Positron Annihilation in the Milky Way

Similar documents
Positron Annihilation in the Milky Way and beyond

Positron Annihilation throughout the Galaxy

Spectral analysis of the 511 kev Line

Prospects in space-based Gamma-Ray Astronomy

The INTEGRAL view of 511 kev annihilation line in our Galaxy

Satellite Experiments for Gamma-Ray Astrophysics

arxiv: v1 [astro-ph.he] 1 Dec 2015

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center

PoS(Extremesky 2011)064

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics

Laura Barragán. Universidad Complutense de Madrid

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Gamma- Rays from SN2014J

Fermi: Highlights of GeV Gamma-ray Astronomy

The High-Energy Interstellar Medium

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

What do we know after 6 years of Integral?

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

A focusing telescope for gamma-ray astronomy

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

The Origin of the 511 kev Positron Annihilation Emission Morphology

NuSTAR s Extreme Universe. Prof. Lynn Cominsky NASA Education and Public Outreach Sonoma State University

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Black Holes and Active Galactic Nuclei

Spectra of Cosmic Rays

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Gamma-Ray Astrophysics

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Astrophysical Quantities

Gas 1: Molecular clouds

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

An Introduction to Radio Astronomy

stringent constraint on galactic positron production

Physics HW Set 3 Spring 2015

A. Takada (Kyoto Univ.)

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

Chapter 0 Introduction X-RAY BINARIES

Gamma-Ray Astronomy. Astro 129: Chapter 1a

An Introduction to Radio Astronomy

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Lecture 11: Ages and Metalicities from Observations A Quick Review

Explosive Events in the Universe and H-Burning

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Gamma-ray Astrophysics

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

The electrons then interact with the surrounding medium, heat it up, and power the light curve. 56 Ni 56 Co + e (1.72 MeV) half life 6.

The MEGA Advanced Compton Telescope Project

Star systems like our Milky Way. Galaxies

Special Topics in Nuclear and Particle Physics

The Deaths of Stars. The Southern Crab Nebula (He2-104), a planetary nebula (left), and the Crab Nebula (M1; right), a supernova remnant.

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

arxiv: v1 [astro-ph.he] 25 Jan 2010

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

HEAO 3 Observations of the Galactic Center 511 kev Line

HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER

Stars, Galaxies & the Universe Lecture Outline

Mass loss from stars

The Compton Spectrometer and Imager A balloon- borne gamma- ray spectrometer, polarimeter, and imager

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

MAX, a Laue Diffraction Lens for nuclear astrophysics

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

AGN in hierarchical galaxy formation models

Thermal and Non-Thermal X-Rays from the Galactic Center

Sources of GeV Photons and the Fermi Results

Stellar Binary Systems and CTA. Guillaume Dubus Laboratoire d Astrophysique de Grenoble

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Galactic Novae Simulations for the Cherenkov Telescope Array

Simulations of Advanced Compton Telescopes in a Space Radiation Environment

Prospects for Observations of Very Extended and Diffuse Sources with VERITAS. Josh Cardenzana

Active Galactic Nuclei

Population of BHs in the Galaxy and in the MCs

AGN Feedback In an Isolated Elliptical Galaxy

arxiv:astro-ph/ v1 12 Sep 2005

Roland Diehl. MPE Garching

Early works. Dynamics of accretion, the role of turbulence, the role of magnetic fields in the ISM, spectrum. Victorij Shvartsman

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

High Energy Astrophysics

HI clouds near the Galactic Center:

arxiv: v1 [astro-ph.he] 21 Oct 2009

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Particle acceleration in Supernova Remnants

Interstellar Medium and Star Birth

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

High-Energy Astrophysics Lecture 1: introduction and overview; synchrotron radiation. Timetable. Reading. Overview. What is high-energy astrophysics?

