % $ \] I 9 :.(?*) UB ( ( u6 ) a c g: ] $./ ) &B g: % a 9 'H 6c UN W. ) YZ ESTB 9 ) N & g: ( ( w6 (.* \.: gn * + # ) A YZ[; V J 4% ) )\J 6 ] l 9 Q ( (A9 ( Bl 9 X afg l 6. X afg 9 Q [] X ). #A X + (b J../ &+$ ( 6G X. % Je b 9 ( BU. E#A O #A &N # [4] E *ga.t YZ ( \] b 9 Q (. YZ $ B ) N : (A9 9 E *ga { * ` (b Jc J * K ESTB $ B ) N J * K J* 9 gc # U'#.* E.T V# E%TB ) J * K # UB ) [5] (b r P) N 9 Q $. (A9 ( 6G X. % Je b T: [] X ). E#A O #A &N &+$ ` (8) b 6 ( \] 9 ( BU ; < = =>? @B? @C FGH I D E J K += M N M E + D E =P QQ.GH I J K e M E g/ : &` 7 gc # I [Z ' M M E OGH I J K 9 d G $ # M $ # 9 ) N # J * U P QQ D E : (8)? @B? @C 9 ) N : T: (..* #A O ) 67 ( ( BU N' ( BU it+ Jc ) P QQ.) (9) b 6 9 τ SS = μ4 U x.v YZ7ρu \ U ]ρ u B ) N : ) _ %H J ^ (9) ) 8 b N' U QŽ..* 9 ) N "N ( BQŽ 9 T e 9 : ( B) N & ( B) N ( ESTB. BG 9 ( BU E 9.#A O 'H ) %H J. 9 () 6 Jc ) 8 b C a = => p p b FdH y q E L K+= U N U OdH y U E U E L K = u.dh y L K U E () 7

# ~ ( B') P) N b67 X: (... ) b67 X: + %? W b67 X: r (A7 b7 W b67 X: Jv 9 * b67 X: {/ # Jv 9 * b67 X: Jv 9 * b67 X: ( B % R & P) N % (A9 _.?7$ ) * 6G ( % % 9 * ( B 6G ) R& P) N ( B 6G A/D J ( Q 7 ) / Q R & P) N ). Jv X + /% l K J* ) N J? 9 9 T ( 6G. * 6 R & P) N )T 9 C.* % / 5 N (gtnh / 9 Q : J. BG % / 5 9 T ' ) ( 6G T l9 + E ) 9 Q A/D ( 6G * Q % B 6 c I_ Jv.* % / 5 9 T ' ) ( Q 6G ( * R & P)N 7 g6 + % $ {/ ( g N v ( UB c / ) )T ufc * ( 6G ) * ` ( Bw] N.[7 6] B.#A O % $ (A9 g )\ 8 ( ( ) I./ E.*G gz (B: 875 9 :.A Q 9? 9 BU 9 X + O (.#A X + k6. ( ( J* E% : (B?# * (B \] ( B ) { J * K ) P.A / : )[. 9 :. J * K J* E% :?# P `. UGH : :&9./ E 9 % E% :?# ) P U'# % (?/ J * K J* J * K J* E% :?# 9 gc # ( B. ESTB.* : G C D Re=875 \$ \] Jv E % (: + P ] $ P + : O B 4?* 6 TB. *. )../ C D.4..8.6.4..5..5..5.6.4..8.6.4..* \] UB t: ) * present results Kang Re=4 Kang Re=6 Aoki Re=6 Karabelas Re=4..4.6.8 (+ P :\$ \] Jv 4 E Re=4 [] f (: P Re=6 [7] [] y (: P Re=875 Re=46 ] $ b 6 P 9* MNFO ]> 7 Eb T. ) (# (A9 B A X:.B TB 6G B(A9 T.* b67 X: (A9 ( 6G f: 9 (A9 ( 6G Eb c b67 X: ETZ.* 9 " (A9 + E. ( Jc X:.* ` ) b67 X: u* TB? G % QgZ?: (O/ : b67 :9 J : B)9... \] UB ( ) I_ + 8

