RemarksonanarticleofJ.P.King

Similar documents
A Bernstein-Stancu type operator which preserves e 2

Local Approximation Properties for certain King type Operators

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS

New estimates in Voronovskaja s theorem. Gancho Tachev. Numerical Algorithms ISSN Numer Algor DOI / s

q-durrmeyer operators based on Pólya distribution

Direct Estimates for Lupaş-Durrmeyer Operators

Miskolc Mathematical Notes HU e-issn Uniform approximation by means of some piecewise linear functions. Zoltán Finta

Statistical Approximation Properties of a Generalization of Positive Linear Operators

International Journal of Mathematical Archive-3(4), 2012, Page: Available online through ISSN

Korovkin type approximation theorems for weighted αβ-statistical convergence

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

Asymptotic distribution of products of sums of independent random variables

(p, q)-type BETA FUNCTIONS OF SECOND KIND

APPROXIMATION PROPERTIES OF STANCU TYPE MEYER- KÖNIG AND ZELLER OPERATORS

Approximation by Superpositions of a Sigmoidal Function

APPROXIMATE FUNCTIONAL INEQUALITIES BY ADDITIVE MAPPINGS

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

Characterizations Of (p, α)-convex Sequences

Self-normalized deviation inequalities with application to t-statistic

S. K. VAISH AND R. CHANKANYAL. = ρ(f), b λ(f) ρ(f) (1.1)

1+x 1 + α+x. x = 2(α x2 ) 1+x

Weighted Approximation by Videnskii and Lupas Operators

About the use of a result of Professor Alexandru Lupaş to obtain some properties in the theory of the number e 1

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

NOTE ON THE ITERATES OF q AND (p, q) BERNSTEIN OPERATORS

Some Tauberian theorems for weighted means of bounded double sequences

DANIELL AND RIEMANN INTEGRABILITY

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Mi-Hwa Ko and Tae-Sung Kim

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

Different kinds of Mathematical Induction

Linear recurrence sequences and periodicity of multidimensional continued fractions

II. EXPANSION MAPPINGS WITH FIXED POINTS

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

On the Variations of Some Well Known Fixed Point Theorem in Metric Spaces

ON SOME PROPERTIES OF THE PICARD OPERATORS. Lucyna Rempulska and Karolina Tomczak

INVERSE THEOREMS OF APPROXIMATION THEORY IN L p,α (R + )

BETWEEN QUASICONVEX AND CONVEX SET-VALUED MAPPINGS. 1. Introduction. Throughout the paper we denote by X a linear space and by Y a topological linear

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

Generalization of Samuelson s inequality and location of eigenvalues

Central limit theorem and almost sure central limit theorem for the product of some partial sums

Oscillation and Property B for Third Order Difference Equations with Advanced Arguments

Math 113 Exam 3 Practice

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

Find quadratic function which pass through the following points (0,1),(1,1),(2, 3)... 11

A note on the p-adic gamma function and q-changhee polynomials

On n-collinear elements and Riesz theorem

Introduction to Probability. Ariel Yadin

Vienna, Austria α n (1 x 2 ) n (x)

UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR. 1. Introduction

ON MEAN ERGODIC CONVERGENCE IN THE CALKIN ALGEBRAS

SUBSERIES CONVERGENCE AND SEQUENCE-EVALUATION CONVERGENCE. Min-Hyung Cho, Hong Taek Hwang and Won Sok Yoo. n t j x j ) = f(x 0 ) f(x j ) < +.

Math 525: Lecture 5. January 18, 2018

Chapter 7 Isoperimetric problem

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The 4-Nicol Numbers Having Five Different Prime Divisors

On Bilateral Generating Relation for a Sequence of Functions

MATH301 Real Analysis (2008 Fall) Tutorial Note #7. k=1 f k (x) converges pointwise to S(x) on E if and

Riesz-Fischer Sequences and Lower Frame Bounds

On a class of convergent sequences defined by integrals 1

An Interpolation Process on Laguerre Polynomial

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

Math 132, Fall 2009 Exam 2: Solutions

LECTURE 8: ASYMPTOTICS I

Stability of a Monomial Functional Equation on a Restricted Domain

Section 5.5. Infinite Series: The Ratio Test

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

PROBLEM SET 5 SOLUTIONS 126 = , 37 = , 15 = , 7 = 7 1.

