Modeling of Aluminum Foams for Impact Absorption in Multilayer Structures

Similar documents
Introduction to Engineering Materials ENGR2000. Dr. Coates

Characterisation and Modelling of a Melt-Extruded LDPE Closed Cell Foam

The design of a formula student front impact attenuator

INDENTATION RESISTANCE OF AN ALUMINIUM FOAM

Shock wave speed and stress-strain relation of aluminium honeycombs under dynamic compression

Shock enhancement of cellular structures under impact loading: Part II Analysis

Stress-Strain Behavior

Mechanics of Materials and Structures

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

HIGH SPEED IMPACT ON CERAMIC PLATES

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels

Lecture 4 Honeycombs Notes, 3.054

Keywords: Re-entrant; cellular solid; Negative Poisson s ratio; Voronoi; Energy absorption; Compression

Interim Research Performance Report (Monthly) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Indentation tests of aluminium honeycombs

Experimental and numerical analysis of impact on steel curved panels

Chapter 7. Highlights:

Numerical sensitivity studies of a UHMWPE composite for ballistic protection

Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction

Tensile stress strain curves for different materials. Shows in figure below

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2016 June 19-24, 2016, Busan, South Korea

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING

Parts Manual. EPIC II Critical Care Bed REF 2031

Study on Residual Stresses Redistribution in Welded Joint in Shot peening process

SIMPLIFIED MODELING OF THIN-WALLED TUBES WITH OCTAGONAL CROSS SECTION AXIAL CRUSHING. Authors and Correspondance: Abstract:

Performance Evaluation of Fu Chang and Low Density Foam Model for Expanded Polypropylene

Engineering Solid Mechanics

Lecture #6: 3D Rate-independent Plasticity (cont.) Pressure-dependent plasticity

Finite element simulation of residual stresses in laser heating

Lateral Crushing of Square and Rectangular Metallic Tubes under Different Quasi-Static Conditions

Ballistic behavior of steel sheets subjected to impact and perforation

Effects of abrasion on the penetration of ogival-nosed projectiles into concrete targets

Constitutive Equations

Constitutive model for quasi-static deformation of metallic sandwich cores

CONSTITUTIVE MODELING AND OPTIMAL DESIGN OF POLYMERIC FOAMS FOR CRASHWORTHINESS

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

In-Plane Effective Thermal Conductivity of Plain-Weave Screen Laminates

Solution: The strain in the bar is: ANS: E =6.37 GPa Poison s ration for the material is:

A Simple Global/Local Approach to Modeling Ballistic Impact onto Woven Fabrics

FINITE ELEMENT ANALYSIS OF IMPACT AND PENETRATION OF POLYCARBONATE PLATE BY A RIGID SPHERICAL PROJECTILE

Fundamentals of Linear Elasticity

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none

BALLISTIC IMPACT RESPONSE OF AN ALUMINUM SANDWICH PANEL WITH AUXETIC HONEYCOMB CORE STRUCTURE

3-D Finite Element Analysis of Instrumented Indentation of Transversely Isotropic Materials

Strength of Material. Shear Strain. Dr. Attaullah Shah

NUMERICAL ANALISYS OF IMPACT PHENOMENON BETWEEN A FRANGIBLE PROJECTILE AND THIN METALLIC PLATES USED IN AIRCRAFT STRUCTURES

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY

Lecture 7, Foams, 3.054

Lecture #10: Anisotropic plasticity Crashworthiness Basics of shell elements

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

LARGE DEFLECTION OF GEOMETRICALLY ASYMMETRIC METAL FOAM CORE SANDWICH BEAM TRANSVERSELY LOADED BY A FLAT PUNCH

Composite Sandwich Structures with Honeycomb Core subjected to Impact

N = N A Pb A Pb. = ln N Q v kt. = kt ln v N

Cyclic and Tangential Plasticity Effects for the Buckling Behavior of a Thin Wall Pier under Multiaxial and Non-proportional Loading Conditions

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

Study on the Energy Absorption and the Local Buckling of the Expansion Tubes

Finite Element Simulation of Bar-Plate Friction Welded Joints Steel Product Subjected to Impact Loading

EXPERIMENTAL AND FINITE ELEMENT ANALYSIS OF MULTILAYERED HONEYCOMB COMPOSITE MATERIAL SUBJECT TO STATIC LOADING

Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study


ELECTROMECHANICAL RESPONSE OF PIEZOELECTRIC FOAMS

Solid Mechanics Chapter 1: Tension, Compression and Shear

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Compact energy absorbing cellular structure

Author(s) Cui, Liang; Kiernan, Stephen; Gilchrist, M. D.

