Analysis of Thin Isotropic and Orthotropic Plates Using Meshless Local Petrov- Galerkin Method With Various Geometric Shapes

Similar documents
Point interpolation method based on local residual formulation using radial basis functions

Meshless equilibrium on line method (MELM) for linear elasticity

A mesh-free minimum length method for 2-D problems

Analysis of free vibration problems with the Element-Free Galerkin method

Analysis of Steady State Heat Conduction Problem Using EFGM

A truly meshless Galerkin method based on a moving least squares quadrature

Radial point interpolation based finite difference method for mechanics problems

Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method

Free Vibration Analysis of Functionally Graded Material Plates with Various Types of Cutouts using Finite Element Method

Computation Time Assessment of a Galerkin Finite Volume Method (GFVM) for Solving Time Solid Mechanics Problems under Dynamic Loads

Application of meshless EFG method in fluid flow problems

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

Elastic Moduli of Woven Fabric Composite by Meshless Local Petrov-Galerkin (MLPG) Method

Least-squares collocation meshless method

SMOOTHED PARTICLE HYDRODYNAMICS METHOD IN MODELING OF STRUCTURAL ELEMENTS UNDER HIGH DYNAMIC LOADS

Solving the One Dimensional Advection Diffusion Equation Using Mixed Discrete Least Squares Meshless Method

Analysis of the equal width wave equation with the mesh-free reproducing kernel particle Ritz method

SSPH basis functions for meshless methods, and comparison of solutions with strong and weak formulations

Laminated Composite Plates and Shells

Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method

PSEUDO ELASTIC ANALYSIS OF MATERIAL NON-LINEAR PROBLEMS USING ELEMENT FREE GALERKIN METHOD

NUMERICAL MLPG ANALYSIS OF PIEZOELECTRIC SENSOR IN STRUCTURES

Numerical solution of Maxwell equations using local weak form meshless techniques

%&'( )'(* +,+ -&(. /0(1 (2 3 * &+78 (4 3', 9:4'

Arbitrary Placement of Secondary Nodes, and Error Control, in the Meshless Local Petrov-Galerkin (MLPG) Method

Nonlinear bending analysis of laminated composite stiffened plates

Free Vibration Response of a Multilayer Smart Hybrid Composite Plate with Embedded SMA Wires

A Meshless Hybrid Boundary Node Method for Kirchhoff Plate Bending Problems

Uncorrected Proof Available online at

Engineering Fracture Mechanics

ARTICLE IN PRESS. Thin-Walled Structures

Solving Poisson s equations by the Discrete Least Square meshless method

THE UPPER BOUND PROPERTY FOR SOLID MECHANICS OF THE LINEARLY CONFORMING RADIAL POINT INTERPOLATION METHOD (LC-RPIM)

Bending of Simply Supported Isotropic and Composite Laminate Plates

Error Analyses of Stabilized Pseudo-Derivative MLS Methods

FREE VIBRATION OF AXIALLY LOADED FUNCTIONALLY GRADED SANDWICH BEAMS USING REFINED SHEAR DEFORMATION THEORY

A regularized least-squares radial point collocation method (RLS-RPCM) for adaptive analysis

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

Thermal buckling analysis of shear deformable laminated orthotropic plates by differential quadrature

Analyzing Plane-plate Bending with EFGM

Mechanics Research Communications

Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity Flow Problem with Low Reynolds Number

Comparison of Functionally Graded Material Plate with Metaland Ceramic Plateunder Transverse Loadfor Various Boundary Conditions

Soft Core Plane State Structures Under Static Loads Using GDQFEM and Cell Method

Vibration of Thin Beams by PIM and RPIM methods. *B. Kanber¹, and O. M. Tufik 1

A Moving Least Squares weighting function for the Element-free Galerkin Method which almost fulfills essential boundary conditions

Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method

Harmonic differential quadrature method for static analysis of functionally graded single walled carbon nanotubes based on Euler-Bernoulli beam theory

Composites Design and Analysis. Stress Strain Relationship

Education: PhD University of Liege

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

A MESH-FREE METHOD FOR STATIC AND FREE VIBRATION ANALYSES OF THIN PLATES OF COMPLICATED SHAPE

Mixed discrete least square meshless method for solution of quadratic partial di erential equations