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Energy Sources of the Far IR Emission of M33


arxiv:astro-ph/ v1 19 Feb 1999

Transcription:

Positron Annihilation in the Milky Way Thomas Siegert, MPE Garching R. Diehl, G. Khachatryan, M.G.H. Krause, F. Guglielmetti, J. Greiner, A.W. Strong, X. Zhang 18th Workshop on Nuclear Astrophysics, March 15 2016, Ringberg Castle

2/24 Positron Annihilation: e + + e - = at least 2γs Expected γ-ray spectra Annihilation in Flight (AiF): Direct annihilation with E kin (e ± ) 0: E kin (e + ) = E kin (e - ) 0: narrow 511 kev line (E γ = m e c 2 ) E kin (e + ) /= E kin (e - ) > 0: Continuous spectrum (m e c 2 /2 < E γ < γm e c 2 + m e c 2 /2)

3/24 Positron Annihilation: e + + e - = at least 2γs Expected ɣ-ray spectra Spin(up) + Spin(up) = Spin 1 Spin(up) + Spin(down) = Spin 0 Formation of Positronium Atom (Ps): Triplet state (S=1): parallel spins Ortho-Positronium : o-ps Lifetime: τ=1.4 10-7 s 3γ: continuous spectrum (0 < E γ < 511 kev) Singlet state (S=0) antiparallel spins Para-Positronium : p-ps Lifetime: τ=1.3 10-10 s 2γ: monoenergetic γ-ray line (E γ = 511 kev) Para-Positronium

4/24 Measuring Gamma-rays with SPI/INTEGRAL Gamma-rays not focusable: Coded-mask telescope Van Allen Radiation Belts Earth Mission: 2002 still active! Orbit: 3 days High inclination High eccentricity Payload: 4 instruments: - SPI - IBIS - JEM-X - OMC

5/24 Measuring Gamma-rays with SPI/INTEGRAL Gamma-rays not focusable: Coded-mask telescope SPI W Mask BGO Anticoincidence shield SPI Energy range: 20 8000 kev Energy resolution: 2.2 kev @ 662 kev Spatial resolution: 2.6 Field of view: 16 x 16 19 High-purity Ge dets HPGe detectors

6/24 Measuring Gamma-rays with SPI/INTEGRAL Gamma-rays not focusable: Coded-mask telescope SPI Coded-mask Principle Camera Obscura (Pinhole camera) Principle Reconstruct (fit/deconvolve/infer) celestial emission based on varying shadow patterns during the observations

Siegert, Khachatryan, Diehl, et al. 2015 7/24 Positron Annihilation The 511 kev Sky Slice through b=0 All necessary components phenomenologically modelled as 2D-Gaussians with (l/b/σ l /σ b ) + candidate point sources Galactic Centre Source Narrow Bulge Broad Bulge Disk 5σ 56σ 12σ Crab: 31σ Cyg X-1: 11σ Slice through l=0 Disk size: 140 +25 +6-10 deg FWHM longitude; 25-4 deg FWHM latitude

Candidate Sources for Positrons Electrons are very numerously available in the Galaxy, but Where do the positrons come from? Massive stars / Novae / SNe Ia&II Radioactivity from β + -decay XRBs / Microquasars Compact γ-ray source ; Jets; Corona Sgr A* Past AGN activity; Accretion disk; Cosmic rays p-p collisions: Secondary positrons Pulsars Magnetic field interactions Dark Matter Decay; Annihilation; Excitation DM Cas A µqs 44 Ti SN II Fermi Bubbles 26 Al 56 Co SN2014J SN Ia Pulsars Sgr A* 8/24

9/24 Positron Annihilation Spectroscopy Spatially resolved spectroscopy Based on six-component sky model and BG model Intensity correlations among components due to spatial overlap Significance per energy bin Siegert et al. 2015 NB+BB = The Bulge Disk separated GCS compact or part of the Bulge Cont. sources hardly affected

10/24 Positron Annihilation Spectroscopy The Bulge Siegert et al. 2015 Annihilation Continuum (Ortho-Positronium) Gaussian-shaped 511 kev Line (Para-Positronium) Galactic γ-continuum Total Significance: 56σ in 40 kev 511 kev line flux: (0.96±0.07) 10-3 ph cm -2 s -1 FWHM: 2.59±0.17 kev; Centroid: 511.09±0.08 kev Positron production rate: L e +(Bulge) (1.7±0.2) 10 43 e + s -1 f Ps 1.00: Annihilation mainly through intermediate positronium state

