Generic Bernstein-Sato polynomial on an irreducible affine scheme

Similar documents
On the longest path in a recursively partitionable graph

Stickelberger s congruences for absolute norms of relative discriminants

On path partitions of the divisor graph

A new simple recursive algorithm for finding prime numbers using Rosser s theorem

The Mahler measure of trinomials of height 1

Confluence Algebras and Acyclicity of the Koszul Complex

Completeness of the Tree System for Propositional Classical Logic

Self-dual skew codes and factorization of skew polynomials

Some Generalized Euclidean and 2-stage Euclidean number fields that are not norm-euclidean

On infinite permutations

Case report on the article Water nanoelectrolysis: A simple model, Journal of Applied Physics (2017) 122,

Finiteness properties for Pisot S-adic tilings

DYNAMICAL PROPERTIES OF MONOTONE DENDRITE MAPS

Cutwidth and degeneracy of graphs

Methylation-associated PHOX2B gene silencing is a rare event in human neuroblastoma.

Hook lengths and shifted parts of partitions

Axiom of infinity and construction of N

On one class of permutation polynomials over finite fields of characteristic two *

Easter bracelets for years

Question order experimental constraints on quantum-like models of judgement

New estimates for the div-curl-grad operators and elliptic problems with L1-data in the half-space

Soundness of the System of Semantic Trees for Classical Logic based on Fitting and Smullyan

Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian

Nel s category theory based differential and integral Calculus, or Did Newton know category theory?

Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

On Newton-Raphson iteration for multiplicative inverses modulo prime powers

approximation results for the Traveling Salesman and related Problems

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

Passerelle entre les arts : la sculpture sonore

Exact Comparison of Quadratic Irrationals

Full-order observers for linear systems with unknown inputs

b-chromatic number of cacti

On Symmetric Norm Inequalities And Hermitian Block-Matrices

Numerical Exploration of the Compacted Associated Stirling Numbers

On size, radius and minimum degree

Negative results on acyclic improper colorings

Some tight polynomial-exponential lower bounds for an exponential function

The Accelerated Euclidean Algorithm

L institution sportive : rêve et illusion

A Simple Proof of P versus NP

A note on the acyclic 3-choosability of some planar graphs

About partial probabilistic information

A non-commutative algorithm for multiplying (7 7) matrices using 250 multiplications

Solution to Sylvester equation associated to linear descriptor systems

Chebyshev polynomials, quadratic surds and a variation of Pascal s triangle

On Poincare-Wirtinger inequalities in spaces of functions of bounded variation

On Symmetric Norm Inequalities And Hermitian Block-Matrices

A note on the computation of the fraction of smallest denominator in between two irreducible fractions

Vibro-acoustic simulation of a car window

On a series of Ramanujan

Can we reduce health inequalities? An analysis of the English strategy ( )

Towards an active anechoic room

A Context free language associated with interval maps

There are infinitely many twin primes 30n+11 and 30n+13, 30n+17 and 30n+19, 30n+29 and 30n+31

From Unstructured 3D Point Clouds to Structured Knowledge - A Semantics Approach

Solving a quartic equation and certain equations with degree n

Comment on: Sadi Carnot on Carnot s theorem.

On sl3 KZ equations and W3 null-vector equations

MORPHISMS FROM P2 TO Gr(2,C4)

On constraint qualifications with generalized convexity and optimality conditions

A new approach of the concept of prime number

Some remarks on Nakajima s quiver varieties of type A

A first step towards the skew duadic codes

Periodic solutions of differential equations with three variable in vector-valued space

Evolution of the cooperation and consequences of a decrease in plant diversity on the root symbiont diversity

Thomas Lugand. To cite this version: HAL Id: tel

Analysis of Boyer and Moore s MJRTY algorithm

On additive decompositions of the set of primitive roots modulo p

A proximal approach to the inversion of ill-conditioned matrices

Introduction to D-module Theory. Algorithms for Computing Bernstein-Sato Polynomials. Jorge Martín-Morales

FORMAL TREATMENT OF RADIATION FIELD FLUCTUATIONS IN VACUUM

The Windy Postman Problem on Series-Parallel Graphs

Efficient Subquadratic Space Complexity Binary Polynomial Multipliers Based On Block Recombination