Locking in the incompressible limit: pseudo-divergence-free element free Galerkin

SOLVING HELMHOLTZ EQUATION BY MESHLESS RADIAL BASIS FUNCTIONS METHOD

Journal of Theoretical and Applied Mechanics, Sofia, 2012, vol. 42, No. 1, pp

DEFORMATION AND FRACTURE ANALYSIS OF ELASTIC SOLIDS BASED ON A PARTICLE METHOD

Buckling Analysis of Ring-Stiffened Laminated Composite Cylindrical Shells by Fourier-Expansion Based Differential Quadrature Method

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods

Finite element analysis of FRP pipelines dynamic stability

Recent Advances on Mechanics, Materials, Mechanical Engineering and Chemical Engineering

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

Comparison of local weak and strong form meshless methods for 2-D diffusion equation

The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations

A refined shear deformation theory for bending analysis of isotropic and orthotropic plates under various loading conditions

Solving Elastic Problems with Local Boundary Integral Equations (LBIE) and Radial Basis Functions (RBF) Cells

An efficient and simple refined theory for bending and vibration of functionally graded plates

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

INVESTIGATING THERMAL EFFECTS IN NONLINEAR BUCKLING ANALYSIS OF MICRO BEAMS USING MODIFIED STRAIN GRADIENT THEORY *

Analysis of Rectangular Plate with Opening by Finite Difference Method

Numerical Solution of Non-Linear Biharmonic. Equation for Elasto-Plastic Bending Plate

NONLINEAR ANALYSIS OF A FUNCTIONALLY GRADED BEAM RESTING ON THE ELASTIC NONLINEAR FOUNDATION

Cracks Jacques Besson

Analysis of Functionally Graded Material Plate under Transverse Load for Various Boundary Conditions

MESHLESS COHESIVE SEGMENTS METHOD FOR CRACK INITIATION AND PROPAGATION IN COMPOSITES

Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

Copyright 2013 Tech Science Press CMES, vol.95, no.1, pp.1-29, 2013

EIGENVALUE ANALYSIS OF SPHERICAL RESONANT CAVITY USING RADIAL BASIS FUNCTIONS

Application of Laplace Iteration method to Study of Nonlinear Vibration of laminated composite plates

Calculation of sound radiation in infinite domain using a meshless method

HIGHER-ORDER THEORIES

Piezoelectric Control of Multi-functional Composite Shells Subjected to an Electromagnetic Field

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Research Article SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing

The partition of unity quadrature in meshless methods

Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method

C. L. Tsai Y. L. Guan R. C. Batra D. C. Ohanehi J. G. Dillard E. Nicoli D. A. Dillard

An eigen theory of waves in piezoelectric solids

Static Analysis of Cylindrical Shells

Three Boundary Meshless Methods for Heat Conduction Analysis in Nonlinear FGMs with Kirchhoff and Laplace Transformation

Bending Analysis of Symmetrically Laminated Plates

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

AEROELASTIC ANALYSIS OF SPHERICAL SHELLS

Thermal buckling analysis of ceramic-metal functionally graded plates

Stabilized and Coupled FEM/EFG Approximations for Fluid Problems

Department of Structural, Faculty of Civil Engineering, Architecture and Urban Design, State University of Campinas, Brazil

A Galerkin Boundary Node Method for Two-Dimensional Linear Elasticity

2766. Differential quadrature method (DQM) for studying initial imperfection effects and pre- and post-buckling vibration of plates

Transcription:

