R-systems. Pavel Galashin. MIT AMS Joint Meeting, San Diego, CA, January 13, 2018 Joint work with Pavlo Pylyavskyy

Similar documents
R-SYSTEMS PAVEL GALASHIN AND PAVLO PYLYAVSKYY

A (lattice) path formula for birational rowmotion on a product of two chains

Birational Rowmotion: order, homomesy, and cluster connections

Quiver mutations. Tensor diagrams and cluster algebras

Dynamical algebraic combinatorics

Brane Tilings and Cluster Algebras

arxiv: v1 [math.co] 20 Dec 2016

Bases for Cluster Algebras from Surfaces

Cluster Variables and Perfect Matchings of Subgraphs of the dp 3 Lattice

Diophantine integrability

The toggle group, homomesy, and the Razumov-Stroganov correspondence

The Greedy Basis Equals the Theta Basis A Rank Two Haiku

Strange Combinatorial Connections. Tom Trotter

arxiv: v1 [nlin.si] 31 Jul 2013

Cylindric Young Tableaux and their Properties

arxiv:nlin/ v1 [nlin.si] 13 Apr 2005

Colored BPS Pyramid Partition Functions, Quivers and Cluster. and Cluster Transformations

Cluster algebras and applications

Review of Some Concepts from Linear Algebra: Part 2

Algebraic entropy for semi-discrete equations

Orbits of plane partitions of exceptional Lie type

A FAMILY OF INTEGER SOMOS SEQUENCES

LOG-CANONICAL COORDINATES FOR POISSON BRACKETS AND RATIONAL CHANGES OF COORDINATES

arxiv:nlin/ v2 [nlin.si] 15 Sep 2004

Combinatorics of the Del-Pezzo 3 Quiver: Aztec Dragons, Castles, and Beyond

Weak Separation, Pure Domains and Cluster Distance

Homomesy of Alignments in Perfect Matchings

A SURVEY OF CLUSTER ALGEBRAS

Symmetry Reductions of Integrable Lattice Equations

arxiv: v1 [math.co] 19 Feb 2019

Problem 1. Let f n (x, y), n Z, be the sequence of rational functions in two variables x and y given by the initial conditions.

Sign variation, the Grassmannian, and total positivity

ODD PARTITIONS IN YOUNG S LATTICE

Counting Three-Line Latin Rectangles

Root system chip-firing

PROBLEMS FROM CCCC LIX

Quivers of Period 2. Mariya Sardarli Max Wimberley Heyi Zhu. November 26, 2014

Combinatorics of Theta Bases of Cluster Algebras

Computers and Mathematics with Applications

Geometry Problem Solving Drill 08: Congruent Triangles

A Conjectured Combinatorial Interpretation of the Normalized Irreducible Character Values of the Symmetric Group

PERIODICITY AND INTEGRABILITY FOR THE CUBE RECURRENCE

Matrix Powers and Applications

LCM LATTICES SUPPORTING PURE RESOLUTIONS

Q(x n+1,..., x m ) in n independent variables

SOPHIE MORIER-GENOUD, VALENTIN OVSIENKO AND SERGE TABACHNIKOV

Introduction Given a bipartite quiver Q which is just a directed bipartite graph without directed cycles of length 1 and 2, one can define a certain

On Tensor Products of Polynomial Representations

Cluster algebras and Markoff numbers

Lecture 2: Cluster complexes and their parametrizations

Y-systems and generalized associahedra

The long way home. Orbits of plane partitions. Oliver Pechenik. University of Michigan. UM Undergraduate Math Club October 2017

The Rule of Three for commutation relations

Algebra I Lesson 6 Monomials and Polynomials (Grades 9-12) Instruction 6-1 Multiplying Polynomials

