International workshop on graphs, semigroups, and semigroup acts

Similar documents
Results on Planar Near Rings

Acta Universitatis Carolinae. Mathematica et Physica

Computing with finite semigroups: part I

REVIEW Chapter 1 The Real Number System

Chapter 1: Fundamentals

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI

Application of Exp-Function Method to. a Huxley Equation with Variable Coefficient *

CIRCULAR COLOURING THE PLANE

Intuitionistic Fuzzy Lattices and Intuitionistic Fuzzy Boolean Algebras

Pavel Rytí. November 22, 2011 Discrete Math Seminar - Simon Fraser University

N 0 completions on partial matrices

42 RICHARD M. LOW AND SIN-MIN LEE grphs nd Z k mgic grphs were investigted in [4,7,8,1]. The construction of mgic grphs ws studied by Sun nd Lee [18].

arxiv: v1 [math.ra] 1 Nov 2014

MathCity.org Merging man and maths

Pre-Session Review. Part 1: Basic Algebra; Linear Functions and Graphs

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

Introduction to Group Theory

Coalgebra, Lecture 15: Equations for Deterministic Automata

Frobenius numbers of generalized Fibonacci semigroups

The use of a so called graphing calculator or programmable calculator is not permitted. Simple scientific calculators are allowed.

Introduction To Matrices MCV 4UI Assignment #1

HW3, Math 307. CSUF. Spring 2007.

Improper Integrals, and Differential Equations

Binding Numbers for all Fractional (a, b, k)-critical Graphs

Zero-Sum Magic Graphs and Their Null Sets

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

The logarithmic mean is a mean

AN ALTERNATE PROOF OF THE DE MOIVRE'S THEOREM

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

S. S. Dragomir. 2, we have the inequality. b a

IN GAUSSIAN INTEGERS X 3 + Y 3 = Z 3 HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH

Simple Gamma Rings With Involutions.

Multivariate problems and matrix algebra

20 MATHEMATICS POLYNOMIALS

Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes

Theory of Computation Regular Languages

LECTURE 2: ARTIN SYMBOL, ARTIN MAP, ARTIN RECIPROCITY LAW AND FINITENESS OF GENERALIZED IDEAL CLASS GROUP

On the degree of regularity of generalized van der Waerden triples

Recitation 3: More Applications of the Derivative

ON A CONVEXITY PROPERTY. 1. Introduction Most general class of convex functions is defined by the inequality

Variational Techniques for Sturm-Liouville Eigenvalue Problems

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

International Journal of Mathematical Archive-8(10), 2017, Available online through ISSN

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

Realistic Method for Solving Fully Intuitionistic Fuzzy. Transportation Problems

A negative answer to a question of Wilke on varieties of!-languages

A General Dynamic Inequality of Opial Type

In this skill we review equations that involve percents. review the meaning of proportion.

Random subgroups of a free group

An iterative method for solving nonlinear functional equations

x = a To determine the volume of the solid, we use a definite integral to sum the volumes of the slices as we let!x " 0 :

Summer Work Packet for MPH Math Classes

The Shortest Confidence Interval for the Mean of a Normal Distribution

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Relating logic to formal languages

Definite Integrals. The area under a curve can be approximated by adding up the areas of rectangles = 1 1 +

1 1D heat and wave equations on a finite interval

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

September 13 Homework Solutions

WENJUN LIU AND QUÔ C ANH NGÔ

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics

Computing The Determinants By Reducing The Orders By Four

Path product and inverse M-matrices

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Hermite-Hadamard type inequalities for harmonically convex functions

INTRODUCTION TO LINEAR ALGEBRA

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

New Expansion and Infinite Series

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

MTH 505: Number Theory Spring 2017

Infinitely presented graphical small cancellation groups

I do slope intercept form With my shades on Martin-Gay, Developmental Mathematics

The Hadamard s Inequality for s-convex Function

On rational Diophantine Triples and Quadruples

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Sections 5.2: The Definite Integral

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Matrix Eigenvalues and Eigenvectors September 13, 2017

Algebraic systems Semi groups and monoids Groups. Subgroups and homomorphisms Cosets Lagrange s theorem. Ring & Fields (Definitions and examples)

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION

Toroidalization of Locally Toroidal Morphisms from N-folds to Surfaces

Definite integral. Mathematics FRDIS MENDELU

ON ALTERNATING POWER SUMS OF ARITHMETIC PROGRESSIONS

Theoretical foundations of Gaussian quadrature

Natural examples of rings are the ring of integers, a ring of polynomials in one variable, the ring

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Unit 1 Exponentials and Logarithms

1.9 C 2 inner variations

ECON 331 Lecture Notes: Ch 4 and Ch 5

The Algebra (al-jabr) of Matrices

Research Article Determinant Representations of Polynomial Sequences of Riordan Type

REPRESENTATION THEORY OF PSL 2 (q)

378 Relations Solutions for Chapter 16. Section 16.1 Exercises. 3. Let A = {0,1,2,3,4,5}. Write out the relation R that expresses on A.