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

N = Shear stress / Shear strain

IMPACT PROPERTY AND POST IMPACT VIBRATION BETWEEN TWO IDENTICAL SPHERES

Indentation Energy in Bending of Sandwich Beams with Composite Laminated Faces and Foam Core

CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Mechanical Properties of Hierarchical Honeycomb Structures. Ghanim Alqassim

Load Cell Design Using COMSOL Multiphysics

Theory at a Glance (for IES, GATE, PSU)

Practice Final Examination. Please initial the statement below to show that you have read it

Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005

Heat Generation during the Fatigue of a Cellular Al Alloy

Stress Distribution in Graded Cellular Materials Under Dynamic Compression

Mechanics of Biomaterials

ME 243. Mechanics of Solids

Continuum Mechanics and the Finite Element Method

Expansion of circular tubes by rigid tubes as impact energy absorbers: experimental and theoretical investigation

NONLINEAR WAVE EQUATIONS ARISING IN MODELING OF SOME STRAIN-HARDENING STRUCTURES

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

NUMERICAL ANALYSIS OF CERAMIC-STEEL-COMPOSITE SHIELD SUBJECTED TO BALLISTIC IMPACT OF THE FRAGMENT

An anisotropic continuum damage model for concrete

Damage accumulation model for aluminium-closed cell foams subjected to fully reversed cyclic loading

ME 2570 MECHANICS OF MATERIALS

Collapse behaviour and simplified modeling of triangular cross-section columns

Progressive Failure and Energy Absorption of Aluminum Extrusion Damage

6.37 Determine the modulus of resilience for each of the following alloys:

Fatigue Damage Development in a Steel Based MMC

Extraction of Plastic Properties of Aluminum Single Crystal Using Berkovich Indentation

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Mechanics of Materials MENG 270 Fall 2003 Exam 3 Time allowed: 90min. Q.1(a) Q.1 (b) Q.2 Q.3 Q.4 Total

International Journal of Solids and Structures

Transcription:

#$% 96 47 79 ;< 4 + 6 7 9:..0 +./ +,*,,./ 0 / 4 04,,./ 0 / / * +=> @7 +>A B.; 4 9 D EF G4 =9 C 0.0 4 9C0B ABAQUS A@ 6 7 9 :4 ;< :=> KLJ 9=J; / =./, I0 4 @ EF H =B 0 0 0 EF 9Q R', P0 9=D @ S< TU 4 V W =9 H OJ/ P0 9 D.0 4 N 9C0B 9 4 E0 ( D EF) 0^ 9C0B 9 [, X0 B C. Y 0 @,:A @ 9 9 4 =/.0 4 E0 A@ 4 '; @ B C @ ` =: H / _P 9=: _ ^P 4 A :` 0 EF _P 9=: R', 9F /4.0 := 0 C : @ D0. : 9Q Ra, 4 '; @ [, X0 B 9AL@ :+D +CA@ Modeling of Aluminum Foams for Impact Absorption in Multilayer Structures R. Hesari S. Y. Ahmadi Brooghani Department of Mechanical Engineering, University of Birjand, Birjand, Iran Department of Mechanical Engineering, University of Birjand, Birjand, Iran Abstract In this study metal foams are simulated by their mechanical properties with continuum mechanics model. To do so, six multi layered armors were simulated. Three armors consisted of steel/ceramic ates with different thicknesses and other armors had a layered aluminum foam between their layers. A bullet with specified velocity was collided to armors and the JohnsonCook model was used for the steel ate and bullet and the crushable foam model was used for aluminum foam. The results of the present research showed that the multi layered armor with aluminum foam (.4 percent overweight) reduced the stress in ceramic ate more than 0 times compared to armors without aluminum foam. Keywords: Metal Foam, JohnsonCook, Crushable Foam, Energy Absorbent, Plateau Stress. [4] AL. : B _ : 4 o0 7 9 9= A 9C Ansys Autodyn A@ _ GL [, 9 X0 P D B C n m ` :_=. @ 7 9=9 : 9 7 9 6 ` 9V W A [] 9=@ GJLJ L0 D0 / BL0 @ @ gf C BL0 @ D V W [6] _= 9C0B ABAQUS _ A@ 4 '; =./C m B m ` _ 4 '; @ < _= _ GL.4 @ : q pp. 9AL 9=@ : 9C0B 4 '; @ D V W [7], 9 4 9C _n< 4J0._= 4J0 < `._=e VY B GF< m _ ; R', 4 b cd G F 9AL 9=@ 9=D0 9AL 9=@ cd., _= 9Q @.6 ).6 AL cd E< 9AL =E< C) =E< 04 J ( AL 9AL gf gv W D.[]. e (= E< C :0C h4 9AL 9=@ cd W L D TU 0 [] _= ji B C.D (0 ) 7 D0 0^ 9C0B 9 [, X0 [, : B E0 6k._ 9C0B 9 XJ D 6 C KLJ 9=J; D V W [] :_= n m ` 7 (H 0 ) D _ ( 4 9C _ Crushable foam 4 Crushable Foam with Isotropic Hardening (CIH) Crushable Foam with Volumetric Hardening (CVH) Relative Density JohnsonCook * rh_hesari@yahoo.com: 94/0/ 0 : 9/07/ :('