Dynamics of the birational maps arising from F 0 and dp 3 quivers

A Characterization of (3+1)-Free Posets

THE CLASSIFICATION OF ZAMOLODCHIKOV PERIODIC QUIVERS

Cyclic symmetry in the Grassmannian

Perfect matchings for the three-term Gale-Robinson sequences

Jessica Striker. November 10, 2015

The Hilbert Polynomial of the Irreducible Representation of the Rational Cherednik Algebra of Type A n in Characteristic p n

CSE 140: Components and Design Techniques for Digital Systems

MATROID THEORY, Second edition

ARTIN/Integrable Systems Workshop. Programme

On intersections of complete intersection ideals

Tetrahedron equation and quantum R matrices for q-oscillator representations

Seul Lee, Dong-Soo Kim and Hyeon Park

Combinatorics of the Del-Pezzo 3 Quiver: Aztec Dragons, Castles, and Beyond

Classification of effective GKM graphs with combinatorial type K 4

Logarithmic functional and reciprocity laws

Resonance in orbits of plane partitions and increasing tableaux. Jessica Striker North Dakota State University

Lecture 4: Four Input K-Maps

Mutations of non-integer quivers: finite mutation type. Anna Felikson

About Integrable Non-Abelian Laurent ODEs

Introduction to cluster algebras. Andrei Zelevinsky (Northeastern University) MSRI/Evans Lecture, UC Berkeley, October 1, 2012

Symbiosis and Reciprocity. a talk in honor of Richard A. Brualdi, RAB. April 30, 2005

SIGNATURES OVER FINITE FIELDS OF GROWTH PROPERTIES FOR LATTICE EQUATIONS

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

2 k, 2 k r and 2 k-p Factorial Designs

CHAPTER 3 BOOLEAN ALGEBRA

Toric Ideals, an Introduction

CENTROIDS AND SOME CHARACTERIZATIONS OF PARALLELOGRAMS

Linear precision for parametric patches Special session on Applications of Algebraic Geometry AMS meeting in Vancouver, 4 October 2008

CLUSTER ALGEBRA ALFREDO NÁJERA CHÁVEZ

Maintaining Mathematical Proficiency

Computing toric degenerations of flag varieties

A MARKOV CHAIN ON THE SYMMETRIC GROUP WHICH IS SCHUBERT POSITIVE?

Singularities, Algebraic entropy and Integrability of discrete Systems

Cluster algebras, snake graphs and continued fractions. Ralf Schiffler

arxiv:solv-int/ v1 20 Oct 1993

The random continued fractions of Dyson and their extensions. La Sapientia, January 25th, G. Letac, Université Paul Sabatier, Toulouse.

Models for the 3D singular isotropic oscillator quadratic algebra

MODULES OVER CLUSTER-TILTED ALGEBRAS DETERMINED BY THEIR DIMENSION VECTORS

From Yang-Baxter maps to integrable quad maps and recurrences

Noetherian property of infinite EI categories

Math 121 Homework 6 Solutions

Algebraic and Enumerative Combinatorics in Okayama

arxiv: v1 [quant-ph] 19 Jan 2010

CM2104: Computational Mathematics General Maths: 2. Algebra - Factorisation

The Gaussian coefficient revisited

Transcription:

R-systems Pavel Galashin MIT galashin@mit.edu AMS Joint Meeting, San Diego, CA, January 13, 2018 Joint work with Pavlo Pylyavskyy Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 1 / 22

Part 1: Definition

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c + d) d(c + d) a d bc X X ac Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c + d) d(c + d) a d bc X X ac Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c b + d) d(c + c d) a d a bc X X ac d Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c b + d) d(c + c d) a d a bc X X ac d ( ) ( v V, X v X v = X w v w u v 1 X u ) 1 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c + d) d(c + d) a d bc X X ac ( ) ( v V, X v X v = X w v w u v 1 X u ) 1 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

A system of equations Let G = (V, E) be a strongly connected digraph. b c c(c + d) d(c + d) a d bc X X ac v V, X v X v = ( ) ( X w v w u v ( 1 d ac = (a) c(c + d) + 1 d(c + d) 1 X u ) 1 ) 1 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 3 / 22