(' (' NT/ C*G e: number" Journal of Fluid Mechanics vol. no. 4 pp. 8898 956. [] Eaton B. "Analysis of laminar vortex shedding behind a circular cylinder by computeraided flow visualization" Journal of Fluid Mechanics vol. 8 pp. 745 987. [4] Mahfouz F. Badr H. "Flow structure in the wake of a rotationally oscillating cylinder" Journal of Fluids Engineering vol. no. pp. 9. [5] Savill A. "The turbulence structure of a highly curved twodimensional wake" in: Structure of Complex Turbulent Shear Flow Eds. pp. 8597: Springer 98. [6] Lin C.L. "Large eddy simulation of air flow around the airsea interaction tower" DTIC Document 5. [7] Prandtl L. "Uber flussigkeits bewegung bei sehr kleiner reibung" Verhaldlg III Int. Math. Kong pp. 48449 94. [8] Kovasznay L. "Hotwire investigation of the wake behind cylinders at low Reynolds numbers" Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences vol. 98 no. 5 pp. 749 949. [9] Taneda S. "Experimental investigation of the wakes behind cylinders and plates at low Reynolds numbers" Journal of the Physical Society of Japan vol. no. pp. 7 956. [] J. Massons X. Ruiz F. Diaz "Image processing of the near wakes of stationary and rotating cylinders" Journal of Fluid Mechanics Vol. 4 pp. 6784 989. [] Barnes F. "Vortex shedding in the wake of a rotating circular cylinder at low Reynolds numbers" Journal of Physics D: Applied Physics vol. no. pp. L4. [] Kang S. Choi H. Lee S. "Laminar flow past a rotating circular cylinder" Physics of Fluids (994 present) vol. no. pp. 999. [] Hu G. H. Sun D. J. Yin X. Y. Tong B. G. "Hopf bifurcation in wakes behind a rotating and translating circular cylinder" Physics of Fluids (994present) vol. 8 no. 7 pp. 97974 996. [4] Dol S. S. Kopp G. A. Martinuzzi R. J. "The suppression of periodic vortex shedding from a rotating circular cylinder" Journal of Wind Engineering and Industrial Aerodynamics vol. 96 no. 6 pp. 6484 8. [5] Mittal S. Raghuvanshi A. "Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers" International Journal for Numerical Methods in Fluids vol. 5 no. 4 pp. 4 447. [6] Dierich M. Gersten K. Schlottmann F. "Turbulent flow around a rotating cylinder in a quiescent fluid" Experiments in fluids vol. 5 no. 56 pp. 45546 998. [7] Aoki K. Ito T. "Flow characteristics around a rotating cylinder" Proceedings of the School of v ( b7 N \] : ) [. O )./ E P. ET $ ( b7 \] w/c..& r Z 9 E 9 $./ E 9 (B J * K J* E% : : U'# )[.. ESTB. U'#?G UB : U'# \] :. ) ) GH ( #A X + (?# T" Jv t: ) : U'# t: ).* E% : A d G : UB A?G " Jv E (m) \] [Z 9 d G $ # (pas) $ # (m/s) (pas) (p a ) 9 ) N # 9 : B : ) N J * K J* (m/s) (m/s) g/ : B ) N : "N B ) N : ) (m/s) 9 ) N ) N : ]: ) N J (m/s) B ) N 'E.# gc # (mm) R& P ) N T: ( &` 7 gc # (mm) : U'#.*.4 9 C D L P se P sw q E Re St Tu% U U ref _ \ w \ v \ x y ^) [] Lewis R. "Vortex element methods for fluid dynamic analysis of engineering systems" J. Fluid Mech vol. 9 pp. 77 99. [] Batchelor G. "A proposal concerning laminar wakes behind bluff bodies at large Reynolds 9

[] Van Dam C. P. "Recent experience with different methods of drag prediction" Progress in Aerospace Sciences vol. 5 no. 8 pp. 75798 999. [4] Goldstein S. "A note on the measurement of total head and static pressure in a turbulent stream" Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences vol. 55 no. 886 pp. 57575 96. )" "R & P) N" g: T/ [5].8 E [ NG % J [6] Jorgenson F. "How to measure turbulence with hot wire anemometers" Dantec Dynamics 4. [7] Yavuzkur S.t "A guide to uncertainty analysis of hotwire data" Journal of Fluids Engineering vol. 6 no. pp. 886 984. Engineering of Tokai University vol. 6 pp. 94. [8] Tanaka H. Nagano S. "Study of flow around a rotating circular cylinder" Bulletin of JSME vol. 6 no. 9 pp. 44 97. [9] Padrino J. Joseph D. "Numerical study of the steadystate uniform flow past a rotating cylinder" Journal of Fluid Mechanics vol. 557 pp. 9 6. [] Karabelas S. "Large eddy simulation of high Reynolds number flow past a rotating cylinder" International journal of heat and fluid flow vol. no. 4 pp. 5857. [] Mobini K. Niazi M. "Large eddy simulation of the flow across a rotating circular cylinder" International Journal of Fluid Mechanics Research vol. 4 no. 4. [] Kumar S. Cantu C. Gonzalez B. "Flow past a rotating cylinder at low and high rotation rates" Journal of Fluids Engineering vol. no. 4 pp. 4. / ( 9# f bg 6: (+ [] " a K X ) N (:?g/" 585 /Qc T* 44 gn ' B Tg:.9) 9 ' [4] W. Swanson "The Magnus effect: A summary of investigations to date" Journal of Fluids Engineering Vol. 8 No. pp. 4647 96. [5] M. Glauert "The wall jet" Journal of Fluid Mechanics Vol. No. 6 pp. 6564 956. [6] H. Badr S. Dennis "Timedependent viscous flow past an impulsively started rotating and translating circular cylinder" Journal of Fluid Mechanics Vol. 58 pp. 447488 985. [7] D. M. H. Rashid "Wake survey behind a rotating ventilator" Thesis The University of New South Wales. b X 9# l9# e: C*G [8] ( ( \] UB + " E/ ($ Tg: "9 l K & g ( 8 /Qc T* B * B9 B.9) 9 [9] M. Nobari J. Ghazanfarian "A numerical investigation of fluid flow over a rotating cylinder with cross flow oscillation" Computers & Fluids Vol. 8 No. pp. 66 9. [] E. Maskell "A theory of the blockage effects on bluff bodies and stalled wings in a closed wind tunnel" DTIC Document 96. [] C. H. Williamson "Defining a universal and continuous Strouhal Reynolds number relationship for the laminar vortex shedding of a circular cylinder" Physics of Fluids (958988) Vol. No. pp. 74744 988. [] H. Schlichting "Boundarylayer theory" page 74 968.... \] UB ( ) I_ +