Songklanakarin Journal of Science and Technology SJST R1 Akram. N-Fuzzy BiΓ -Ternary Semigroups

Free groups, Lecture 2, part 1

Advanced Calculus I (Math 4209) Martin Bohner

Transcription:

Interntionl workshop on grphs, semigroups, nd semigroup cts celebrting the 75th birthdy of Ulrich Knuer October 10 - October 13, 2017 Institute of Mthemtics Technicl University Berlin Strsse des 17. Juni 136, Berlin

Interntionl Workshop on Grphs, Semigroups, nd Semigroup Acts Institute of Mthemtics of the Technicl University Berlin, October 10 - October 13, 2017 On rnks of the plnrity of semigroup vrieties OmSPU D. V. Solomtin

Cyley grphs for semigroups Exmple:

Cyley grphs for semigroups rm r Exmple: C, r 1, m 0 r, m

Cyley grphs for semigroups Exmple: C rm r r, m, r 1, m 0 rm1 2 r1 r r1

Simple Cyley grphs for semigroups Exmple: C rm r r, m, r 1, m 0 rm1 2 r1 r SCy( C,m ) r r1

Cyley grphs for semigroups Exmple: Z,..., xy zt x, y, z, t,,...,, n 1 n 1, 2 n 1 2 n 1 2 n 1 1 2 n 2 n 2 n 1 1 2 0 n

Simple Cyley grphs for semigroups Exmple: Z n xy zt x, y, z, t,,...,, n 1 1, 2,..., n 1 2 n 1 2 n SCy( Zn ) 0

Plnr grphs

Plnr grphs

Plnr grphs Knuer K., Knuer U. On plnr right groups // Semigroup Forum, 2015. vol.92.

K K 5 3, 3 C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 K K 5 3, 3

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 Behnm Khosrvi, Bhmn Khosrvi, A Chrcteriztion of Cyley Grphs of Brndt Semigroups // Bull. Mlys. Mth. Sci. Soc. (2) 35(2) (2012), 399 410 K K 5 3, 3

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 Behnm Khosrvi, Bhmn Khosrvi, A Chrcteriztion of Cyley Grphs of Brndt Semigroups // Bull. Mlys. Mth. Sci. Soc. (2) 35(2) (2012), 399 410 M.Rungni1, S.Pnm, S.Arworn, On Cyley isomorphisms of left nd right groups // Interntionl Journl of Pure nd Applied Mthemtics, Volume 80 No. 4 2012, 561-571 K K 5 3, 3

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 Behnm Khosrvi, Bhmn Khosrvi, A Chrcteriztion of Cyley Grphs of Brndt Semigroups // Bull. Mlys. Mth. Sci. Soc. (2) 35(2) (2012), 399 410 M.Rungni1, S.Pnm, S.Arworn, On Cyley isomorphisms of left nd right groups // Interntionl Journl of Pure nd Applied Mthemtics, Volume 80 No. 4 2012, 561-571 A.Georgkopoulos, The Plnr Cubic Cyley Grphs // Hbilittionsschrift, Hmburg 2012 K K 5 3, 3

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 Behnm Khosrvi, Bhmn Khosrvi, A Chrcteriztion of Cyley Grphs of Brndt Semigroups // Bull. Mlys. Mth. Sci. Soc. (2) 35(2) (2012), 399 410 M.Rungni1, S.Pnm, S.Arworn, On Cyley isomorphisms of left nd right groups // Interntionl Journl of Pure nd Applied Mthemtics, Volume 80 No. 4 2012, 561-571 A.Georgkopoulos, The Plnr Cubic Cyley Grphs // Hbilittionsschrift, Hmburg 2012 Q.Meng, B.Zhng, Generlized Cyley grphs of clss of semigroups // South Asin Journl of Mthemtics 2013, Vol. 3 ( 4 ) : 272-278 K K 5 3, 3