Solution Theorem (G.-Pylyavskyy, 2017) Let G = (V, E) be a strongly connected digraph. Then there exists a birational map φ : P V P V such that X, X P V give a solution X = φ(x ). Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 4 / 22

Periodic examples (exercise) c b b a d a c f g e f e d Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 5 / 22

Arborescence formula a b c d a b c d a b c d wt = acd wt = ad 2 wt = abd a b c d a b c d a b c d wt = abc wt = bd 2 wt = bcd Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 6 / 22

Map Cluster algebras LP algebras Integrable systems Zamolodchikov periodicity R-systems Superpotential & Mirror symmetry Birational rowmotion Birational toggling Geometric RSK Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 7 / 22

Map Cluster algebras LP algebras Integrable systems Zamolodchikov periodicity R-systems Superpotential & Mirror symmetry Birational rowmotion Birational toggling Geometric RSK Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 8 / 22

Birational rowmotion R-systems ˆ1 ˆ1 ˆ1 ˆ0 P ˆ0 ˆ0 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 9 / 22

Birational rowmotion R-systems ˆ1 ˆ1 ˆ1 ˆ0 P ˆ0 ˆP ˆ0 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 9 / 22

Birational rowmotion R-systems ˆ1 ˆ1 ˆ1 ˆ0 ˆ0 ˆ0 P ˆP G(P) Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 9 / 22

Birational rowmotion R-systems ˆ1 ˆ1 ˆ1 ˆ0 ˆ0 P ˆP G(P) ˆ0 Proposition (G.-Pylyavskyy, 2017) Birational rowmotion on P = R-system associated with G(P). Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 9 / 22

Part 2: Singularity confinement

Map Cluster algebras LP algebras Integrable systems Zamolodchikov periodicity R-systems Superpotential & Mirror symmetry Birational rowmotion Birational toggling Geometric RSK Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 11 / 22

The Laurent phenomenon Somos-4 sequence: τ n+4 = ατ n+1τ n+3 +βτ 2 n+2 τ n. Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 12 / 22

The Laurent phenomenon Somos-4 sequence: τ n+4 = ατ n+1τ n+3 +βτ 2 n+2 τ n. Theorem (Fomin-Zelevinsky, 2002) For each n > 4, τ n is a Laurent polynomial in α, β, τ 1, τ 2, τ 3, τ 4. Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 12 / 22