Strong Convergence Theorems According. to a New Iterative Scheme with Errors for. Mapping Nonself I-Asymptotically. Quasi-Nonexpansive Types

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

Research Article On the Strong Laws for Weighted Sums of ρ -Mixing Random Variables

Approximation properties of (p, q)-bernstein type operators

A NOTE ON INVARIANT SETS OF ITERATED FUNCTION SYSTEMS

A Note On The Exponential Of A Matrix Whose Elements Are All 1

Generalized Weighted Statistical Convergence of Double Sequences and Applications

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

7.1 Convergence of sequences of random variables

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

Math 113 Exam 4 Practice

PAijpam.eu ON DERIVATION OF RATIONAL SOLUTIONS OF BABBAGE S FUNCTIONAL EQUATION

Math 2784 (or 2794W) University of Connecticut

On the convergence rates of Gladyshev s Hurst index estimator

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS

SOME PROPERTIES OF THE SEQUENCE OF PRIME NUMBERS

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

Sequences and Series of Functions

A GRÜSS-TYPE INEQUALITY AND ITS APPLICATIONS

arxiv: v1 [math.ca] 25 Aug 2015

Appendix to Quicksort Asymptotics

7.1 Convergence of sequences of random variables

A Simplified Binet Formula for k-generalized Fibonacci Numbers

CALCULATION OF FIBONACCI VECTORS

The log-behavior of n p(n) and n p(n)/n

Some identities involving Fibonacci, Lucas polynomials and their applications

A Study on Some Integer Sequences

A NOTE ON BOUNDARY BLOW-UP PROBLEM OF u = u p

6.3 Testing Series With Positive Terms

Transcription:

Commet.Math.Uiv.Caroli. 46,4(2005)645 652 645 RemarksoaarticleofJ.P.Kig Heier Goska, Paula Piţul Abstract. The preset ote discusses a iterestig positive liear operator which was recetly itroduced by J.P. Kig. New estimates i terms of the first ad secod modulus of cotiuity are give, ad iterates of the operators are cosidered as well. For geeral Kig operators the secod momets are miimized. Keywords: positive liear operators, degree of approximatio, cotractio priciple, secod order modulus, secod momets Classificatio: 41A25, 41A36, 47H10 1. Itroductio I[4] J.P. Kig defied the followig iterestig(ad somewhat exotic) sequeceofliearadpositiveoperators V : C[0,1] C[0,1]whichgeeralizethe classicalbersteioperators B : (1) V (f; x)= k=0 ( ) (r (x)) k (1 r (x)) k f k ( ) k forall f C[0,1],0 x 1,where r :[0,1] [0,1]arecotiuousfuctios. We list some of their properties. Property1.1. If {V } N aretheoperatorsdefiedi(1)wehave (2) V (e 0 ; x)=e 0 (x) V (e 1 ; x)=r (x) ad V (e 2 ; x)= r (x) + 1 (r (x)) 2 where e i (x)=x i, i=0,1,2,aretheclassicaltestfuctiosforpositiveliear operator approximatio. Theequatio V (e 1 ; x)=r (x)showsthattheclassicalbersteioperator B, whichisobtaiedfor r (x)=x,istheuiquemappigoftheform(1)which reproduces liear fuctios.