C.Droms, Infinite-ended groups with plnr Cyley grphs // Deprtment of Mthemtics & Sttistics Jmes Mdison University, Hrrisonburg, 2006 Xi Zhng, Clifford semigroups with genus zero // Proceedings of the Interntionl Conference on Semigroups, cts nd ctegories with pplictions to grphs : to celebrte the 65th birthdys of M.Kilp nd U.Knuer, University of Trtu, June 27-30, 2007 Behnm Khosrvi, Bhmn Khosrvi, A Chrcteriztion of Cyley Grphs of Brndt Semigroups // Bull. Mlys. Mth. Sci. Soc. (2) 35(2) (2012), 399 410 M.Rungni1, S.Pnm, S.Arworn, On Cyley isomorphisms of left nd right groups // Interntionl Journl of Pure nd Applied Mthemtics, Volume 80 No. 4 2012, 561-571 A.Georgkopoulos, The Plnr Cubic Cyley Grphs // Hbilittionsschrift, Hmburg 2012 Q.Meng, B.Zhng, Generlized Cyley grphs of clss of semigroups // South Asin Journl of Mthemtics 2013, Vol. 3 ( 4 ) : 272-278 A.Georgkopoulos, M.Hmnn, The plnr Cyley grphs re effectively enumerble// Supported by EPSRC grnt EP/L002787/1, Hmburg, June 10, 2015 K K 5 3, 3

Trees K K 5 3, 3

Trees K K 5 3, 3

Trees A.L.Mkriev, The ordinl sums of semigroup with cyclic Cyley grphs // Herld of Omsk University Omsk: OmSU n.. F.M. Dostoevsky, 4 (2008), pp. 12 17. (in Russin). K K 5 3, 3

K3 K K 5 3, 3

Outerplnr grphs K 3 K K 5 3, 3

Outerplnr grphs D.V.Solomtin, Some semigroups with outerplnr Cyley grphs // Siberin Electronic Mthemticl Reports, 8 (2011), pp. 191 212. (in Russin). K 3 K K 5 3, 3

K3 K K 4 2, 3 K K 5 3, 3

Generlized outerplnr grphs K 3 K K 4 2, 3 K K 5 3, 3

Generlized outerplnr grphs Sedláček J. On generliztion of outerplnr grphs (in Czech) // Čsopis Pěst. Mt, 1988. Vol. 113, No. 2. P. 213 218. K 3 K K 4 2, 3 K K 5 3, 3

Generlized outerplnr grphs Sedláček J. On generliztion of outerplnr grphs (in Czech) // Čsopis Pěst. Mt, 1988. Vol. 113, No. 2. P. 213 218. K 3 K K 4 2, 3 K K 5 3, 3 D.V. Solomtin, P.O. Mrtynov. Finite free commuttive semigroups nd semigroups with zero, dmits generlized outerplnr Cyley grphs.

K 3 K K 4 2, 3 G K K 1 G 12 5 3, 3

Linkless embedding K 3 K K 4 2, 3 G K K 1 G 12 5 3, 3

Linkless embedding K 6 K 3 K K 4 2, 3 G K K 1 G 12 5 3, 3

Linkless embedding K 6 K 3 K K 4 2, 3 G K K 1 G 12 5 3, 3 Schs, 1983; Robertson, Seymour, Thoms, 1995.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Question: How to systemtize isolted exmples of semigroups?

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Question: How to systemtize isolted exmples of semigroups? Answer: SEE TO SEMIGROUP VARIETIES

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s We study the concept of the plnrity rnk suggested by L.M.Mrtynov for semigroup vrieties [*].

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s We study the concept of the plnrity rnk suggested by L.M.Mrtynov for semigroup vrieties [*]. New Problems of Algebr nd Logic, Omsk Algebric Seminr. Avilble t: http://www.mthnet.ru/php/seminrs.phtml? presentid=12900 (in Russin)

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Let V be vriety of semigroups. DEFINITION

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s DEFINITION Let V be vriety of semigroups. If there is nturl number r 1 tht ll V-free semigroups of rnks r llow plnr Cyley grphs

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s DEFINITION Let V be vriety of semigroups. If there is nturl number r 1 tht ll V-free semigroups of rnks r llow plnr Cyley grphs nd the V-free semigroup of rnk r+1 doesn t llow plnr Cyley grph,