89-8 "$ 95 677 ;; =<5 (MLPG) 96:; + +, ( ) *$ % &'! " + +- +- &'! " - :+ > *? *5 A < ;! $ : + 9 8-7% "6 5 + + "- %! /* " 8-57-65/-((-/-(- ),-)*+'"( B + % - &A9 - + 9 %?, @ " :? > ; - H : 9 ; -&! @ FG - D E C! 9 %?, + 9 8- L (MLPG) ; 5 - + > % B * ") 5 DI 9 8- "6 + ; 8 * > 5H + +' 8? W V % @ - + - ' UE & > ; +S MLS - - R H< P? ) L MLS - R % - DE/ P Q & "- NO) M > - < ) : S * * > 5H % F - 9< 5 + > 5 * % H* X /* > ") Z 5 DE/P Q? * 9Y : ; - + >:)6)=B- Analysis of hin Isotropic and Orthotropic Plates Using Meshless Local Petrov- Galerkin Method With Various Geometric Shapes H Edalati B Soltani Department of Mechanical Engineering, Islamic Azad University, Jasb branch, Delijan, Iran Department of Mechanical Engineering, University of Kashan, Kashan, Iran Abstract Utilizing one of the mesh free methods, the present paper concerns static analysis of thin plates with various geometric shapes based on the mindlin classical plate theories In this numerical method, the domain of issue is solely expressed through a set of nodes and no mesh is required o express the domain of issues with various geometric shapes, first a set of nodes are defined in a standard rectangular domain, then via a map, these nodes are transferred to the main domain of the original issue herefore plates of various geometric shapes can be analyzed he meshless local petro galrkin method (MLPG) is utilized here he method is one of the weak form integral methods that uses MLS shape functions for approximation Regarding the absence of Delta feature in MLS functions, because of in MLPG, the system equation is constructed node by node therefore direct interpolation method can be used to enforce essential boundary conditions Outputs are compared with those of analytic and finite element methods, in order to validate the solution method, a few new examples will be solved Keywords : Mesh free, Plate s theory, Weak form integral, stress analysis B * $' (b "' 5 ; 6 (c : - e B) B % fe * 5 ( C - % - $' ; H ' (- go : ) "- $' ; * < " h - 5 + > i$< - B 5 + + + "- " % : 9 %?, " "- ; - * L UE * ") - R% : D 5 + > E? "- Q ' ; " @5! 5 + > [] 95 8! " - W S " A Q E >! 5 + 9 V W9 -& - [] " C< a C< B * 6 - > ; 5 + > % O Wa? - U O9 (D :%? 9 O "LE/ Difficulty in adaptive analysis mesh free or mesh less Finite element method * bsoltani@kashanuacir :

"6 [9]7% "6 Z [8]D"- Y - [] Q 6 L %G - FGM "6 RKPM > % Z9 C "6 O [] 5 '< 9 5 P, Z9 7$ @ MLPG >! O P, 5 R) Z9 []- []< - + "- % -!! MLPG - + * > % ; L 9I 9 9 Y B 5 ") -& 5 9 * X * > 6 + +' - - 5 + H< P? ) MLPG * > V UE & ' ( R % L P&9 8? W V % @ - + e! @Q 9 "6! $ : - + > % n - + M? 5 "),) % @ - % ; ; 8?! +O9 L MLS - L &9 MLS ' F5( ( R % ; - + > - B 99 8 " % E V ( R ; Ω u ( x ) e! - R ; - m h u x p x a x P x a x ( ) = j ( ) j ( ) = ( ) ( ) j = H (a [] -+ % V P ( x ) R R E m / 9% 6* - < + R ) ( / + U a( x ) ( ) = { ( ) ( ) L m ( )} a x a x a x a x x % E () E R x C () P ( x ) 8 my % )! z< B fe " MLS ( L R? % V () a( x ) 8", ( / ) - H* % R + W ( /; 9 n ( ) ( ) ( ) J = Wˆ x x i P x i a x u i i = W ˆ ( x x i ) x I C 5 < 9 E n E () E x = x i u e u i +% R n 9 E - +% 6 m U", E % (a - L MLS ( E h %? 9 P % u J = a () ( R M ' W a( x ) JE () - H* % UE & U E % % ( ) ( ) = B( x) Us A x a x { } Us = u u L un (5) (6) - m? - + "- O - L : 5! % ;5 % ) < " E % 5 - () "- % ; P, "- ; P ) UE, > - + > % > ; + (% ) - + : Q > : % < n! L UE * - R < % - m? - + "- O L O) " E o5 % ; % ;5 < " % G 5 /L > - + > ; * "- ; i E % []- + 98 97 8 - B 977 8 q > - + % 9,L +A9 P, W? 9 5 > ; 9E []- L % + B a 9 [,]- L ) U! B * % @ t5v R! q * > + [6,5] P * > + - B Z9 8 % DE/ P Q - + * 9 > E o5 8 - ) > ;S B, - v - 99 - + > 999 8 ; - + > 99 6 n + > 999 8 5 ; i 5 v [] 7 n +?E- > 8 6 +-W? ) "- ; w - 9< 5 + "- 5 6 P Q - + * "- % ; + * ; ; - P, O & i h % DE/ P Q > > - 5 + > DE/ P Q * > + ) - c5 % RH ' ) O) % "6 W" " 5 O DI RH "6 + 9 DI U* "6 Q A h< + & L UE @ ; M + " % 5 E 5 * UE G E 9 UE ; * +'? "- ; ) Q ( )? * "- - L O "6 O - - + > "6 O EFG - + > % Z9 A O ;A9 > ; [7] L 7% 9 finite difference method (FDM) Smoothed Particle Hydrodynamics (SPH) reproducing kernel particle method (RKPM) Element Free Galerkin (EFG) 5 Meshless Local Petrov-Galerkin method (MLPG) 6 Point Interpolation method (PIM) 7 Radial Point Interpolation method(rpim) l l O 7% "6? 5 8