` A ` 9AL EF. P 0 v` X0 C D C 4 : C 9C G}) 9=P0 D g<.[] 9L, D EF I0 4 : q ( L D =[ 0 0 F H 4 KV; X0 =[ H., := R', 9Q 9=Ra, C E0 '.4.[0] 4 T~D C 4 [4..0./ +,* BL0 @ w C 9C0B, E0 @ [] _= 9 I0 9V W @ H.4 @ _= C 9_ A ;< V W.0 Y 0 ABAQUS _ A@ V _= 9AL [] _= V W _= Hi_=.0 4 9C0B 4 '; @ < C @ 0^ HV 9 H HV 9.0 4 E0._= 4J0 4 @ ( ν p ) 0^ 0 ` HV C < 7 EF y` H.6 9=@ 9 ` N 9 EF ` A V W H.[] 4 : 4 C _Y H 9..0 GY 0^ 0, 0 9/ vl K = ( υ p ).[] 4 0, A 9AL 9=@ 0 B ;< V W E foam = A. E Al. ρ 0 B E Al 0/ ().[] 0 4 0 AL cd BV X;.6 ρ B0. 6/9 BV AL P @ 40 V 4 9C0B @.4 0/6 BV @.0 Y 9 9/ 9' L 0 0 4 9C 9 _ B 4 cd, [] =..0 4 Y 9/ : 9 9' @ :: _, 9D0 0 9C D 7 @ 9/ :=> H ' Y 0 P0 D 9/ 9 9' @ :: _ C A ` [] t, n m 9C0B m 0 4 E0 A ().(G4) 0 4 n._= 4J0 B. s _n< 4J0 B VY < A 9=@ C E0 n0 ;< V W.= GL _= 9Q R', 9 E0, GD ;< V W 4 9C0B @ 9/ m ;< V W m.0 4 ` [] n m S= 9C0D tf L_, C ELJ 9=C<. Y E0 +.G < D C 4 9Q @ D @.=.4 4 v X0 = Y u= @L, ( 6 @ = G/ 9=BL0 9= C D ' = H,.4.J 9Q Y v= Gb v= 94 D0 I` :J KLJ 9= : 4 _ 4 =/ G4,.[9] 4 B_P :0< 0 9 9AL@ :: gx < H @ 0 B < _ @ <.4 WD. : : < @ : 9=Ra,.0 4. W y` A : T : 0 C @0 <. < _= 0 =BL0 4 { :: ID B 9Q 9Q 9=Ra, 0^ 4 [0] +J/ +./ 6 I7DI A6. H N;A O/# ++7.[0] 4 F 0 9.0 Y 0 H 9/ pp w; H. G` D n 9=BL0 _P gf < H 9Q R', A H/ zw y` C 7 9=D0 9 m B_V 9 :4C gf Gb 0 (AL) ` D EF _V D H4 E 0 9 H.0 4... ;R',, 9=@ 9C0B Plastic Poisson s Ratio Compression Yield Stress Ratio Plateau Stress 4