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s DEFINITION Let V be vriety of semigroups. If there is nturl number r 1 tht ll V-free semigroups of rnks r llow plnr Cyley grphs nd the V-free semigroup of rnk r+1 doesn t llow plnr Cyley grph, then this number r is clled the plnrity rnk for vriety V.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s DEFINITION Let V be vriety of semigroups. If there is nturl number r 1 tht ll V-free semigroups of rnks r llow plnr Cyley grphs nd the V-free semigroup of rnk r+1 doesn t llow plnr Cyley grph, then this number r is clled the plnrity rnk for vriety V. If such number r doesn t exist, then we sy tht the vriety V hs the infinite plnrity rnk.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s DEFINITION Let V be vriety of semigroups. If there is nturl number r 1 tht ll V-free semigroups of rnks r llow plnr Cyley grphs nd the V-free semigroup of rnk r+1 doesn t llow plnr Cyley grph, then this number r is clled the plnrity rnk for vriety V. If such number r doesn t exist, then we sy tht the vriety V hs the infinite plnrity rnk. (L. M. Mrtynov)

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): 1 2 n S, b b 1

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): 1 2 n r+m-1 r+1 r b t S, b b 1 r+m-1 b r+1 b r b b b r+m-1 b 2 r+1 b 2 r b 2 b 2 b 2 r+m-1 b t-1 r+1 b t-1 r b t-1 b t-1 b t-1 S rm, b, b 1 r t

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): 1 2 n r+m-1 r+1 r b t S, b b 1 r+m-1 b r+1 b r b b b r+m-1 r r+m-1 b 2 r+1 b 2 r b 2 b 2 b 2 r+m-1 c r+m-1 bc r+m-1 b r b b b r+m-1 b t-1 r+1 b t-1 r b t-1 b t-1 b t-1 r c r bc S rm, b, b 1 r t c 2 c bc c bc S, b, c b b, c c, bc cb, rm r, b 2 b, c 2 1

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): A m = vr{x m 1 i p i = 1} S vr{ x x } i, p M vriety of ll commuttive monoids

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): A m = vr{x m 1 i p i = 1} S vr{ x x } i, p M vriety of ll commuttive monoids 1 1) r(v) = 1 V = A m or V =, m, ( i 1 p 2) S i, p 2 1 2) r(v) = 2 V = M or V = or V = S i, i 2 i 1) 3) r(v) = 3 V = A 2 or 1 S 1,1 1 S i 1,1 2,1 ( 1 2

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 1 (in the clss of commuttive monoids): A m = vr{x m 1 i p i = 1} S vr{ x x } i, p M vriety of ll commuttive monoids 1 1) r(v) = 1 V = A m or V =, m, ( i 1 p 2) S i, p 2 1 2) r(v) = 2 V = M or V = or V = S i, i 2 i 1) 3) r(v) = 3 V = A 2 or 1 S 1,1 1 S i 1,1 2,1 ( 1 2 D. V. Solomtin, Plnrity rnks of vrieties of commuttive monoids, Herld of Omsk University Omsk: OmSU n.. F.M. Dostoevsky, 4 (2012), pp. 41 45. (in Russin).

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups):

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups): Illustrtion vr{x 1+m = x 1 }, m > 1

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups): Illustrtion Cy, b, c, d xy yx x, y, b, c, d vr{x 1+m = x 1 }, m > 1

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups): Illustrtion Cy, b, c, d xy yx x, y, b, c, d not plnr vr{x 1+m = x 1 }, m > 1

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups): Non-trivil vriety of commuttive semigroups either hs infinite rnk of plnrity nd t the sme time coincides with the vriety of semigroups with zero multipliction or hs rnk of plnrity 1, 2 or 3.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 2 (in the clss of commuttive semigroups): Non-trivil vriety of commuttive semigroups either hs infinite rnk of plnrity nd t the sme time coincides with the vriety of semigroups with zero multipliction or hs rnk of plnrity 1, 2 or 3. D. V. Solomtin, The rnks of plnrity for vrieties of commuttive semigroups, Prikldny Diskretny Mtemtik Tomsk: TSU, 4 (2016), pp. 50 64. (in Russin).

