Supporting information for J. Am. Chem. Soc., 1973, 95(10), , DOI: /ja00791a018

Similar documents
J. Am. Chem. Soc., 1996, 118(17), , DOI: /ja953373m

J. Org. Chem., 1996, 61(21), , DOI: /jo

J. Am. Chem. Soc., 1996, 118(9), , DOI: /ja953497z

J. Phys. Chem., 1996, 100(35), , DOI: /jp952328y

J. Org. Chem., 1997, 62(12), , DOI: /jo961896m

J. Am. Chem. Soc., 1997, 119(5), , DOI: /ja962780a

Supporting Information for Inorg. Chem., 1994, 33(7), , DOI: /ic00085a003 OHTO

J. Org. Chem., 1998, 63(13), , DOI: /jo980296f

Supporting information for Environ. Sci. Technol., 1991, 25(4), , DOI: /es00016a021 HIDEMANN

J. Am. Chem. Soc., 1998, 120(7), , DOI: /ja972816e

J. Am. Chem. Soc., 1997, 119(41), , DOI: /ja964223u

Proton NMR. Four Questions

J. Med. Chem., 1997, 40(14), , DOI: /jm970199z

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

J. Am. Chem. Soc., 1997, 119(18), , DOI: /ja970079g

Supporting Information for J. Am. Chem. Soc., 1991, 113(19), , DOI: /ja00019a011 LAIBINIS

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

CM Chemical Spectroscopy and Applications. Final Examination Solution Manual AY2013/2014

00 > oo m 00 CD. Supporting information for Environ. Sci. Technol., 1994, 28(1), 88 98, DOI: /es00050a013. Terms & Conditions

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

NUCLEAR MAGNETIC RESONANCE AND INTRODUCTION TO MASS SPECTROMETRY

Ethyl crotonate. Example of benchtop NMR on small organic molecules

Your Name: Question 1. 2D-NMR: C 6 H 10 O 2. (20 points)

Supporting Information for

Spectroscopy in Organic Chemistry. Types of Spectroscopy in Organic

Technical Note. Introduction

NMR SPECTROSCOPY DR. M. KANJIA. Copyright reserved NMRS. Application to reproduce to Dr M Kanjia

CHEMISTRY 213 XMAS 04 1 ANSWER ON THE GREEN COMPUTER ANSWER SHEET PROVIDED USING A PENCIL CHOICES MAY BE USED MORE THAN ONCE

J. Med. Chem., 1996, 39(14), , DOI: /jm960098l

Chemistry 605 (Reich)

Anion binding vs. sulfonamide deprotonation in functionalised ureas

Experiment 2 - NMR Spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY. Module 19: NMR Spectroscopy of N, P and F-atoms

Working with Hazardous Chemicals

Chem 213 Final 2012 Detailed Solution Key for Structures A H

Hour Examination # 4

Ibuprofen. Example of benchtop NMR on small organic molecules

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #5: NMR Spectroscopy

Supporting Information

The Final Learning Experience

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

ALCOHOLS AND PHENOLS; ETHERS AND EPOXIDES; THIOLS AND SULFIDES

11. Proton NMR (text , 12.11, 12.12)

Supporting Information

Chapter 14. Nuclear Magnetic Resonance Spectroscopy

William H. Brown & Christopher S. Foote

Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments

4. NMR spectra. Interpreting NMR spectra. Low-resolution NMR spectra. There are two kinds: Low-resolution NMR spectra. High-resolution NMR spectra

Chemistry 605 (Reich) THIRD HOUR EXAM. Mon. May 14, Question/Points R-11P /15 R-11Q /15 R-11R /20 R-11S /10 R-11T /20 R-11U /20.

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Supporting Information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Reassignment of the 13 C NMR spectrum of minomycin

HWeb27 ( ; )

NMR Predictor. Introduction

IR, MS, UV, NMR SPECTROSCOPY

Supplementary Materials for

(b) How many hydrogen atoms are in the molecular formula of compound A? [Consider the 1 H NMR]

Supporting Information

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

S3 File. Selected NMR spectra, NMR chemical shifts and comparison of 1 H NMR integrals

Evidence for an HX-Reductive-Elimination Pathway

An Acyclic Trialkylamine Virtually Planar at Nitrogen. Some Chemical Consequences of Nitrogen Planarity.