C O"? * x ε xx ε = ε yy z = w = zl dw y γ xy x y σ xx σ = σ yy = zcldw σxy () - + % @ V O 9Z @ () [5] % V I F! O ϑ E c = ϑ ( ϑ ) ( ϑ) / (5) * - 8! V %G [6]- + % V I F 5LH Z Q Q Q6 Q = Q6 Q Q6 Q 6 Q6 Q 66-5 % 8 F % L cos θ sin θ sinθ cosθ = sin θ cos θ sinθ cosθ sinθ cosθ sinθ cosθ cos θ sin θ Q ij (6) (7) 5 < 9 9 e n A x W x P x P x i= ( ) = i ( ) ( i ) ( i ) - +% F A( x) W ( ) ( ) (8) i x = W x xi - D E % V (5) E B( x) F ( ) ( ) ( ) ( ) ( ) L ( ) ( ) ˆ ˆ ˆn n B x = W x P x W x P x W x P x (9) % C () E M&) (5) E * n h u ( x) = φ i ( x) ui = φ ( x) Us i= a ( x) U s (7) - H* () 5 * < n MLS- R φ ( x), - 5 % V x I C ( x) = { ( x ) ( x ) L n ( x) } ( n ) φ φ φ φ ( ) ( ) ( ) = P x A x B x & +' u, v, w,-)g( w () - ( x, y, z oc Ω () - Y! 95,) - R = (8) Q = [ ] [ Q ][ R ][ ][ R ] I F 9L Q ij (9) i ZA % θ? ") i ") ) H VI & Y OQ z< (* F ; - (i Q Q Q = Q Q Q66 [ ] E ϑ E Q = Q = ϑϑ ϑϑ E Q = Q66 = G ϑϑ ϑ E = ϑe - + % V H ") () + () C< R ZUE Q, + - + @ % - ( / Q ) 5LH? HQ (* D E % V Z - Z -, ε p = Ldw - z % { Y RC - () MJKL I-H-) ' HQ) z % E V u, v z u x u = v = z w = Luw y w D- / Q ) + + ( 5LH () W Z UE,) @ M&) 8