Positive mass theorem for the Paneitz-Branson operator

Vector fields in the presence of a contact structure

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

Structural study of a rare earth-rich aluminoborosilicate glass containing various alkali and alkaline-earth modifier cations

Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks

Lower bound of the covering radius of binary irreducible Goppa codes

Some diophantine problems concerning equal sums of integers and their cubes

Space-time directional Lyapunov exponents for cellular au- automata

A Slice Based 3-D Schur-Cohn Stability Criterion

All Associated Stirling Numbers are Arithmetical Triangles

Gaia astrometric accuracy in the past

BERGE VAISMAN AND NASH EQUILIBRIA: TRANSFORMATION OF GAMES

The core of voting games: a partition approach

On production costs in vertical differentiation models

Some D-module theoretic aspects of the local cohomology of a polynomial ring

Avalanche Polynomials of some Families of Graphs

Widely Linear Estimation with Complex Data

Tropical Graph Signal Processing

Spatial representativeness of an air quality monitoring station. Application to NO2 in urban areas

Dispersion relation results for VCS at JLab

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

THE STRONG TOPOLOGICAL MONODROMY CONJECTURE FOR COXETER HYPERPLANE ARRANGEMENTS

Paths with two blocks in n-chromatic digraphs

A remark on a theorem of A. E. Ingham.

Norm Inequalities of Positive Semi-Definite Matrices

Theoretical calculation of the power of wind turbine or tidal turbine

Transcription:

Generic Bernstein-Sato polynomial on an irreducible affine scheme Rouchdi Bahloul To cite this version: Rouchdi Bahloul. Generic Bernstein-Sato polynomial on an irreducible affine scheme. 6 pages, no figures. 2003. <hal-00000496> HAL Id: hal-00000496 https://hal.archives-ouvertes.fr/hal-00000496 Submitted on Jul 2003 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GENERIC BERNSTEIN-SATO POLYNOMIAL ON AN IRREDUCIBLE AFFINE SCHEME ROUCHDI BAHLOUL Abstract. Given p polynomials with coefficients in a commutative unitary integral ring C containing Q, we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme V Spec(C). We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results by H. Biosca. When C is the ring of an algebraic or analytic space, we deduce a stratification of the space of the parameters such that on each stratum, there is a non zero rational polynomial which is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of A. Leykin obtained in the case p =. ccsd-00000496 (version ) : Jul 2003 Introduction and Main Results Fix n and p two integers and v N p. Let x = (x,..., x n ) and s = (s,..., s p ) be two systems of variables. Let k be a field of characteristic 0. Let A n (k) be the ring of differential operators with coefficients in k[x] = k[x,..., x n ] and D (resp. O) be the sheaf of rings of differential operators (resp. analytic functions) on C n for which we denote by D x0 (resp. O x0 ) the fiber in x 0. Let f = (f,..., f p ) be in k[x] p (resp. O p x 0 ) and consider the following functional identity: b(s)f s A n (k)[s] f s+v, (resp. D x0 [s] instead of A n (k)[s]) where f s+v = f s +v fp sp+vp. This identity takes place in the free module generated by f s over k[x, f f p, s] (resp. O x0 [ f f p, s]). The set of such b(s) is an ideal of k[s] (resp. C[s]). This ideal is called the (global) Bernstein-Sato ideal of f (resp. local Bernstein-Sato ideal in x 0 ) and we denote it by B v (f) (resp. Bx v 0 (f)). When p =, this ideal is principal and its monic generator is called the Bernstein polynomial associated with f. Historically, I.N. Bernstein [Be] introduced the (global) Bernstein polynomial and proved its existence (i.e. the fact that it is not zero). J.E. Björk [Bj] has given the proof in the analytic case. Let us cite also M. Kashiwara [K] who proved, moreover, the rationality of the roots of the local Bernstein polynomial. For p 2, the algebraic case can be easily treated in the same way as for p =. For the analytic case, the proof of the non nullity of Bx v 0 (f) is due to C. Sabbah ([S] and [S2]). Let us also cite A. Gyoja [Gy] who proved that Bx v 0 (f) contains a non zero rational polynomial. The absolute Bernstein-Sato polynomial naturally leads to the notion of a generic Bernstein-Sato polynomial which we shall explain in what follows. Let C be a unitary commutative integral ring with the following condition: For any prime ideal P C and for any n N {0}, we have: n P P. all the fields considered in this paper are of characteristic 0