646 H. Goska, P. Piţul Theorem1.2. Oehaslim V f(x)=f(x)foreach f C[0,1], x [0,1], ifadolyiflim r (x)=x. Choosigthe right r fuctio,j.p.kigprovedthefollowig: Theorem1.3. Let {V } N bethesequeceofoperatorsdefiedi(1)with r (3) r (x):= 1 (x)=x2, =1, r (x)= 2( 1) 1 + 1 x2 + 1, =2,3,... 4( 1) 2 The: (i) V (e 2 ; x)=e 2 (x), N; x [0,1], (ii) V (e 1; x) e 1 (x), (iii) lim V (f; x)=f(x)foreach f C[0,1]. Remark1.4. Sice V e 1= r,itisclearthat V isotapolyomialoperator. J.P.Kigalsogavequatitativeestimatesfor V itermsoftheclassicalfirst ordermodulus ω 1 (f; )usigaresultofo.shishaadb.mod[8]. Theorem1.5. For {V } Ndefiedi(1)wehave (4) V(f; x) f(x) 2ω 1 (f; ) 2x(x V(e 1 ; x)), f C[0,1]; x [0,1]. Remark1.6. Fromthefactthat V (e 1; x)=r (x)ad x r (x)thesquare root i(4) ideed represets a real umber. FromTheorem1.5oecaeasilyobtaithat V iterpolates f attheedpoits: Propositio1.7. With {V } N from(1)wehave V (f;0)=f(0)ad V (f;1)=f(1),i.e., V iterpolatesattheedpoits0ad1. Proof:Weput α (x):= 2x(x V(e 1 ; x)).for x=0wehave α (0)=0,so ω 1 (f; α (0))=0. Thatmeas V (f;0)=f(0). For x=1wehave V (e 1;1)= r (1),adifweiserti(3)thevalue1,weobtai r (1)=1. Thatleadsus agaito ω 1 (f; α (1))=0ad V(f;1)=f(1). Remark1.8. Foraliearadpositiveoperator L:C[0,1] C[0,1]with Le i = e i, i=0,1,itiskowthat Literpolates fi0ad1.thisfollowseasily,ifwe isert x=0ad x=1i L(f; x) f(x) 2 ω 1 (f; L( t x ; x)). The latter iequality ca be foud i Mamedov s article[5]. We observe ow, with the help of the operators itroduced by J.P. Kig, that the above property isolyecessaryadotsufficiet. Ideed,the V, N,iterpolate f i0 ad1,theyareliearadpositive,but V e 1 e 1.

Remarks o a article of J.P. Kig 647 2. Quatitativeestimateswith ω 2 From Păltăea s Theorem i[6, p. 28], the followig is kow: Theorem2.1. Let L:C[0,1] C[0,1]beapositiveadliearoperator.The we have L(f; x) f(x) L(e 0 ; x) e 0 (x) f(x) + L(e 1 x; x) 1 h ω 1(f; h) ( + L(e 0 ; x)+ 1 ) 2 1 h 2 L((e 1 x) 2 ; x) ω 2 (f; h); where h >0, f C[0,1], x [0,1],ad ω 2 istheclassicalsecodordermodulus defied by ω 2 (f; h):=sup { f(x+t) 2f(x)+f(x t) x, x ± t [0,1]}. t h For V thismeas: V(f; x) f(x) (x r(x)) 1 h ω 1(f; h) + (1+ 1h ) 2x(x r (x)) ω 2 (f; h), adfor h:= x r (x)wearriveat (5) V (f; x) f(x) x r (x) ω 1 (f; x r (x))+(1+x)ω 2 (f; x r (x)). If f C 1 [0,1]theduetothefactthat ω 1 (f; h)=o(h)adalso ω 2 (f; h)=o(h) wehavetheapproximatioordero( x r (x)),whe.for f C 2 [0,1] havigsimilarpropertiesforthemoduli ω 1 (f; h)=o(h)ad ω 2 (f; h)=o(h 2 )we obtaio(x r (x)),. 3. Iteratesof V ThissectioismotivatedbyrecetpapersofO.AgratiiadI.A.Rus([1],[7]) i which the cotractio priciple was used to show the followig result of Kelisky ad Rivli[3]. Theorem3.1. If Nisfixed,theforall f C[0,1], x [0,1] lim m Bm (f; x)=f(0)+[f(1) f(0)] x=b 1(f; x). For over-iterated Kigoperators V wehaveasimilarresult,butwitha differet limitig operator.