" % ) % @ - 8? M - L W > %, L DE/ P Q > % L * UE MLPG > Ωs ( σij, j i ) Ω α ( i i ) Vˆ + b d Vˆ w w d Γ = Γqu - + +% 96 / : % P 8 & +% R () : % * Γ qu : Ω q ) % @ - @ - 8? ( / α ) % @ - () E V * E - L > % % - L W > % o5 ; +S - Ωs ( ij, j bi ) Vˆ σ + dω = Vˆ % V * E () E % () E (7) () UE M&) Ωq ( ) - + % V "6 MLPG > * Vˆ D w b dω = () % () * E () ( E + 6 8E E P Q NO) NO) 8 &! % L [ K]{ W} = { F} 9 [ K] = [ K] + [ K] Ω i [ F] - H* % V () + e [ W] I F [ K] - 5 % V " % P Kij = Ω D D φj,xx Vˆ i,xx Vˆ i,yy Vˆ i,xy D D φj,yy dω Ω s D 66 φ j,xy Kij B i ij = dγ Γ si ˆ ( φ ( ) φ ) ( Dφ j,yyy ( D D66 ) φj,xxy ) n y Bij = Vi D j,xxx + D + D66 j,xyy nx + + + Vˆ i, x ( D φ j, xx + D φ j, yy ) nx + D66 φ j, xy n y Vˆ i, y D66 φ j, xy nx + ( D φ j, xx + D φ j, yy ) n y f i = ˆ V i fd Ω ˆ αv iwd Γ α V ˆ i, nθ d Γ Ωs Γsw Γsw () (5) (6) (7) (8) σ p = Dε p = DLdw () + % V ( %G! O D F ϑ Eh D = ϑ ( ϑ ) ( ϑ ) / n l D ij = ij Q k z k z k k = - () (5) )8) N <+- [5] - + % V 9 Y % @ - uγ = ub Γ u = Γ w Γ θ (6) - 9% '< S /?,) - u b - D E % V 9Y ) @ - ub = LbW (7) V DI 9 @ - L &? L b = n L b = - D E % { (8) VL (9) MLPG 96:; - " 8-5 7--5 > - L MLS ( R % OMLPG> [7] - B 998 8 Z9 @ MLPG! U! U B * +5 & @ 8 + ) 9 "6 5 L 7% 9 5 - E L 8* -! DE/ P Q * EFG - + >!? 8 & > ; - ; - + $ * > ; M % % F - P Q * > : - % c) > ; - B MLPG ; i 5 DE/ L 9 5 S 9 %? 8 & L MLS - R % O > ; - L C9 - H< ( R ; ; ) - l l O 7% "6? 5 essential boundary conditions Atluri 8

C O"? * )*+Q-7 + >? &&S + UE b I % F 5 * X > ; X 6 8y S * 5H % F + 5 +? > ; % G < " > ; % + B * ") - "' ) - R %, ; ) + 8* ; 5 - [9] - - ( OQ P @5 YQ > + MLPG - + > C Y! - - 5H + +' 6 ) + 5 * 8) VI' /6 /6 / / ( ) Y E 8(GPa) ; ( / ( ) Y I/ E + 9O< 'I? X + εexat ε p Error = εexat % V C< 8 Q 9 5 (6) % Q N / m *; 5 /m I/ 6 w 6 (VL) 5 i h "S H-S- =JKLR-<- ;A9 - + h C 6 5 O"( O5U - * )= ; ( 5 5 H- % V * ; - E + O< 8 Q - W max D W = qb [] (7) > ; I F - + EFG > I F H + O9 > ; 5 W,* M 8", e! 9 +S % @ - 8? ") 8? 9 % n - +O9 + M ) W L &9 % n - 8? > % ; &9 ; &9 % n - % W9 6 ) 9 6 % 9 " % ( 9 @ HQ W! * ) ϵ % 9,) % @ - FG HQ - 8? &9 9 o',) @ - ( &9 9 % 9 ") W* UE w w i = [ φ L φ n ] M = w i w n w w i φ φn w = i n L n n M = n w n % V <DOP UE * L UE w*$ C9 (9) () -6 5 * + ' 5 9 "6 C @5 @I5 @5 -&! @ ; - M - B ;O VI "6 % @ - + (a - R @ -& ; W& - U - R ) S 9 H 5 R! Y R/ x = N i ( ξ, η ) x i i = " O -& 6 9 + E - L [8] 8 ) () 85 Eh D = ( ϑ ) - YE b q YQC (8) @ 8y ; o6 * 8) H* X /6 5 + E + O< - P, - > % : ; * X ;A9 [ ] [ ] - /5 5 i h "S % YQ Y 5 X 8) @ 8y ; o6 * 9 +' 6 { /6 ; E + O< - P, - 5 - + * > ;, % + > * ;A9 [ ] [] H* /8 X 6 9' C9 ' 5 + X ; y = N i ( ξ, η) y i i = () VI x i, y i P Q : 9% VI ξ, η - R N i : Eh % - I' n - 5 % @ oh - N i = + i + i 9 + i =,,, ( ξ ξ )( η η ) ( ξ η ) ( ξ )( η η )( ξ ξ ) 9 N i = + i + 9 i i = 5,6,7,8 ( η )( ξ ξ )( η η ) 9 N i = + i + 9 i i = 9,,, () () (5)

