Similar documents
Development of open-source software HΦ

3.6 Software Advancement Projects and GPGPU Support

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Thermal pure quantum state

Quantum Lattice Models & Introduction to Exact Diagonalization

Thermal transport in the Kitaev model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Fermionic tensor networks

High-Temperature Criticality in Strongly Constrained Quantum Systems

Numerical diagonalization studies of quantum spin chains

Spin liquid phases in strongly correlated lattice models

Gapless Spin Liquids in Two Dimensions

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Heisenberg-Kitaev physics in magnetic fields

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

The density matrix renormalization group and tensor network methods

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Massively parallel Monte Carlo simulation of a possible topological phase transition in two-dimensional frustrated spin systems

Tuning the Quantum Phase Transition of Bosons in Optical Lattices

Solving the sign problem for a class of frustrated antiferromagnets

Quantum spin systems - models and computational methods

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Quantum Spin-Metals in Weak Mott Insulators

Magnetism and Superconductivity in Decorated Lattices

Quantum Monte Carlo Simulations in the Valence Bond Basis

WORLD SCIENTIFIC (2014)

Simulation of Quantum Many-Body Systems

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Verwey transition in magnetite (Fe3O4), unveiled?

Jim Freericks (Georgetown University) Veljko Zlatic (Institute of Physics, Zagreb)

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Yusuke Tomita (Shibaura Inst. of Tech.) Yukitoshi Motome (Univ. Tokyo) PRL 107, (2011) arxiv: (proceedings of LT26)

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

arxiv: v1 [cond-mat.str-el] 22 Sep 2016

Quantum simulations, adiabatic transformations,

Machine learning quantum phases of matter

Ground-state properties, excitations, and response of the 2D Fermi gas

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Exact results concerning the phase diagram of the Hubbard Model

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

Metal-to-Insilator Phase Transition. Hubbard Model.

Stochastic series expansion (SSE) and ground-state projection

Stabilizing Canonical- Ensemble Calculations in the Auxiliary-Field Monte Carlo Method

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Quantum quenches in the thermodynamic limit

Spin liquids in frustrated magnets

Representation theory & the Hubbard model

Time Evolving Block Decimation Algorithm

Techniques for translationally invariant matrix product states

arxiv: v1 [cond-mat.str-el] 22 Jun 2007

Magnets, 1D quantum system, and quantum Phase transitions

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

Quantum Spin Liquids and Majorana Metals

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Deep Learning Topological Phases of Random Systems

arxiv:cond-mat/ v1 [cond-mat.str-el] 29 Mar 2005

Ground State Projector QMC in the valence-bond basis

Magnetic response of the J 1 -J 2 Spin Hamiltonian and its Implication for FeAs

Simulation of Quantum Many-Body Systems

Topological order in the pseudogap metal

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

MOTTNESS AND STRONG COUPLING

2D Bose and Non-Fermi Liquid Metals

The Quantum Heisenberg Ferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Auxiliary-field quantum Monte Carlo methods in heavy nuclei

Coupled Cluster Method for Quantum Spin Systems

Time-dependent DMRG:

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

PHY305: Notes on Entanglement and the Density Matrix

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Decoherence and Thermalization of Quantum Spin Systems

Multipartite entanglement in fermionic systems via a geometric

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

The nature of superfluidity in the cold atomic unitary Fermi gas

Fermionic tensor networks

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

The Hubbard model for the hydrogen molecule

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

arxiv:quant-ph/ v2 24 Dec 2003

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Magnetic fields and lattice systems

Stability of semi-metals : (partial) classification of semi-metals

Theoretical Study of High Temperature Superconductivity

Quantum order-by-disorder in Kitaev model on a triangular lattice

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Detecting collective excitations of quantum spin liquids. Talk online: sachdev.physics.harvard.edu

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Jung Hoon Kim & Jung Hoon Han

Transcription:

http://ma.cms-initiative.jp/ja/listapps/hphi

Developers of HΦ M. Kawamura T. Misawa K. Yoshimi Y. Yamaji S. Todo N. Kawashima Development of HΦ is supported by Project for advancement of software usability in materials science by ISSP

For Hubbard model, spin-s Heisenberg model, Kondo-lattice model with arbitrary one-body and two-body interactions - Full diagonalization - Ground state calculations by Lanczos method - Finite-temperature calculations by thermal pure quantum (TPQ) states - Dynamical properties (optical conductivity..)