2 ROUCHDI BAHLOUL This condition is equivalent to the fact that for any P C, the fraction field of C/P is of characteristic 0. Note that this condition is satisfied if and only if there exists an injective ring morphism Q C. We shall see C as the ring of coefficients or parameters. Indeed, let f = (f,..., f p ) in C[x] p = C[x,..., x n ] p. Let us denote by A n (C) the ring of differential operators with coefficients in C[x], that is the C-algebra generated by x i and xi (i =,..., n) where the only non trivial commutation relations are [ xi, x i ] = for i =,..., n (hence C is in the center of A n (C)). We denote by Spec(C) (resp. Specm(C)) the set of prime (resp. maximal) ideals of C which is the spectrum of C (resp. the maximal spectrum). For an ideal I C, we denote by V (I) = {P Spec(C); P I} the affine scheme defined by I and V m (I) = V (I) Specm(C). Remark that we shall only work with the closed subsets of Spec(C) and forget the sheaf structure of a scheme. We are going to introduce the notion of a generic Bernstein-Sato polynomial of f on an irreducible affine scheme V = V (Q) Spec(C) (that is when Q is prime). So let Q be a prime ideal of C and suppose that none of the f j s is in Q[x]. The main result of this article is the following. Theorem. There exists h C Q and b(s) Q[s,..., s p ] 0 such that hb(s)f s A n (C)[s]f s+v + ( Q[x, f... f p, s] ) f s. Such a b(s) is called a (rational) generic Bernstein-Sato polynomial of f on V = V (Q) (see the notation and the remark below). In the case where p =, the generic and relative (not introduced here) Bernstein polynomial has been studied by F. Geandier in [Ge] and by J. Briançon, F. Geandier and P. Maisonobe in [Br-Ge-M] in an analytic context (where f is an analytic function of x). In [Bi] (see also [Bi2]), H. Biosca studied these notions with p in the analytic and the algebraic context (that which we are concerned with) and proved that when C = C[a,..., a m ] or C = C{a,..., a m } and Q = (0) so that V is smooth and equal to C m or (C m, 0), we have a generic Bernstein- Sato polynomial. It does not seem straigthforward to adapt her proof to the case where Q (0) (i.e. when V is singular). Let us also say that she did not mention the fact that the polynomial she constructed is rational even though a detailed study of her proof shows that it is. As it appears, our main result covers and generalizes the previous existing results in this affine situation. Notation. Let P be a prime ideal of C. For c in C, denote by [c] P the class of c in the quotient C/P and (c) P = [c] P this class viewed in the fraction field of C/P. We naturally extend these notations to C[x], A n (C) and C[x, f f p, s]. Remark. Using these notations, we can see that the polynomial b(s) of theorem is a Bernstein-Sato polynomial of (f) P for any P V (Q) V (h). This justifies the name of a generic Bernstein-Sato polynomial on V (Q). As an application of theorem, we obtain some consequences : Corollary 2. Fix a positive integer d and a field k. For each j =,..., p, take f j = α d a α,jx α with α N n and a α,j an indeterminate.