& > 5 W,* M : - % Z9: - v 6 ;A9 - +' 9 @ @Q "6 * X % @ - * E Y Q - e P Q 9- - +' 9- ( - e P Q : - 9' - C9 { I + 9 - e : l l O 7% "6? 5 O"( *; ; ( 5 5 H- S ' X( WS-' Y+ OV *; )- 5 O"( O5U- *)=; ( 5? H- *; 8h DI 9 C "6 - E V X- - + []? R) C Y!,) 5 8) (7) C oh N / m 9 +' e P Q Z % - w i H - C Y Q - 9 @ - 5 ( 5 9 * X H* X - < /? 5 5 5 E - e Y P Q + - E Y C Y Q - - * ; ( 5' 5H-5-5 V-<- 7 7 /8 /5% 5 5 /98 /97% OV 5O"( / /7% /9 /9% E + O< O5U; ( 5' 5H-5-5V-<- 7 7 /7 /7% 5 5 /7 /7% OV 5O"( /8 /5% / /% E C< E + O< E C< K; ( 5'?H-55 5 <- /5 8h /? /89 /8 /5 / / / /77 /77 MLPG [ ] R) O5U; ( 5'?H-55 5 5 <- / /5 /8 /6 /5 /5 / / / /66 /7 8h /? EFG [ ] R) *; 5O"( N / m O5U - * )= ; ( 5 ' )* H- OQ VI' - Y! 5, 5! ve- () 8) 5 - + * > % X - < w max Eh α = pa - E % Coh ; i (9) 5 E Y Q - e P Q ' O"( * ; ( 55H-S' X( WS-' Y+OV *; )- 86

C O"? * + % * H 9 C6 DI e P Q 7 6 9- ;A9 f Y Q - +' DI 9 @ - 9+' - L : 8) OQ VI' - f Y! + 9 OQ P % H* - E X 8 7 8) a / b = z< * K; ( 5' Z5H-55 5-7 <- /98 / /8 /88 /5 /58 /5 / /6 9 a/b MLPG [ ] R) O5U ; ( 5 ' Z5 H- 5 5 5-8<- % - X C< % H ) O ; &C - -& [] R) /67 /56 - +' 5 ' ) * H- 5 5 5-6<- 5 5 /6 /55 MLPG* > /6 /59 /55 8 9 E VL { /5 a/b /6 /5 /98 /88 / /7 /958 /6 MLPG [ ] R) 5 O"( ' 5 -? -( ( H- *; 5! "6 Q 9< < { 9 @ - < VI'! Y5 %H* X(9) 8) ; o6 * 9 +' - E = 5 E G = 5 E, ϑ = 5 E + O< /697 B @ 8y [] * ; ( 5 ) * H- S ' X( WS-' Y+ OV *; )- O"( *; ; ( 5 ' Z5 H- S ' X( WS-6' Y+ OV *; )- O"( O"( *; ; ( 5 ) * H- S ' X( WS-5' Y+ OV *; )- *; 5 * X G % - H* X ) % * - 6 8) [] R) 5 " X 6 - L : 5 5 e P Q 5 ( 9 - Y Q - O"( O5U - * )=;( 5 ' Z5 H- -E (9) C! OQP % H* X- 87

( ^> 5) ')* H-6 5-<- [ ] R) /8 5 5 / MLPG* > / / 9 E { -( (--(- ':`=H- 6 + DI 8-5 6 ) f! m 6 { x + y = 9 E 9 @ - N / m!! O Y v X 8) ve-! < % - $9 5 -, - e P Q 9- - 6 8y OQ VI' oc 9 +' OQ P G % "6 Q W9 ( ^> 5) ':`=H-6 5-<- OQ P Abaqus +88 /6 / /898 /8 + > /9 /96 /7 /5 v VL { VL { Y v!o! *; ; ( 5 ' Z5 H- S ' X( WS-7' Y+ OV *; )- O"( ( 5' 5-(( H-5-5V-9<- 7 7 /6577 / 5 5 /6 /8 OV 5O"( * ; /657 /77 /66 /6 E E + O< C< " % L * B ; * 5 + X M /655 /655 ( oc a oc []- %/5 5 + X C< ; - + > 5 * X 8 - (/9/9/) ZS U "S %G C Y!, G = 5E, E = 5E ϑ = 5%? + 9 U z< - < 9 8 l l O 7% "6? 5 ); -8! O 7% 9 Y 5 ; /? M % ; 9 E + > ; O & % DE/ P Q "- O 5 + > - * * + P? EFG - { 5 + 9 -! X C9 - < ; - + > e ") - - P? > ; M A ; -im* - 5 : % "O 5 + > + ;A9 9 E E &9 X + - o6 6 " E w 7 6 5 ; ( 5 O[6 '? H- 5 5 5-8' O5U - Y!,) X, E = GPa, E = GPa, ϑ =, 5 5 a/b VI'! G = 6 GPa, R = m, h = mm, ' ) * -( ( H- 5 + ; - + > % N / m - < [] 88