Your Name: Answer Key

Investigation of Cation Binding and Sensing by new Crown Ether core substituted Naphthalene Diimide systems

Supporting Information

Agilent s new solution for obtaining routinely quantitative results from NMR measurements. Magnetic Resonance Systems

Supporting Information

CHEM 242 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY CHAP 14B ASSIGN

Chapter 15 Lecture Outline

Organic Chemistry II (CHE ) Examination I March 1, Name (Print legibly): _KEY _. Student ID#: _

Organic Chemistry II* (CHE ) Examination I March 1, Name (Print legibly): KEY. Student ID#:

Supplementary Material

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

Highly efficient P-N nickel(ii) complexes for the dimerisation of ethylene

Electronic Supplementary Information

SUPPORTING INFORMATION

NMR NEWS June To find tutorials, links and more, visit our website

Supporting Information: Palladium Catalyzed Carboxylation of Allylstannanes and Allylboranes Using CO 2

SUPPLEMENTARY INFORMATION

Nuclear Magnetic Resonance

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #4 - December 7, 1998*

Supporting Information

A long-lived iridium(iii) chemosensor for the real-time

Supporting Information

Name: 1. Ignoring C-H absorptions, what characteristic IR absorption(s) would be expected for the functional group shown below?

SDBS Integrated Spectral Database for Organic Compounds

Chemistry 618B. Spring Midterm Exam I. Prof. Willson T-Th 12:30 2:00. Name (Print as it appears on the Class Roster) Social Security Number

ALDEHYDES AND KETONES

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

Supplementary Materials for

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Regioselective Silylation of Pyranosides Using a Boronic Acid / Lewis Base Co-Catalyst System

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Objective 4. Determine (characterize) the structure of a compound using IR, NMR, MS.

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

*Assignments could be reversed. *

Key words: Infrared; Nuclear Magnetic Resonance; Arylsulphonamides. CH 3,5-Cl; 3-CH 3,4-Cl; 2,4-Cl 2 or 3,4-Cl 2 ). They are

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Transcription:

Supporting information for J. Am. Chem. Soc., 973, 95(0), 374 379, DOI: 0.0/ja0079a08 Terms & Conditions Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html. Copyright 973 American Chemical Society

Nmr Spectra Measured in Acetoned6 379M b Chemical Compound Shift,a PPM (J. Hz) Area Chemical Shift,b Assignment Ambient (Area) Low T(J,Hz) B Decoup (J, Hz) Ic,7 (3) 6.55() Cation 5.60() Cage CH + 6.3(7) + 5.6 (6) + 9.3 (36) 3d II C 6.4 (60) 6.58 () 6.55 Cation (35) 7.9() 6.79 (I) 6.74(7)' HCH 7.7(7)' HCH + +6.0 CH 7.48() 7.40 Cage +. (30)(30) 3.6(3) + 3.3(45). 0.8(45) 8.(50) (30)

*7» MU 0.6 L7 +.7 6.5(0 7.7 (9) Cage CH Methyl 4. 7. 9.4.4 3. 4,8 (58) 8.8(36).9(73) 9.3(6) 3.(45) 0.6(37) 7.5(45) 5.6(45) 0.8(3Q) S.ö (66).6(30) 0.9 (39) 6.45(0 6.57 () 7.47(0 8.70 (3).6(0) 6.45(0 8.3 (3) 8.67 (3) 6.44 (6) g. 6.57 7.4 8.7 (6) f 6.59 j 6.50(6) g 8.34 8.68 (6) f S.I 6.45(6) g.h S.h 7.47 8.73 (6). 5 6.45 (6) f 8.3 8.7 (6) f HCH Cation Cage CH Methyl Cation CH3CH Methyl Methyl

I 3TS IM 7. (64) 9.3(3) >0. (43) > 9. (53) >.7(30) > 8.3(45).95(5) 5.63(0 6.65() 7.4 (0.9 d.k 5.60 6.6 7.0 Phenyl C6H5CH Cation Cage CH 9.4 8.8 (MS). (MS) > 5.8(45) >.4 (60) > 8. (45) *.90 (0) 5.9(0 6.7 () Phenyl C6H5CH Cation.3 (46) 9.() > 0.(30) > 8.9 (45) >.6(30) >0. (MS) 3.3 (4) 5.66(0 6.6 () 7.(0 EpC6H«FC6H4CH Cation Cage CH