GENERIC BERNSTEIN-SATO POLYNOMIAL 3 Take a = (a α,j ) for α d and j =,..., p such that we see f = (f,..., f p ) in k[a][x] p. Denote by m the number of the a α,j s. Then there exists a finite partition of k m = W where each W is a locally closed subset of k m (i.e. W is a difference of two Zariski closed sets) such that for any W, there exists a polynomial b W (s) Q[s,..., s p ] 0 such that for each a 0 in W, b W (s) is in B v (f(a 0, x)). Remark. This corollary generalizes to the case p 2 the main result of A. Leykin [L] and J. Briançon and Ph. Maisonobe [Br-Mai] in the case p =. There is another way to generalize these results: Given a well ordering < on N p compatible with sums, it is possible to prove the existence of a partition k m = W into locally closed subsets with the following property: For any W, there exists a finite subset G W k[a][x] such that for any a 0 W, the set G W (a 0 ) is a <-Gröbner basis of the Bernstein-Sato ideal B v (f(a 0, x)), see [Br-Mai] and [Ba]. Proof of Corollary 2. We remark that we can give the same statement as in corollary 2 for any algebraic subset Y k m as a space of parameters. The statement of corollary 2 will then follow from the proof of this more general statement, that we shall give by an induction on the dimension of Y. If dimy = 0, the result is trivial. Suppose dimy. Write Y = V m (Q ) V m (Q r ) where the Q i s are prime ideals in k m (we identify the maximal ideals of k[a] and the points of k m ). For each i, let h i k[a] Q i and b i (s) Q[s] 0 be the h and b(s) of theorem applied to Q i. Now, write ( r Y = V m (Q i ) V m (h i )) Y, i= with Y = ( V m (Q i ) V m (h i ) ) for which dimy < dim Y. Apply the induction hypothesis to Y. We obtain that Y is a union (not necessarily disjoint) of locally closed subsets V such that for each V there exists b V (s) Q[s] 0 which is in B v (f(a 0, x)) for any a 0 V. Let us show now how to obtain the annouced partition. Let B be the set of the obtained polynomials b V s. Set B = {b,..., b e }. For any i =,..., e, let E i be the set of the V s for which b i = b V. Put W = V, V E W 2 = ( ) ( ) V V, V E 2 V E. W e = ( V E e V ) ( V E E e V ). Note that some of the W i s may be empty. The set {(b, W ),...,(b e, W e )} gives a partition Y = W i in a way that b i B v (f(a 0, x)) for any a 0 W i. Corollary 3. Take f (a, x),..., f p (a, x) O(U)[x] where O(U) denotes the ring of holomorphic functions on a open subset U of C m. Then there exists a finite partition of U = W where each W is an (analytic) locally closed subset of U (i.e. each W is a difference of two analytic subsets of U) such that for any W, there exists a rational non zero polynomial b(s) which belongs to B v (f(a 0, x)) for any a 0 W.

4 ROUCHDI BAHLOUL Remark. As it will appear in the proof, we have the same result if we replace O(U) by C{a,..., a m } or k[[a,..., a m ]] (k being an arbitrary field). Proof. Let us write f j (a, x) = g α,j (a)x α where g α,j O(U). Let m be the number of the g α,j s and let us introduce m new variables b α,j. Consider the (analytic) map φ : U a (b α,j = g α,j (a)) α,j C m where C is a fixed arbitrary field. Now apply corollary 2 to this situation. Let k m = W be the obtained partition and for any W, let b W Q[s] be the polynomial given in 2. Now apply φ. This gives a partition U = φ (W). Since φ is analytic, the sets φ (W) are locally closed analytic subsets of U. It is then clear that for any W and a 0 φ (W), we have b W B v (f(a 0, x)). Proof of the main theorem In order to prove theorem, we shall first prove the following. Theorem 4. Let k be a field and f k[x] p. Then B v (f) Q[s] is not zero. Note that in [Br], the author proved (for p = ) that the global Bernstein polynomial has rational roots for any field k of characteristic zero. The proof of 4 will use the following propositions. Proposition 5. Let K be a subfield of a field L. Suppose that f K[x] p. Let b(s) K[s] be such that b(s)f s A n (L)[s]f s+v. Then b(s)f s A n (K)[s]f s+v. Proof. The proof is inspired by [Br] in which the case p = is treated. As L is a K- vector space, let us take {} {l γ ; γ Γ} as a basis so that L[x, s, f f p ]f s is a free K[x, s, f f p ]-module with {f s } {l γ f s ; γ Γ} as a basis. Now let P be in A n (L)[s] such that b(s)f s = Pf s+v. We decompose P = P 0 + P where P 0 A n (K)[s] and P has its coefficients in γ Γ K l γ. Now, we have: b(s)f s = P 0 f s+v + P f s+v, with b(s)f s and P 0 f s+v in K[x, s, f f p ]f s and P f s+v in K[x, s, ]l γ f s. By f f p γ Γ identification, we obtain: b(s)f s = P 0 f s+v. Proposition 6. ([Br] and [Br-Mai]) Given f C[x] p, we have :. The set {B v x 0 (f); x 0 C n } is finite. 2. B v (f) is the intersection of all the B v x 0 (f) where x 0 C n. Proof of theorem 4. We shall divide the proof into two steps: (a) First, suppose that k = C. By [S], [S2] and [Gy], as mentioned in the introduction, each B v x 0 (f) contains a non zero rational polynomial. By the previous proposition, we can take a finite product of these polynomials and obtain a rational polynomial in B v (f). (b) Now suppose that k is arbitrary. Let c,..., c N be all the coefficients that appear in the writing of the f j s and consider the field K = Q(c,..., c N ). There exist e,..., e N C and an injective morphism of fields φ : K C such that φ(c i ) = e i for any i. We

