Handbook of Stochastic Methods

Similar documents
Handbook of Stochastic Methods

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

Table of Contents [ntc]

STOCHASTIC PROCESSES FOR PHYSICISTS. Understanding Noisy Systems

Control Theory in Physics and other Fields of Science

Applied Probability and Stochastic Processes

Elementary Applications of Probability Theory

NPTEL

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

Lecture 4: Introduction to stochastic processes and stochastic calculus

An Introduction to Probability Theory and Its Applications

Random Vibrations & Failure Analysis Sayan Gupta Indian Institute of Technology Madras

M4A42 APPLIED STOCHASTIC PROCESSES

Statistical Mechanics

Quantum Electrodynamics

Modern Optical Spectroscopy

A Short Introduction to Diffusion Processes and Ito Calculus

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Monte Carlo Methods. Handbook of. University ofqueensland. Thomas Taimre. Zdravko I. Botev. Dirk P. Kroese. Universite de Montreal

1 Elementary probability

Path integrals for classical Markov processes

Stochastic differential equation models in biology Susanne Ditlevsen

Introduction to nonequilibrium physics

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

ADVANCED ENGINEERING MATHEMATICS MATLAB

An Introduction to Stochastic Modeling

Session 1: Probability and Markov chains

Quantum Mechanics of Molecular Structures

Probability and Stochastic Processes

Feynman-Kac-Type Theorems and Gibbs Measures on Path Space

PROBABILITY AND STOCHASTIC PROCESSES A Friendly Introduction for Electrical and Computer Engineers

HANDBOOK OF APPLICABLE MATHEMATICS

Schrödinger Equations and Diffusion Theory

Probability for Statistics and Machine Learning

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Contents. 1 Preliminaries 3. Martingales

GENERATION OF COLORED NOISE

Different approaches to model wind speed based on stochastic differential equations

Long-Range Dependence and Self-Similarity. c Vladas Pipiras and Murad S. Taqqu

Introduction to Stochastic SIR Model

Superlinear Parabolic Problems

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

First Passage Time Calculations

07. Stochastic Processes: Applications

Stochastic Methods. John R. Boccio

5 Applying the Fokker-Planck equation

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

Numerical Integration of SDEs: A Short Tutorial

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Table of contents Lecture 1: Discrete-valued random variables. Common probability distributions and their properties. Bernoulli trials. Binomial, dist

Probability Models in Electrical and Computer Engineering Mathematical models as tools in analysis and design Deterministic models Probability models

Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

Introduction to Computational Stochastic Differential Equations

Stochastic Integration (Simple Version)

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

Lessons in Estimation Theory for Signal Processing, Communications, and Control

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

1 Introduction. 2 Diffusion equation and central limit theorem. The content of these notes is also covered by chapter 3 section B of [1].

DATA-DRIVEN TECHNIQUES FOR ESTIMATION AND STOCHASTIC REDUCTION OF MULTI-SCALE SYSTEMS

Mathematical Theory of Control Systems Design

The Boltzmann Equation and Its Applications

Waves Called Solitons

Quantum Dissipation: A Primer

An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

The Kramers problem and first passage times.

Modeling with Itô Stochastic Differential Equations

Extreme Value Theory An Introduction

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Population Games and Evolutionary Dynamics

1/f Fluctuations from the Microscopic Herding Model

International Steam Tables - Properties of Water and Steam based on

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Example 4.1 Let X be a random variable and f(t) a given function of time. Then. Y (t) = f(t)x. Y (t) = X sin(ωt + δ)

TIME SERIES ANALYSIS. Forecasting and Control. Wiley. Fifth Edition GWILYM M. JENKINS GEORGE E. P. BOX GREGORY C. REINSEL GRETA M.

Problems 5: Continuous Markov process and the diffusion equation

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Independent Component Analysis. Contents

Dynamical Analysis of Complex Systems 7CCMCS04

Stochastic Integration and Stochastic Differential Equations: a gentle introduction

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

de Gruyter Textbook Distributions Generalized Functions with Applications in Sobolev Spaces Bearbeitet von Pulin Kumar Bhattacharyya

Ergodicity for Infinite Dimensional Systems

Time Series: Theory and Methods

Peter E. Kloeden Eckhard Platen. Numerical Solution of Stochastic Differential Equations

The Diffusion Approximation for Markov Processes

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Statistical Mechanics

Biology in Time and Space: A Partial Differential Equation Approach. James P. Keener University of Utah

F r (t) = 0, (4.2) F (t) = r= r a (t)

Stochastic Partial Differential Equations with Levy Noise

Exact power spectra of Brownian motion with solid friction

06. Stochastic Processes: Concepts

THE problem of phase noise and its influence on oscillators

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Modelling Research Group

Transcription:

Springer Series in Synergetics 13 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences von Crispin W Gardiner Neuausgabe Handbook of Stochastic Methods Gardiner schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 540 20882 2