~ 4 N ~ 2 N J

e.g. Hubbard model Electrons as Ĥ t = t X waves (ĉ i ĉj +ĉ j ĉi ) Ĥ U = X i hi,ji, Electrons as particles Ĥ = Ĥt + ĤU ˆn i"ˆn i#, ˆn i =ĉ i ĉi U: onsite Coulomb Relations between 2nd-quantized operators (these are all!) {ĉ i, ĉ j 0 } =ĉ i ĉj 0 +ĉ j 0ĉ i = i,j, 0 {ĉ i, ĉ j } =0! ĉ 0 i ĉ i =0 {ĉ i, ĉ j 0} =0! ĉ i ĉ i =0 t: hopping Pauli s principle

Full diagonalization by hand Matrix representation of Hamiltonian (ex. 2 site Hubbard model) Real-space configuration ", #i = c 1" c 2" 0i After some tedious calculations, h", # Ĥt "#, 0i = h", # (t X c 1 c 2 + c 2 c 1 ) "#, 0i = t H = 0 B @ ", #i #, "i "#, 0i 0, "#i 1 0 0 t t 0 0 t t C t t U 0 A t t 0 U Diagonalization eigenvalues, eigenvectors Problem is completely solved (HΦ)

H ij = hi Ĥ ji ii real-space basis N s C Ns /2

H n x 0 = E n 0 h a 0 e 0 + X i6=0 Sz=0 Ei E 0 n a i e i i

waking sleeping Φ= +

-Conventional finite-temperature cal.: ensemble average is necessary Full diag. is necessary It is shown that thermal pure quantum state (TPQ) states enable us to calculate the physical properties at finite temperatures w/o ensemble average [Sugiura-Shimizu, PRL 2012,2013] Cost of finite-tempeature calculations ~ Lanczos method

Sugiura-Shimizu method [mtpq state] Procedure 0 i : random vector S. Sugiura and A. Shimizu, PRL 2012 & 2013 k i (l Ĥ/N s ) k 1 i (l Ĥ/N s ) k 1 i l:constant larger the maximum eigenvalues u k h k Ĥ ki/n s k 2k/N s (l u k ), hâi k h k  ki All the finite temperature properties can be calculated by using one thermal pure quantum [TPQ] state.

1. Random vector (high-temperature limit) equally includes all eigenvectors 2. Commutative quantities can be calculated by single wave function 3. Non-commutative quantities can be also calculated by single wave function Proofs: Hams and De Raedt PRE 2000; Sugiura and Shimizu PRL 2012,2013 Thermal Pure Quantum state ( ) by Sugiura and Shimizu

Drastic reduction of numerical cost Heisenberg model, 32 sites, Sz=0 Full diagonalization: Dimension of Hamiltonian ~ 10 8 10 8 Memory ~ 3E Byte Almost impossible. TPQ method: Only two vectors are required: dimension of vector ~ 10 8 10 8 Memory ~ 10 G Byte Possible even in lab s cluster machine!

For Hubbard model, spin-s Heisenberg model, Kondo-lattice model - Full diagonalization - Ground state calculations by Lanczos method - Finite-temperature calculations by thermal pure quantum (TPQ) states - Dynamical properties (optical conductivity..)

http://ma.cms-initiative.jp/en/application-list/hphi/hphi GitHub https://github.com/qlms/hphi

ex. linux + gcc-mac tar xzvf HPhi-release-1.2.tar.gz cd HPhi-release-1.2 bash HPhiconfig.sh gcc-mac make HPhi For details, $ bash HPhiconfig.sh Usage:./HPhiconfig.sh system_name system_name should be chosen from below: sekirei : ISSP system-b maki : ISSP system-c intel : Intel compiler + Linux PC mpicc-intel : Intel compiler + Linux PC + mpicc gcc : GCC + Linux gcc-mac : GCC + Mac

L = 4 model = Spin method = Lanczos lattice = square lattice J = 1.0 2Sz = 0

$ cat output/zvo_energy.dat Energy -11.2284832084288109 Doublon 0.0000000000000000 Sz 0.0000000000000000 $ tail output/zvo_lanczos_step.dat stp=28-11.2284832084-9.5176841765-8.7981539671-8.5328120558 stp=30-11.2284832084-9.5176875029-8.8254961060-8.7872255591 stp=32-11.2284832084-9.5176879460-8.8776934418-8.7939798590 stp=34-11.2284832084-9.5176879812-8.8852955092-8.7943260103 stp=36-11.2284832084-9.5176879838-8.8863380562-8.7943736678 stp=38-11.2284832084-9.5176879839-8.8864307327-8.7943782609 stp=40-11.2284832084-9.5176879839-8.8864405361-8.7943787937 stp=42-11.2284832084-9.5176879839-8.8864422628-8.7943788984 stp=44-11.2284832084-9.5176879839-8.8864424018-8.7943789077 stp=46-11.2284832084-9.5176879839-8.8864424075-8.7943789081

c j i hc i $ head output/zvo_cisajs.dat 0 0 0 0 0.5000000000 0.0000000000 0 1 0 1 0.5000000000 0.0000000000 hc 0# c 0#i hc 0" c 0"i $ head output/zvo_cisajscktalt.dat 0 0 0 0 0 0 0 0 0.5000000000 0.0000000000 0 0 0 0 0 1 0 1 0.0000000000 0.0000000000 0 0 0 0 1 0 1 0 0.1330366332 0.0000000000 0 0 0 0 1 1 1 1 0.3669633668 0.0000000000 hc 0# c 0#c 0# c 0#i hc 0# c 0#c 0" c 0"i hc 0# c 0#c 1# c 1#i hc 0# c 0#c 1" c 1"i