GENERIC BERNSTEIN-SATO POLYNOMIAL 5 denote by the same symbol φ the natural extension of φ from K[x] to C[x] and from A n (K)[s] to A n (C)[s]. Now, consider in C[s] the Bernstein-Sato ideal B v (φ(f)) (where φ(f) = (φ(f ),..., φ(f p )). Using the result of case (a), there exists b(s) Q[s] 0 that belongs to B v (φ(f)). So we have a functional equation: b(s)φ(f) s = P φ(f) s+v, where P A n (C)[s]. By proposition 5, we can suppose P A n (φ(k))[s]. Apply φ to this equation. Since b(s) Q[s], φ (b(s)) = b(s), thus we obtain: In conclusion b(s) is in B v (f). b(s)f s = φ (P) f s+v. Now we dispose of a sufficient material to give the Proof of theorem. By theorem 4, there exists a non zero rational polynomial b(s) in B v ((f) Q ). Hence, we have the following equation: ( [f]q ) s [U(s)] ( Q [f]q ) s+v, b(s) = [h] Q where U(s) A n (C)[s] and h C Q. It follows that: hb(s)f s U(s) f s+v 0 mod Q in C[x, f,...,f p, s]f s. Since f f p / Q[x] and Q is prime, we obtain: hb(s)f s U(s) f s+v Q[x, f f p, s]f s. This article is a more general and simplified version of some results of my thesis [Ba]. Acknowledgements I am grateful to my thesis advisor Michel Granger for having intoduced me to this subject and for valuable remarks. References [Ba] R. Bahloul, Contributions à l étude des idéaux de Bernstein-Sato d un point de vue constructif, thèse de doctorat, Université d Angers, 2003. [Be] I. N. Bernstein, The analytic continuation of generalised functions with respect to a parameter, Funct. Anal. Appl. 6, 273-285, 972. [Bi] H. Biosca, Polynômes de Bernstein génériques et relatifs associés à une application analytique, Thèse, Nice Sophia-Antipolis, 996. [Bi2] H. Biosca, Sur l existence de polynômes de Bernstein génériques associés à une application analytique, C. R. Acad. Sci. Paris Sér. I Math. 322, no. 7, 659-662, 996. [Bj] J.E. Björk, Dimensions over Algebras of Differential Operators, preprint, 973. [Br] J. Briançon, Passage du local au global, notes manuscrites. [Br-Ge-M] J. Briançon, F. Geandier, Ph. Maisonobe, Déformation d une singularité isolée d hypersurface et polynômes de Bernstein, Bull. Soc. Math. France 20, no, 5-49, 992. [Br-Mai] J. Briançon, Ph. Maisonobe, Remarques sur l idéal de Bernstein associé à des polynômes, prépublication Université Nice Sophia-Antipolis n 650, Mai 2002. [Br-Mai2] J. Briançon, Ph. Maisonobe, Examen de passage du local au global pour les polynômes de Bernstein-Sato, 990. [Ge] F. Geandier, Déformations à nombre de Milnor constant: quelques résultats sur les polynômes de Bernstein, Compositio Math. 77, no. 2, 3-63, 99.

6 ROUCHDI BAHLOUL [Gy] A. Gyoja, Bernstein-Sato s polynomial for several analytic functions, J. Math. Kyoto Univ. 33-2, 399-4, 993. [K] M. Kashiwara, B-functions and holonomic systems. Rationality of roots of B-functions, Invent. Math. 38, no, 33-53, 976/977. [L] A. Leykin, Constructibility of the set of polynomials with a fixed Bernstein-Sato Polynomial: an algorithmic approach, Journal of Symbolic Computation 32, 663-675, 200. [S] C. Sabbah, Proximité évanescente I. La structure polaire d un D-Module, Compositio Math. 62, 283-328, 987. [S2] C. Sabbah, Proximité évanescente II. Equations fonctionnelles pour plusieurs fonctions, Compositio Math. 64, 23-24, 987. Département de Mathématiques, U.M.R. 6093, Université d Angers, 2 Bd Lavoisier, 49045 Angers cedex 0, France E-mail address: rouchdi.bahloul@univ-angers.fr