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse):

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): The rnk of the plnrity of the vriety of idempotent semigroups is equl to 3;

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): The rnk of the plnrity of the vriety of idempotent semigroups is equl to 3; the rnk of the plnrity of the vriety vr{xw = w; wx = w} of nilsemigroups for ny word w tht does not contin the vrible x is equl to infinity;

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): The rnk of the plnrity of the vriety of idempotent semigroups is equl to 3; the rnk of the plnrity of the vriety vr{xw = w; wx = w} of nilsemigroups for ny word w tht does not contin the vrible x is equl to infinity; the rnk of plnrity of the permuttion vriety of semigroups is equl to 1 or 2.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): The rnk of the plnrity of the vriety of idempotent semigroups is equl to 3; the rnk of the plnrity of the vriety vr{xw = w; wx = w} of nilsemigroups for ny word w tht does not contin the vrible x is equl to infinity; the rnk of plnrity of the permuttion vriety of semigroups is equl to 1 or 2. D. V. Solomtin, On rnks of the plnrity of vrieties of ll idempotent semigroups, nilsemigroups, nd semigroups with the permuttion identity, Herld of Omsk University Omsk: OmSU n.. F.M. Dostoevsky, (2017), 10 p, to pper. (in Russin)

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): Illustrtion Ν w vr{ xw w, wx w} P n vr{ x x2 xn x1 x2 x 1 n } I vr{ xx x}

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): 1 ) ( 1 1 1 x x xx F I 6,, ) ( 2 1 2 1 2 x x xx F I 159,,,, ) ( 3 2 1 3 2 1 3 x x xx F I 380 332,,,,,, ) ( 4 3 2 1 4 3 2 1 4 x x xx F I 765 2 751884 514,,,,,,,, ) ( 5 4 3 2 1 5 4 3 2 1 5 x x xx F I vr{ x} xx I }, vr{ w wx w xw w Ν } vr{ 2 1 2 1 n n n x x x x x x P V V n n F,,, ) ( 2 1 Illustrtion

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 3 ( I))

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 3 ( I))

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 3 ( I))

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 3 ( I)) plnr

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 4 ( I))

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 4 ( I)) bcd bcdb bcdc bcd bcdbb bcdbbd bcdb bcdbbd bcdbbdc bcdcb bcdbc bcdcbd bcdcbd bcdbcd bcdcbdb bcdbcd bcdbc bcdb

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): SCy( F 4 ( I)) bcd bcdb bcdc bcd bcdb bcdbb bcdbbd bcdbbd bcdbbdc bcdcb not plnr bcdbc bcdcbd bcdcbd bcdbcd bcdcbdb bcdbcd bcdbc bcdb

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 3 (in the generl cse): Illustrtion SCy( F 1 SCy( F SCy( F 2 3 ( I)), ( I)), ( I)) SCy( F 4 ( I)) plnr not plnr r( I) 3

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s SUBDEFINITION

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s SUBDEFINITION The vriety, ech semigroup of which dmits plnr Cyley grph, clled plnr vriety.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 4 (plnr vriety of commuttive semigroups):

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 4 (plnr vriety of commuttive semigroups): Z n xy zt x, y, z, t,,...,, n 1 1, 2,..., n 1 2 n 1 2 n SCy( Zn ) 0

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 4 (plnr vriety of commuttive semigroups): The vriety of semigroups with zero multipliction is only one nontrivil plnr vriety of commuttive semigroups.

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 4 (plnr vriety of commuttive semigroups): The vriety of semigroups with zero multipliction is only one nontrivil plnr vriety of commuttive semigroups. D. V. Solomtin, Plnr vrieties of commuttive semigroups, Herld of Omsk University Omsk: OmSU n.. F.M. Dostoevsky, 2(2015), pp.17 22. (in Russin)

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups):

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups): The vriety vr{xy = zt} of semigroups with zero multipliction, the vriety vr{xy = x} of left-zero semigroups, the vriety vr{xy = xz} nd only they re non-trivil plnr vrieties of semigroups

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups): The vriety vr{xy = zt} of semigroups with zero multipliction, the vriety vr{xy = x} of left-zero semigroups, the vriety vr{xy = xz} nd only they re non-trivil plnr vrieties of semigroups D. V. Solomtin, Plnr vrieties of semigroups, Sib. Electr. Mth. Reports, 12 (2015), pp. 232 247. (in Russin)

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups): vr xy zt

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups): vr xy zt vr xy x

O n r n k s o f t h e p l n r i t y o f s e m i g r o u p v r i e t i e s Theorem 5 (plnr vrieties of semigroups): vr xy zt vr xy x vr xy xz

Thnk you for ttention! Solomtin_DV @omgpu.ru