97 IM IX c 7.4 (37) 3. (4) d 9.(4) 5.68() 0.(45) 6.68() 49.3 (53) 6.99(0 3. (45) 48.7 (37) mfc6h4 FC6H4CH Cation Cage CH a b c d Relative to external BF3 O(CH5) Relative to internal tetramethyls???lane Tetramethylammonium salt Multiplet e Meaaured at 50o f Doublet g h Quartet fetraphenylarsonium salt i Measured at 70o J Meaaured at 60o k Meaaured at 80

Infrared Spectra (cm )a 379 M6 Ib II b 950V, 5, H80vs, 0m, 370, I300w, 80». U90, 70m, IMOm, 090m, 060s. 040, MXBm, 985ß, 950, 984w, 970w, 800», 76», 734w, 7w, 70> 900vs, S0v», 80. 60ß. 40m. 380m, D90w, 60w. 0m, 090m, 055m, KXKm, 990m, 95vs, 905», 875», 848», 75bn, 730m 305». 880vs, 560ve, 400, 90m, 60», 470, 460ve. MOOm. 370m. 45m. 40m, 80s, 70, 30m, UM. 080m,»45m. 05m, lobm, 988, 980, 853, 740m, 78, 78». 7», 695» IV b 90v, 50V8, 480, 460s, 430m, 380, 340m, 90», 60», 40». 090m, 060m. 00s, MOO. 95, 90», 880». 87», 838m. 830m, 78m, 69» V b 304Cva, 560vs, 75», HSO. Mm. 370m, 350m. 35», 300». 70», X)w, 60», 045m, M06s, 940, 93», 895m, 864», S44m, 83», 79», 764», 747», 78m, 688», 668» VI b 300m, 880, 50, 80», 475vs, 460s, 0». 370m, 80», 60w, 80», 60», 095m, M65m, 060m, 045m.»Bm, 993m, 978m, 968m, 950s, 96», 905», 878», 649w, 844m, 830w, 808w, 878m, 850m, 844m, 830m, 808», 778m, 750m, 77m, 70«. 688»

37 IM VII b 900 ß. 50<re, B80m, 80 ß. Mofes, 400m, M70s, 3»w. 80m, 70m, I40w,!80m, 60m. 060b, KM5e. 00m, 97w, 94s, 9w, 894m, 86m, 87m, 780s, 765s. 730m, 706s Vmb 90vs. 50ve. B90m, BOOs, M80e, 60s, HK>w. 370m, B90w, 0m, 60m, 090m, 045m. 0Ow, 995w, 970w, 950m, 905w, 875w, 845m, 7S0m, 73m, 74m, 689w DC b 890 ß, 500ve, 600b, 7,., M60vs, M40vs, 400», 370s, 90w, Í80w, 48, 30s, 60m, U40s,»80s, KMOs, BOOs, 990», 96s, 945vs, 896, 883m, 8 *, 836, 600w, 784, 764w, 746, 733, 680s Nu???mulls b Tetramethy Lammonium salt

m7 The 80.5 MHz IIB amr spectra of (3)9. B0CH3 I. (A). and (3)7, 0B0CH3'. II,(B). measured In acetone d6. Chemical sh???s (ppm) relative to BF3 O(CH5)and coupling constants (Hz) are Indicated. Relative areas appear beneath the peaks. peaks.

ß.4 TP. i kw J

379 IM Tbc 80.5 MHz B nmr spectrum of (CH3)3N BH. are indicated. B0Cu. Chemical shifts (ppm) relative to BF3 O(CH3) Relative areas appear beneath the peeks.

9.4 I *.4 j It

379 The 80.5 MHz B nmr spectra of the B0CH ions in tetrahydrofuran prepared from ' B0CH A:,7B0CH B:,B0CH' C: 900 C after standing at room temperature for four months, D. The sharp doublet in C and D is the resonance of unreacted,b0ch. appear beneath the peaks. Chemical shifts relative to BF3.O(CH5)

(FROM,) 379 M

The 00Hz H nmr spectra of (C6Hs)4As+[7,0 (CH3)(3)7, 0B0CHJ measured at room temperature, A; measured at room temperature with heteronuclear decoupling, B; (3)7, 0B0CHJmeasured and (CH3)4N+[7, 0(CH3) at 60, C. The peaksat r 7,9 are due to acetoned6 solvent. Chemical shifts relativeto internal tetramethylsilaneappear beneath the peaks. peaks.

379Ml 4