9b< ; K00 e9_< [] 7 R>7 7 6SA H 7 HSS = D EF, X A 0 9 9= cd 4.0 4 s B, +,*..0./ I7DI A6. ;F H 7 N; [] 7 @ 6.7 #$% 6<./ TA. *@ 770 00 0/ (kg/m³).6 (GPa) 0 B 0 [] A7 ;< TA. *@ 900 0 0/ 400 (kg/m³).6 (GPa)0 B 0 (MPa) vl : 0^ 9C0B 9 [, X0 B C.0 4 E0 : q / 0 E0 G 0^ < C A 0 9C0B 9 9 G Y [, 0^ Y.[] 0 4 : : o TU 4 0^ G4 x σ = A + B :C 0 gp = s : 9 0^ ( n ɺ ε ) ( m ε + C ln θˆ ) ɺ ε 0 ( + ˆ θ ) p ɺ ε ε f = d + d exp d d4 ln + d q ε 0 ɺ o 0 (4) W 0 A 4 : T~ 0^ : ε 4 C B A t, : o n εɺ 0 () (4) : T~ 0^ : o ɺ ε 4 A V 9 θˆ B` 9 C 9= q H. : / p < 4J0 X; m 4 : ε f ω = ( ε / ε f ) C ω 0^ : _ 4 9= d d CA : V [, 4 XJ B.4 ` =D o C 4 4 () W Hi_=.4 / ε f X0 B 9=T X; (4) B, ().[] 0 BV 0 4 s E0 9 [, B_P ABAQUS _ A@ 9C0B @.= HighSpeed Steel 9.4 =/ 4 9C @ cd B, 60 LF _Y = _ D G Y 9C 4, ( D G) u{ C L _ w.4 Y m A _Y H 9: 4 7 (CDR) 0 9V 0 : = @_ 44 0 _ 46 9 =_ H V X v/4 vn @ 9=9 @ _ { =B hw0.4 _ 4 446 607 A) =B 0 _0 H zw0 4 ` G.4 9'Y 9 ` gf (D G +,* 6 6$A 6...0./ +PQ;@ *@ BL0 4 / F 0 0/ 0/ D0 (kg/m ).6 (MPa) vl : v : 0 (GPa)0 B ;<4 ++7 +,* A@ C < :4 =9 ;< :=> G4 @6 @0 B g< :4 9C0B ` 9 D EF C ELJ 9=J; @ g<.4 Gb v= 4 0 EF C 9 0 9 EF ^P v/4 vn, E0 w,.= A 9AL @ 9=9 9 G_P i, A = 9C0B P0 7.4 RJ 4 E0 6 0= V. D =9 T 40 A C E0 9C00,.4 =/ G4 A V _) 0 4 0 LF B C @6 I` `.(4 s B @6 < 9 m =@, Partition D Stress (Standard Hexahedral Linear)

.= / @ 9, 9 H 0 _ 0 D C 4 : 9Q R',, @ L_P O#0 6 @6 +7 6..0./ 6 I W;,. H Y 0/9 9=9 7 _ 9 C CA : _. A 4 =/.0 4 / 6 G4 @ B, 4 B0. 400 B 9 : / H6 H ' 0 B0. 400 0 vl : 9C0BV =[ n X0 =D @ A @ 9 4 0 4 _P 9=:, GY := X0 ` =: H / 9W 0 4 0 / < 0 := 0 C : B 9 D0 C @ < 0 0 B0. `, A H { C.0 :A A 4 y^_p ; :A A ; B_P C (K ).0 [] 7 @ 6<./ +A7 U.D. * R;A7 4 *@ (MPa) 9 (MPa) 0/04 0/070 /7 0/4 0/0 0 0/000 0/ 79 4 A B n m d d d d 4 d ( εɺ0 ) t, : o 4 n, (HL) Ra 9 (HL) B` 9 (J/kg.K) >9. V# @ N; 0 V W 0 0 V W H i 9=.4 KLJ 9 H6 D C 9C L 9=J; X 0 9 4 7 L 00 A =B gef ƒp.4 _ D C GF< 9=: 9Q R', 0,.0.0 Y 0 < _ 0 C A, HA) 0 J; 9 _ H D zw0 G` { C ( E< B< gan H/ C < H 4 A 9 g< _ C. A, H _P 9=: D 4 9 0 4 7 T L gf G gf =9 _. C X`P G D C C H { D C =: H/ 4 =/ 4 G4., 0 EF D < G` 9=_... ;R',, 9=@ 9C0B (R) 6 A7 ;< ;A 0A,,J I 6 H @6 +7 (9) *@A +7(B0A) 6 *@A +7 7 6.7,A H%> +I W;,. 4 H Y 0/0 O#0 6 J; 9AL @ C 9 @ 9 H @,.0 4 N 0 9 9= H L @ : tc G4.4 @L / @ C 6