The Laurent phenomenon Somos-4 sequence: τ n+4 = ατ n+1τ n+3 +βτ 2 n+2 τ n. Theorem (Fomin-Zelevinsky, 2002) For each n > 4, τ n is a Laurent polynomial in α, β, τ 1, τ 2, τ 3, τ 4. Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 12 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 x 6 = (α3 βx 2 1 x4 2 + +αβ4 )(βx 1 x 2 2 +α2 x 2 +αβ) (αβx 2 1 x3 2 + +β3 ) 2 x 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 x 6 = (α3 βx 2 1 x4 2 + +αβ4 )(βx 1 x 2 2 +α2 x 2 +αβ) (αβx 2 1 x3 2 + +β3 ) 2 x 2 x 7 = (αβ3 x 4 1 x6 2 + +β6 x 2 )(αβx 2 1 x3 2 + +β3 )x 1 x 2 (α 3 βx 2 1 x4 2 + +αβ4 ) 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 x 6 = (α3 βx 2 1 x4 2 + +αβ4 )(βx 1 x 2 2 +α2 x 2 +αβ) (αβx 2 1 x3 2 + +β3 ) 2 x 2 x 7 = (αβ3 x 4 1 x6 2 + +β6 x 2 )(αβx 2 1 x3 2 + +β3 )x 1 x 2 (α 3 βx 2 1 x4 2 + +αβ4 ) 2 x 8 = (α3 β 3 x 6 1 x8 2 + +αβ8 )(α 3 βx 2 1 x4 2 + +αβ4 ) (αβ 3 x 4 1 x6 2 + +β6 x 2 ) 2 x 2 1 x 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1. substitute x xn 2 n = τ n+1τ n 1 τn 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 x 6 = (α3 βx 2 1 x4 2 + +αβ4 )(βx 1 x 2 2 +α2 x 2 +αβ) (αβx 2 1 x3 2 + +β3 ) 2 x 2 x 7 = (αβ3 x 4 1 x6 2 + +β6 x 2 )(αβx 2 1 x3 2 + +β3 )x 1 x 2 (α 3 βx 2 1 x4 2 + +αβ4 ) 2 x 8 = (α3 β 3 x 6 1 x8 2 + +αβ8 )(α 3 βx 2 1 x4 2 + +αβ4 ) (αβ 3 x 4 1 x6 2 + +β6 x 2 ) 2 x 2 1 x 2 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Singularity confinement Consider a mapping of the plane (x n 1, x n ) (x n, x n+1 ) given by x n+1 = αx n+β x n 1 x 2 n. substitute x n = τ n+1τ n 1 τ n 2 x 3 = αx 2+β x 1 x 2 2 x 4 = (βx 1x 2 2 +α2 x 2 +αβ)x 1 x 2 (αx 2 +β) 2 x 5 = (αβx2 1 x3 2 + +β3 )(αx 2 +β) (βx 1 x 2 2 +α2 x 2 +αβ) 2 x 1 x 6 = (α3 βx 2 1 x4 2 + +αβ4 )(βx 1 x 2 2 +α2 x 2 +αβ) (αβx 2 1 x3 2 + +β3 ) 2 x 2 τ 4 = αx 2 + β τ 5 = βx 1 x2 2 + α2 x 2 + αβ τ 6 = αβx1 2x 2 3 + + β3 τ 7 = α 3 βx1 2x 2 4 + + αβ4 x 7 = (αβ3 x 4 1 x6 2 + +β6 x 2 )(αβx 2 1 x3 2 + +β3 )x 1 x 2 (α 3 βx 2 1 x4 2 + +αβ4 ) 2 τ 8 = αβ 3 x 4 1 x 6 2 + + β6 x 2 x 8 = (α3 β 3 x 6 1 x8 2 + +αβ8 )(α 3 βx 2 1 x4 2 + +αβ4 ) (αβ 3 x 4 1 x6 2 + +β6 x 2 ) 2 x 2 1 x 2 τ 9 = α 3 β 3 x 6 1 x 8 2 + + αβ8 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 13 / 22

Examples: Somos and Gale-Robinson sequences Somos-4 Somos-5 Somos-5 Somos-6 = GR(1 + 2 + 3) Somos-7 = GR(1 + 2 + 4) dp 3 Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 14 / 22

Examples: subgraphs of a bidirected cycle Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 15 / 22

Examples: subgraphs of a bidirected cycle Controlled by a cluster algebra Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 15 / 22

Examples: rectangle posets (Grinberg-Roby) Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 16 / 22

Examples: rectangle posets (Grinberg-Roby) Controlled by a Y -system Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 16 / 22

Examples: cylindric posets Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 17 / 22

Examples: cylindric posets Controlled by an LP algebra Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 17 / 22

Examples: toric digraphs.................. D C... A B C D A B...... C D A B C D... A B... A B C D A B..................... Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 18 / 22

Examples: toric digraphs.................. D C... A B C D A B...... C D A B C D... A B... A B C D A B..................... Controlled by??? Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 18 / 22

Examples: toric digraphs.................. D C... A B C D A B...... C D A B C D... A B... A B C D A B... Controlled by???.................. R v (t) = τv (t 1) τ v (t) ; Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 18 / 22

Examples: toric digraphs.................. D C... A B C D A B...... C D A B C D... A B... A B C D A B... Controlled by???.................. R v (t) = τv (t 1) τ v (t) ; Conjecture (G.-Pylyavskyy, 2017) τ v (t) is an irreducible polynomial with κ (t+2 2 ) monomials [κ = # Arb(G; u)] Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 18 / 22