C O"? * a: O5U ; ( (b * ; ( (a: b ' :`= H- S ' X( WS-9' [] Chen, XL, Liu, G R, and Lim, S P, An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape Compos Struct, 59()(79-89) [] M Memar Ardestani, BS, Sh Shams, Analysis of functionally graded stiffened plates based on FSD utilizing reproducing kernel particle method Composite Structures, : p - [] Sladek, J, et al, Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method Engineering Structures, 7: p 8-89 [] Liew, KM, X Zhao, and AJM Ferreira, A review of meshless methods for laminated and functionally graded plates and shells Composite Structures, 9(8): p - [] Lancaster, PaS, K, Surfaces generated by moving least squares methods math comput, 98 7: p -58 [5] Krysl, P, Belytschko,, Analysis of thin plates by the element-free Galerkin method Computational Mechanics, 996 7: p 6-5 [6] Kaw, AK, Mechanics of composite materials, ed 6, CRC Press: aylor & Francis Group [7] Atluri, SNaZ, A new meshless local Petrov- Galerkin (MLPG) approach in computational mechanics Comput Mech, 998 : p 7-7 [8] shu, c, Differential Quadrature and Its Application in Engineering : springer ' + Matlab7 88: R) 9,i8c-,a[9] P? [] Liu, GR, Meshfree methods moving beyond the Finite element method CRC Press, [] imoshenko, S, heory of plates and shells, ed s edition 959 [] Zienkiewicz, OC, aylor, R L, he finite element method, ed f edition Vol aylor [] Reddy, JN, Mechanics of Laminated Composite Plates and shell theory and analysis, ed s edition : CRC PRESS [] Rao, CSaKP, LARGE DEFORMAION FINIE ELEMEN ANALYSIS OF LAMINAED CIRCULAR COMPOSIE PLAES Computers & Structures, 995:p59-6 % @ - > % L G ; ' X 6 >, % @ - 8? &9 C< E HQ 9 > B (a ( / +S - e M P%U - % ;I M X 6 { % &9 F-9 [] GR LIU, YG, AN INRODUCION O MESH FREE MEHODS AND HEIR PROGRAMMING 5: Springier [] Szafrana, Z, ELASIC ANALYSIS OF HIN FIBER- REINFORCED PLAES CIVIL AND ENVIRONMENAL ENGINEERING REPORS, 5 [] Colagrossi A, LM, Numerical simulation of interfacial flows by smoothed particle hydrodynamics Journal of Computational Physics, 9(): p 8-75 [] Johnson GR, SR, Beissel SR, SPH for high velocity impact computations Computer Methods in Applied Mechanics and Engineering 996 9( ): p 7 7 [5] Liu WK, JS, Li S, Adee J, Belytschko, Reproducing kernel particle method for structural dynamics Int J Numer Methods Eng, 995 8: p 655 79 [6] Liu WK, JS, Zhang YF, Reproducing kernel particle methods Int J Numer Methods Fluids, 995 : p 8-6 [7] Krysl, PaB,, Analysis of thin plates by the element-free Galerkin method Computmech, 996 7: p 5-6 [8] Ouatouati, AEaJ, D A, A new approach for numerical modal analysis using the element free method Numerical Methods Eng, 999 6(-7) [9] Liu, GRaC, X L, Bucking of symmetrically laminated composite plates using the element-free Galerkin method Struct Stability Dyn, (): p 8-9 89