648 H. Goska, P. Piţul Theorem3.2. If Nisfixed,theforall f C[0,1], x [0,1] lim m (V ) m (f; x)=f(0)+[f(1) f(0)] x 2 = V1 (f; x). Proof:FollowigRuswecosidertheBaachspace(C[0,1], )where is the Chebyshev orm. Let Weotethat X α,β = {f C[0,1]:f(0)=α, f(1)=β}, α, β R. a) X α,β isaclosedsubsetof C[0,1]; b) X α,β isaivariatsubsetof V forall α, β R, N (see Propositio 1.7); c) C[0,1]= α,β R X α,βisapartitioof C[0,1]. Nowweshowthat isacotractioforall α, β R. Let f, g X α,β.from(1)wehave V X α,β : X α,β X α,β V (f; x) V (g; x) = V (f g; x) 1 ( ) ( ) = (r k (x)) k (1 r(x)) k k (f g) k=1 1 (r (x)) (1 r (x)) f g ( 1 1 ) 2 1 f g, recalligthat r:[0,1] [0,1]. ( ) Hece V f V g 1 1 2 1 f g,adthus V Xα,β iscotractive. Otheotherhad α+(β α)e 2 X α,β isafixedpoitfor V. If f C[0,1]isarbitrarilygive,the f X f(0),f(1) adfromthecotractio priciple[2] we kow that lim (V m )m f= f(0)+(f(1) f(0))e 2, which cocludes the proof.

Remarks o a article of J.P. Kig 649 4. Polyomial operators of Kig s type Cawefidpolyomial operatorsoftheform(1)thatreproduce e 2? The aswer is egative! Ideed,bythelasttwoequatiosof(2)adthecoditio V (e 2 ; x)=x 2, r mustbeapolyomialoffirstdegree.weput r (x)=ax+badweget: x 2 = 1 ( ) ( a2 x 2 a 1)ab b + +2( x+ + 1 ) b2. This leads to the equatios: 1= 1 a2, 0= a +2( 1)ab, 0= b + 1 b2. So a=± 1ad b=0or b= 1 1.Butforthesevaluesthesecodequatio isotsatisfied. Oeopequestioremais:Cawefidaothertypeofliear adpositivepolyomialoperators Lforwhich Le 2 = e 2? 5. Geeral case Ithissectiowewatto optimize thesecodmomets V ((e 1 x) 2 ; x), x [0,1],ofthegeeral V adstudyithiscasewhichpropertiesremai. Thesecodmometsareithegeeralcase (6) α 2 (x)=v ((e 1 x) 2 ; x)= r (x) + 1 (r (x)) 2 2xr (x)+x 2 = 1 r (x)(1 r (x))+(r (x) x) 2, where0 r (x) 1arecotiuousfuctios.Wewattofid r sothat α 2 is miimal. Wedefie g x :[0,1] [0,1], x [0,1]afixedparameter,by g x (y):= 1 y(1 y)+(y x) 2. Wecawrite g x (y)= ( 1 1 ) y 2 + ( 1 2x ) y+ x 2. Because 1 1 >0, =2,3,...,thefuctio g xadmitsamiimumpoit: 1 y mi = 2x 2 2 = 2x 1 2 2. Weeed0 y mi 1,whichmeas 2 1 x 1 2 1, =2,3,... Wedefie r mi :[0,1] [0,1]by

650 H. Goska, P. Piţul (7) r mi (x):= 0, x [ 0, 1 2), 2x 1 2 2, x [ 1 2,1 1 2], 1, x ( 1 2 1,1]. Theorem5.1. Thefuctio r mi defiedi(7)yieldsthemiimumvaluefor α 2. Proof: For x [ 1 2,1 2] 1 thiswasprovebefore. Itremaistoshowthe aboveaffirmatiofor x [ 0, 2 1 ) ( ad x 1 1 2,1 ]. Firstcase: x [ 0, 2 1 ) r mi (x)=0adwehavetoprovethat g x (y) g x (0) foreach y [0,1]or 1y(1 y)+(y x)2 x 2 foreach x [0,1].Butthelatter isequivaletto 2 1 + y ( 1 2 2) 1 x,whichistrueduetoourchoiceof x. Secodcase: x ( 1 2 1,1] r mi (x)=1adwehavetoprovethat g x (y) g x (1)foreach y [0,1]or 1y(1 y)+(y x)2 (1 x) 2.Thismeas ( 1 2) 1 (1 y) ( 1 2 2) 1 x,whichisagaitrueduetoourchoiceof x. Theoperators V defiedvia r mi wedeoteby V mi. Property 5.2. Forthe(miimal)secodmomets α 2 of V mi represetatio α 2 (x)= x 2, x [ 0, 2) 1, ( ) [ 1 1 x(1 x) 1 4, x 1 2,1 2] 1, (1 x) 2, x ( 1 1 2,1]. Proof: This follows immediately from the geeral form 1 r (x)(1 r (x))+(r (x) x) 2 wehavethe adtheaboverepresetatioof r mi (x). Usig Păltăea s theorem agai we arrive at V mi (f; x) f(x) x r mi (x) 1 h ω 1(f; h) ( + 1+ 1 ) 2 1 h 2 α2 (x) ω 2 (f; h), h >0. For h= α (x) weobtai V mi (f; x) f(x) x rmi (x) ω 1 (f; α (x) )+ 3 α (x) 2 ω 2(f; α (x) ). Notethat x r mi (x) = V mi (e 1 x; x) V mi ( e 1 x ; x) V mi ((e 1 x) 2 ; x)= α (x),adthus x rmi (x) 1, x [0,1]. α (x)