9b< ; K00 e9_< 6 A7 ;< ;A 0A,,J I H \] @ \ ++7 J; : R', W G 9` B, 4 s 4 9C0B 9=9 @, = w =.0 9 9 C X @6 @0 9=9 @ J; C J; 0 9 0 4 E0 (L 6) @ 9, 9 J; :A H v,.0 @6 @09= 9 / 6@, :A pp 0 9 9= 4 =/.4 @ 9 7 G4 W_= 9=: A @ J; _= 0 R', @ D P g0 H G 4 A 94 g0 9 =_ :A Hi_=.0 9 @, G 9 EF C (V G_ =D0, GY @, :A = H J; (K ).0 I 9: 6 +7 ;F *@ @, D0 (kg) / /94 / /96 /6 /4 : / _ (MPa) 400 4 9 4 J; 0 (mm) 7 J; @ (mm) 6 4 0 J; 9 (mm) 70 9 B @ @0 @6 vn v/4 (R) +7P, 4 @ C 9_ ;< V W 4 _ A@ 4 '; @ gf / =./ S< TU 0 9 0.4 9C0B ABAQUS 7 6 D0 H6 ' @ 9Q R', @ 40 P0 9 D C GF< 9=:.4 Y Hi_=. 0 D =D0 H T [, X0 B C P0 9=D 9C0B 9 m. E0 0^ 9C0B 9 : 0 ;< V W C C : 0 Y _ GL _ 9/ 9' C GF< m. 9AL 9=@ 9/ m 4 =/ ` n m 4 9C.4 A. 0 Y 7 6 9 @ C 9 B_< := Hi_= =: := _ :`. E (0) 4 6 A7 ;< ;A 0A,,J I 7 H 4 +7 (9). +7(B0A) @ J; v/4 vn 9=9 =/ G4.0 4 7 L 4 X 4 X =9 H : / 4 @0 9=9 0 9=: C 0 B0..4 _ @6 7

A,9C D09=( V W; 9b< 0 / 4 04.9AL 9=@.9,./ [0] [] Yan W., Durif E., Yamada Y., Wen C. Crushing Simulation of FoamFilled Aluminum Tubes. Materials Transactions, Vol. 4, No. 7, pp. 90 to 906, 007. [] SIMULIA, Abaqus Analysis User's Manual. Providence RI: Dassault Systemes, 0. [] Panigrahi, S.K., Das, K., Ballistic impact analyses of triangular corrugated ates filled with foam core, Advances in Computational Design,Vol., No., pp. 94, 06. 9=: 4 pp @ C 9 =9 0 < 0 _P =/ 0 _P 9=: 94 g0.4 9 9 6 9D0 =: / 4 H_= 0 9 9D0 L 6 J; J; @ 9 9D0 ` J; @ D0 C Hi_= 4 / '.4. 9=D0 C _ 0 L 4 C @ J; := _ B0. 0 A / :A pp L.4 0 [, X0 B C / gv W, '; @ < 0^ 9C0B 9 LY Hi_= 4 E0 9AL 9=@ 9C0B 9 4 _ ( _ A 9AL 9=@ ; R', 7 ' 0 4 ` =./C m 0 9C0B 9 ;< V W 9=( C E0 s n m A n X0 P0 D.=... ;R',, 9=@ 9C0B WA7 [] Ashby M.F., Evans, A.G., Fleck N.A., Gibson L.J., Hutchinson, J.W., Wadley, H.N.G. Metal foams: a design guide. Butterworth Heinemann, Massachusetts, Boston, 000. [] Vanichayangkuranont T., Maneeratana K., Chollacoop N., Numerical Simulations of Level A Ballistic Impact on Ceramic/Steel Armor. The 0th Conference of Mechanical Engineering Network of Thailand, Nakhon Ratchasima, Thailand, 006. [] Pechoucek P., Rolc, S., Buchar J. Fragment Simulating Projectile Penetration into Layered Targets. Engineering Mechanics, Vol., No. /6, pp. 6, 0. [4] Flis L., Numerical Simulation of Ballistic Impact on 0GHMBA Steel Armor, Scientific Journal of Polish Naval Academy, pp., 00. [] Gama B.A., Bogetti T.A., Fink B.K., Yu C.J., Claar T.D., Eifert H.H., Gallespie Jr. J.W. Aluminum Foam Integral Armor: A New Dimension in Armor Design. Composite Structures, Vol., pp. 9, 00. [6] Moo Ryu K., Young An, J., Cho W. S., Yoo Y. C., Kim H. S. Mechanical Modeling of AlMg Alloy OpenCell Foams, Materials Transactions, Vol. 46, No., pp. 6 6, 00. [7] Tita V., Caliri Junior M. F., Numerical Simulation of Anisotropic Polymeric Foams, Latin American Journal of Solids and Structures, 9, pp. 9 79, 0. [] Abravi M.S., Malekjafarian M., Golestanipour M., Amini Mashhadi H., Sadrnezhaad S.K. Investigation of SiC and CaCO on Compressive Properties of Aluminum Foam. 7th International Conference on Porous Metals and Metallic Foams, pp. 994, 0. [9] Yu C.J., Eifert H.H., Hall I.W., Franz R., Leighton K. Feasibility Study on Deformation Energy Absorption of Metal Foams at High Strain Rates, Fraunhofer Resource Center, Newark, Delaware, USA, 99.