Examples: toric digraphs.................. D C... A B C D A B...... C D A B C D... A B... A B C D A B... Controlled by???.................. R v (t) = τv (t 1) τ v (t) ; Conjecture (G.-Pylyavskyy, 2017) τ v (t) is an irreducible polynomial with κ (t+2 2 ) monomials [κ = # Arb(G; u)] τ v (t + 1) = T Arb(G;v) some product of τ u(t)-s and τ w (t 1)-s. some other product of τ u (t)-s and τ w (t 1)-s Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 18 / 22

Example: the universal R-system C B A D E Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 19 / 22

Example: the universal R-system C B A D Controlled by??? E Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 19 / 22

Example: the universal R-system C B A D Controlled by??? E R v (t) = τv (t 1) τ v (t) ; Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 19 / 22

Example: the universal R-system C B A D Controlled by??? E R v (t) = τv (t 1) τ v (t) ; Conjecture (G.-Pylyavskyy, 2017) τ v (t) is an irreducible polynomial with κ θ(t) monomials [κ = # Arb(G; u)] Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 19 / 22

Example: the universal R-system C B A D Controlled by??? E R v (t) = τv (t 1) τ v (t) ; Conjecture (G.-Pylyavskyy, 2017) τ v (t) is an irreducible polynomial with κ θ(t) monomials [κ = # Arb(G; u)] τ v (t + 1) = T Arb(G;v) some product of τ u(t)-s and τ w (t 1)-s. some other product of τ u (t)-s and τ w (t 1)-s Pavel Galashin (MIT) R-systems San Diego, CA, 01/13/2018 19 / 22

Bibliography Slides: Sage code: http://math.mit.edu/~galashin/slides/san_diego.pdf http://math.mit.edu/~galashin/applets.html Pavel Galashin and Pavlo Pylyavskyy. R-systems arxiv preprint arxiv:1709.00578, 2017. David Einstein and James Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. arxiv preprint arxiv:1310.5294, 2013. Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497 529 (electronic), 2002. Darij Grinberg and Tom Roby. Iterative properties of birational rowmotion II: rectangles and triangles. Electron. J. Combin., 22(3):Paper 3.40, 49, 2015. Andrew N. W. Hone. Laurent polynomials and superintegrable maps. SIGMA Symmetry Integrability Geom. Methods Appl., 3:Paper 022, 18, 2007. Y. Ohta, K. M. Tamizhmani, B. Grammaticos, and A. Ramani. Singularity confinement and algebraic entropy: the case of the discrete Painlevé equations. Phys. Lett. A, 262(2-3):152 157, 1999.

Cluster algebras LP algebras Integrable systems Zamolodchikov periodicity Thanks! Superpotential & Mirror symmetry Birational rowmotion Birational toggling Geometric RSK

Bibliography Slides: Sage code: http://math.mit.edu/~galashin/slides/san_diego.pdf http://math.mit.edu/~galashin/applets.html Pavel Galashin and Pavlo Pylyavskyy. R-systems arxiv preprint arxiv:1709.00578, 2017. David Einstein and James Propp. Combinatorial, piecewise-linear, and birational homomesy for products of two chains. arxiv preprint arxiv:1310.5294, 2013. Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497 529 (electronic), 2002. Darij Grinberg and Tom Roby. Iterative properties of birational rowmotion II: rectangles and triangles. Electron. J. Combin., 22(3):Paper 3.40, 49, 2015. Andrew N. W. Hone. Laurent polynomials and superintegrable maps. SIGMA Symmetry Integrability Geom. Methods Appl., 3:Paper 022, 18, 2007. Y. Ohta, K. M. Tamizhmani, B. Grammaticos, and A. Ramani. Singularity confinement and algebraic entropy: the case of the discrete Painlevé equations. Phys. Lett. A, 262(2-3):152 157, 1999.