Remarks o a article of J.P. Kig 651 Remark5.3. (i)fromthedefiitioof r mi wehavelim r mi(x)=xad fromtheorem1.2 lim V (f; x)=f(x). ThelatterfactisalsoacosequeceofoursecodapplicatioofTheorem2.1for V mi. (ii) V mi doesotreproduce e 2.Startigfrom(2)weseethat V mi (e 2 ; x)= 0 x 2, x ( 0, 2) 1. (iii) Theiterpolatiopropertiesattheedpoitsremai.Ideed, V mi (f;0) = ( ) 0 (1 r (0)) f(0)=f(0),ad V mi (f;1)= ( ) f( )=f(1). (iv) For f C 1 [0,1]wehave,withacostat cidepedetof x, V mi (f; x) f(x) c ( x r mi (x) + α (x) )= 2x, x [ 0, 1 ( 2), hece O 1 ), = c 1 2 x 1 + 1 ( ) [ 1 x(1 x) 1 4, x 1 2,1 2 1 ] (, hece O 1 ), 2(1 x), x ( 1 2 1,1], hece O ( ) 1. Sothedegreeofapproximatioisbetterclosetotheedpoits,afact sharedbythebersteioperatorswhere r (x)=x. (v) If f C 2 [0,1],the V mi (f; x) f(x) c ( x r mi (x) +α2 (x))= x+x 2, x [ 0, 2) 1, = c 1 2 x 1 + 1 1 ( ) [ x(1 x) 1 4, x 1 2,1 2] 1, (1 x)+(1 x) 2, x ( 1 2 1,1]. Sofor C 2 -fuctioswegetaglobaldegreeofapproximatiooforder O ( 1 ) which is also the case for the classical Berstei operators. Refereces [1] Agratii O., Rus I.A., Iterates of a class of discrete liear operators, Commet. Math. Uiv. Caroliae 44(2003), 555 563. [2] Beresi I.S., Zhidkov N.P., Numerische Methode II, VEB Deutscher Verlag der Wisseschafte, Berli, 1971. [3] Kelisky R.P., Rivli T.J., Iterates of Berstei polyomials, Pacific J. Math. 21(1967), 511 520. [4] KigP.J.,Positiveliear operators which preserve x 2,ActaMath.Hugar.99(2003), 203 208. [5] Mamedov R.G., O the order of approximatio of fuctios by sequeces of liear positive operators(russia), Dokl. Akad. Nauk SSSR 128(1959), 674 676.

652 H. Goska, P. Piţul [6] Păltăea R., Approximatio by liear positive operators: Estimates with secod order moduli, Ed. Uiv. Trasilvaia, Braşov, 2003. [7] Rus I.A., Iterates of Berstei operators, via cotractio priciple, J. Math. Aal. Appl. 292(2004), 259 261. [8] Shisha O., Mod B., The degree of covergece of liear positive operators, Proc. Nat. Acad. Sci. U.S.A. 60(1968), 1196 1200. Departmet of Mathematics, Uiversity of Duisburg-Esse, D-47048 Duisburg, Germay E-mail: goska@math.ui-duisburg.de Colegiul Naţioal Samuel vo Brukethal, RO-550182 Sibiu, Romaia E-mail: pitul paula@yahoo.com (Received Jauary 28, 2005, revised July 4, 2005)