HPhi/samples/Standard/ StdFace.def for Hubbard model, Heisenberg model, Kitaev model, Kondo-lattice model By changing StdFace.def slightly, you can easily perform the calculations for different models. Cautions - Do not input too large system size (upper limit@laptop: spin 1/2 24 sites, Hubbard model 12 sites) - Lanczos method is unstable for too small size (dim. > 1000) -TPQ method does not work well for small size (dim. > 1000)

H+ = X i,j,k,l X 1, 2, 3, 4 I ijkl 1 2 3 4c i 1 c j 2 c k 3 c l 4 # of interactions real imaginary i σ1 j σ2 k σ3 l σ4 You can specify arbitrary two-body interactions You can treat any lattice structures

- CoulombIntra H+ = i U i n i n i ================================= NCoulombintra 2 ================================= ===========Exchange============== ================================= 0 4.0 1 4.0 -Exchange H+ = i,j J Ex ij (S + i S j + S i S+ j ) ================================= NExchange 2 ================================= ===========Exchange============== ================================= 0 1 0.5 1 2 0.5

Comparison of FullDiag, TPQ, Lanczos method Hubbard model, L=8, U/t=8, half filling, Sz=0 E/Ns 2.5 2 1.5 1 0.5 TPQ FullDiag Lanczos D/Ns 0.25 0.2 0.15 0.1 TPQ FullDiag Lanczos 0 0.05-0.5 10 10 10 10 10 T/t -2-1 0 1 2 0 10 10 10 10 10 T/t -2-1 0 1 2

1. Finite-temperature crossover phenomenon in the S=1/2 antiferromagnetic Heisenberg model on the kagome lattice Tokuro Shimokawa, Hikaru Kawamura: J. Phys. Soc. Jpn. 85, 113702 (2016) 2. Finite-Temperature Signatures of Spin Liquids in Frustrated Hubbard Model Takahiro Misawa, Youhei Yamaji (arxiv:1608.09006) 3. Four-body correlation embedded in antisymmetrized geminal power wave function Airi Kawasaki, Osamu Sugino, The Journal of Chemical Physics 145, 244110 (2016) 4. Liquid-Liquid Transition in Kitaev Magnets Driven by Spin Fractionalization Joji Nasu, Yasuyuki Kato, Junki Yoshitake, Yoshitomo Kamiya, Yukitoshi Motome, Phys. Rev. Lett. 118,137203 (2017)

0. (Lanczos ) ) 1. spin 1/2 36 sites, Hubbard 18 sites [ 1(kagome),2(t-t Hubbard)] 2. HPhi [ 4(extended Kitaev model)] 3. [ 3(extended geminal wave functions)] ~20 site Hubbard model 4., ( )[Na2IrO3, Yamaji et al.]

Frustrated t-t Hubbard model Lattice geometry Schematic phase diagram spin liquid? Neel (π,π) stripe (π,0) t t Previous studies 0 ~0.75 ~1.0 t /t PIRG: Mizusaki and Imada, PRB 2004 VMC: L. Tocchio et al., PRB(R) 2008 NB: Spin liquid is also reported in J1- J2 Heisenberg model Spin liquid may appear at intermediate region

W = 4 L = 4 model = "FermionHubbard" method = "TPQ" lattice = "Tetragonal" t = 1.0 t' = 0.75 U = 10.0 nelec = 16 2Sz = 0

Signature of spin liquid [U/t=10] specific heat entropy 0.6 t /t=0.50 t /t=0.75 t /t=1.00 1.0 0.8 t /t=0.50 t /t=0.75 t /t=1.00 C/Ns 0.4 0.2 Snorm 0.6 0.4 0.2 0 0.0 10-2 10-1 10 0 10 1 10 2 10-2 10-1 10 0 10 1 10 2 T/t At t'/t~0.75 large entropy remains at low temperatures Signature of spin liquid T/t

SC@ISSP: - It is very easy (cheap) to perform the calculations up to spin 1/2 = 32 sites, Hubbard = 16 sites - It is possible (but expensive!) to perform the calculations up to spin 1/2 40 sites, Hubbard 20 sites (state-of-the-art calculations 5-10 years ago)

Summary - Explained basic properties of HΦ: Full diagonalization, Lanzcos method, TPQ method for Heisenberg, Hubbard, Kondo, Kitaev model. - Explained how to use HΦ: Very easy to start calculations by using Standard mode Easy to treat general Hamiltonians by using Expert mode - Shown applications of HΦ: Found the finite-temperature signature of QSL in t-t Hubbard model If you have any questions, please join HPhi ML and ask questions