11/24 Positron Annihilation Spectroscopy The Disk Siegert et al. 2015 Ortho-Positronium Continuum 511 kev Line Galactic γ-continuum Total Significance: 12σ in 40 kev 511 kev line flux: (1.66±0.35) 10-3 ph cm -2 s -1 FWHM: 2.47±0.51 kev; Centroid: 511.16±0.18 kev f Ps 0.70-1.00; Positron production rate: L e +(Disk) (3.1±1.0) 10 43 e + s -1 Fluffy, very low surface brightness disk; Scale height 1 kpc

Knödlseder+ 2005 Weidenspointner+ 2008 Bouchet+ 2011 This Work (Siegert+ 2015) 12/24 Positron Annihilation Spectroscopy Bulge vs. Disk Bulge-to-Disk flux ratio: 0.6±0.1; L(B/D) < 1 (smaller than in earlier studies) FWHM(Bulge) FWHM(Disk); E 0 (Bulge) E 0 (Disk) E lab = 511 kev f Ps (Disk) < f Ps (Bulge)? L e +(Disk) > L e +(Bulge)? L e +(Galaxy) 3.5-6.0 10 43 e + s -1 B/D smaller: Increased exposure in disk and high latitudes

13/24 Positron Annihilation Spectroscopy,,,,,,,,,,,,The Galactic Centre Source Siegert et al. 2015 o-ps Continuum? 511 kev Line γ-continuum? Total Significance: 5σ in 40 kev (l/b) (0/0) 511 kev line flux: (0.8±0.2) 10-4 ph cm -2 s -1 ; L e +(GCS) (1.0±0.5) 10 42 e + s -1 FWHM(GCS) = 3.5±0.6 kev; E 0 (GCS) = 510.6±0.3 kev < E lab = 511 kev f Ps 0.75 1.00; o-ps and γ-continuum marginally seen Broadened, red-shifted(?) and separated(?) source in the Galactic centre

14/24 The Galactic Centre Source?? GCS Position: (l/b) (0.0/0.0)±(0.2 /0.2 ) (90%) Consistent with position of Sgr A* (-0.06 /-0.05 ) Not the Great Annihilator 1E1740.7-2942 Not SNR G1.9+0.3 Size/Extent: (σ l /σ b ) (0.0/0.0)±(1.0 /1.7 ) (90%) SPI angular resolution: 3 Point-like Assuming 8.5 kpc distance to Galactic centre: Point-source encompasses region of 400 pc Reminiscent of the Central Molecular Zone (CMZ) Skinner et al. 2016, in prep. ρ(nfw) 2 ρ(nfw) Serpico & Hooper 2009 Enhanced peakedness: Dark Matter (DM)? Prantzos et al. 2011

15/24 Comparison to other Wavelengths What are the Sources? No wavelength similar to e + e - No point sources: Real diffuse emission Line shape is tracing the moderately warm (8000 K) and partly ionised interstellar gas 511 kev morphology does NOT show the sources but the annihilation sites! Consider positron budget: How many positrons can one source (type) produce? Goal: Reproduce total positron production rate in the Milky Way. Bulge: L e +(Bulge) 1.5-1.9 10 43 e + s -1 Disk: L e +(Disk) 2.1-4.1 10 43 e + s -1 GC: L e +(GC) 0.1-0.2 10 43 e + s -1 Total: L e +(MW) 3.5-6.0 10 43 e + s -1

Positron Origins 16/24 Massive Star Nucleosynthesis Milky Way in 26 Al (1.809 MeV) Positron! 1.809 MeV 26 Al produced in massive stars (WR phase) and SNe II Siegert, et al. 2016, in prep. About 2-5 M Sun of 26 Al in the Galaxy: (0.4-0.8) 10 43 e + s -1 distributed along Galactic plane? (L e +(Disk) (3.1±1.0) 10 43 e + s -1 ) Only 10-25% contribution?

Grefenstette, et al. 2014 Positron Origins 17/24 Core Collapse Supernova Nucleosynthesis Fast moving (outer) knots CCSN remnant Cassiopeia A Siegert, et al. 2015 44 Sc* 78 kev line Fe Siegert, et al. 2015 44 Ti 44 Ca* 1157 kev line Positron! Seitenzahl, et al. 2014 SN1987A About 10-5 - 10-4 M Sun of 44 Ti per (young) CCSNR 0.3 10 43 e + s -1 along Galactic plane? (L e +(Disk) (3.1±1.0) 10 43 e + s -1 ) Only 10% contribution?

18/24 Positron Origins Type Ia Supernova Nucleosynthesis M82 Galaxy 847 kev line 1238 kev line 158 kev line SN2014J 812 kev line Positron! White dwarf merger Binary mass transfer Diehl, Siegert, Hillebrandt, et al. 2014 & 2015 About 0.5 M Sun of 56 Ni per SN Ia 10 55 e + per SN Ia event! Supernova rate and positron escape very uncertain: 0.25 per century @ few % escape Potentially 2 10 43 e + s -1 in the whole Galaxy (L e +(Galaxy) 3.5-6.0 10 43 e + s -1 ) 40% contribution?

19/24 Positron Origins Dark Matter Positron? ρ(nfw) 2 GCS ρ(nfw) Enhanced peakedness towards Galactic Centre Siegert, et al. 2015 Serpico & Hooper 2009 Hypothesis: If 511 kev emission in the Milky Way originates in DM- annihilation, then DM-dominated regions show a similar signal Flux ~ M 2 D -2 R -5 & log(m Dyn /L 511 ) ~ +M V Test: Satellite galaxies are believed to be DM dominated log(m Dyn /L V ) ~ +M V In addition to diffuse emission, test for all MW satellites No contribution? log(m Dyn /L V ) ~ +M V OK! Siegert, et al. 2016, in prep. 3σ detections : 2 of 39 log(m Dyn /L 511 ) ~ M V?

20/24 Positron Origins Microquasars? Microquasar Done, et al. 2007 GRO J1655-40 spectra Black hole binary systems: Stellar mass black hole accreting matter from a companion star State transitions: Changes in X-ray emission caused by accretion-disk instabilities (Magnetic Rotation Instability / Hydrogen Ionisation Instability / Radiation Pressure Instability / ) accretion flow changes Positrons!

21/24 Positron Origins Microquasars? Pair-plasma spectra Pair outflow + Compton equilibrium: Narrow line (kt 10s of kev) Annihilation inside / close to the source: Broad line (kt 100 kev) Thermal pair annihilation

22/24 Positron Origins Microquasars! Microquasar Siegert, Diehl, Greiner, et al. 2016 V404 Cygni Positron! Pair creation through photon-photon interactions in optically thick region around compact gamma-ray source: γ + γ e + + e - Electron-positron-,,,,,pair plasma At least 10 42 e + s -1 for microquasar V404 Cygni (duty cycle 10-3 ) About 20 sources known in the Milky Way (few 1000 expected) Potentially 2 10 43 e + s -1 in the whole Galaxy from microquasars,,,,,(l e +(Galaxy) 3.5-6.0 10 43 e + s -1 ) 40% contribution?

23/24 Positron Creation Positron Annihilation? Positron Propagation! Han 2004 Once positrons are created, most do not annihilate immediately (E Kin (e + ) 1 MeV) Gamma-ray morphology most probably not source morphology because of propagation of the positrons! Positron annihilation predominantly in the bulge (low surface brightness disk): Positrons created anywhere in the Galaxy or in the disk? Spiraling from disk to bulge along Galactic magnetic field? Trapped in bulge? Spectral shape diagnostics: Positronium fraction 1.0 and broadened annihilation line Slowing down from MeV to few ev (ortho-positronium binding energy 6.8 ev) Positrons lose energy due to ionisation, H excitation, Coulomb collisions, Slowing down time scale between 10 5 10 7 yr (mean free paths up to kpc scales) Line shapes Similar annihilation conditions (one line shape doesn t fit all spectra)

24/24 Summary / Conclusion 511 kev emission in the Milky Way traces the gas in which positrons annihilate Main positron contributors probably: µqs (40%) + SNe Ia (40%) + Massive Stars (20%) Positron propagation through the ISM inevitable 26 Al CCSN SN Ia SPI 511 kev Portrayal µq