1. A Historical Introduction : :::::::::::::::::::::::: 1 1.1 Motivation :::::::::::::::::::::::::::::: 1 1.2 Some Historical Examples :::::::::::::::::::::: 2 1.2.1 Brownian Motion :::::::::::::::::::::: 2 1.2.2 Langevin s Equation : :::::::::::::::::::: 6 1.3 Birth-Death Processes :::::::::::::::::::::::: 8 1.4 Noise in Electronic Systems : :::::::::::::::::::: 11 1.4.1 Shot Noise :::::::::::::::::::::::::: 11 1.4.2 Autocorrelation Functions and Spectra : :::::::::: 15 1.4.3 Fourier Analysis of Fluctuating Functions: Stationary Systems :::::::::::::::::::::: 17 1.4.4 Johnson Noise and Nyquist s Theorem : :::::::::: 18 2. Probability Concepts ::::::::::::::::::::::::::: 21 2.1 Events, and Sets of Events :::::::::::::::::::::: 21 2.2 Probabilities :::::::::::::::::::::::::::::: 22 2.2.1 Probability Axioms : :::::::::::::::::::: 22 2.2.2 The Meaning of P(A) : :::::::::::::::::::: 23 2.2.3 The Meaning of the Axioms ::::::::::::::::: 23 2.2.4 Random Variables :::::::::::::::::::::: 24 2.3 Joint and Conditional Probabilities: Independence ::::::::: 25 2.3.1 Joint Probabilities :::::::::::::::::::::: 25 2.3.2 Conditional Probabilities ::::::::::::::::::: 25 2.3.3 Relationship Between Joint Probabilities of Different Orders 26 2.3.4 Independence : :::::::::::::::::::::::: 27 2.4 Mean Values and Probability Density :::::::::::::::: 28 2.4.1 Determination of Probability Density by Means of Arbitrary Functions : ::::::::::::::: 28 2.4.2 Sets ofprobability Zero ::::::::::::::::::: 29 2.5 Mean Values ::::::::::::::::::::::::::::: 29 2.5.1 Moments, Correlations, and Covariances :::::::::: 30 2.5.2 The Law of Large Numbers ::::::::::::::::: 30 2.6 Characteristic Function :::::::::::::::::::::::: 32 2.7 Cumulant Generating Function: Correlation Functions and Cumulants 33 2.7.1 Example: Cumulant of Order 4: hhx 1 X 2 X 3 X 4 ii : :::::: 35 2.7.2 Significance of Cumulants : ::::::::::::::::: 35 2.8 Gaussian and Poissonian Probability Distributions ::::::::: 36 2.8.1 The Gaussian Distribution : ::::::::::::::::: 36

XII 2.8.2 Central Limit Theorem :::::::::::::::::::: 37 2.8.3 The PoissonDistribution ::::::::::::::::::: 38 2.9 Limits of Sequences of Random Variables : ::::::::::::: 39 2.9.1 Almost Certain Limit :::::::::::::::::::: 40 2.9.2 Mean Square Limit (Limit in the Mean) : :::::::::: 40 2.9.3 Stochastic Limit, or Limit in Probability :::::::::: 40 2.9.4 Limit in Distribution : :::::::::::::::::::: 41 2.9.5 Relationship Between Limits :::::::::::::::: 41 3. Markov Processes ::::::::::::::::::::::::::::: 42 3.1 Stochastic Processes : :::::::::::::::::::::::: 42 3.2 Markov Process : ::::::::::::::::::::::::::: 43 3.2.1 Consistency the Chapman-Kolmogorov Equation : ::: 43 3.2.2 Discrete State Spaces :::::::::::::::::::: 44 3.2.3 More General Measures ::::::::::::::::::: 44 3.3 Continuity in Stochastic Processes : ::::::::::::::::: 45 3.3.1 Mathematical Definition of acontinuous Markov Process : 46 3.4 Differential Chapman-Kolmogorov Equation :::::::::::: 47 3.4.1 Derivation of the Differential Chapman-Kolmogorov Equation ::::::::::::::: 48 3.4.2 Status of the Differential Chapman-Kolmogorov Equation : 51 3.5 Interpretation of Conditions and Results ::::::::::::::: 51 3.5.1 Jump Processes: The Master Equation : :::::::::: 52 3.5.2 Diffusion Processes the Fokker-Planck Equation ::::: 52 3.5.3 Deterministic Processes Liouville s Equation : :::::: 53 3.5.4 General Processes :::::::::::::::::::::: 54 3.6 Equations for Time Development in Initial Time Backward Equations : :::::::::::::::::::::::: 55 3.7 Stationary and Homogeneous Markov Processes :::::::::: 56 3.7.1 Ergodic Properties :::::::::::::::::::::: 57 3.7.2 Homogeneous Processes ::::::::::::::::::: 60 3.7.3 Approach to a Stationary Process : ::::::::::::: 61 3.7.4 Autocorrelation Function for Markov Processes :::::: 64 3.8 Examples of Markov Processes ::::::::::::::::::: 66 3.8.1 The Wiener Process : :::::::::::::::::::: 66 3.8.2 The Random Walk in One Dimension :::::::::::: 70 3.8.3 Poisson Process ::::::::::::::::::::::: 73 3.8.4 The Ornstein-Uhlenbeck Process : ::::::::::::: 74 3.8.5 Random Telegraph Process ::::::::::::::::: 77 4. The Ito Calculus and Stochastic Differential Equations :::::::: 80 4.1 Motivation :::::::::::::::::::::::::::::: 80 4.2 Stochastic Integration : :::::::::::::::::::::::: 83 4.2.1 Definition of the Stochastic Integral ::::::::::::: 83 4.2.2 t Example W(t 0 ) dw(t 0 ) :::::::::::::::::::: t 0 84

XIII 4.2.3 The Stratonovich Integral : ::::::::::::::::: 86 4.2.4 Nonanticipating Functions : ::::::::::::::::: 86 4.2.5 Proof that dw(t) 2 = dt and dw(t) 2+N =0 : :::::::::: 87 4.2.6 Properties of the Ito Stochastic Integral : :::::::::: 88 4.3 Stochastic Differential Equations (SDE) ::::::::::::::: 92 4.3.1 Ito Stochastic Differential Equation: Definition : :::::: 93 4.3.2 Markov Property of the Solution of an Ito Stochastic Differential Equation ::::::::::::: 95 4.3.3 Change of Variables: Ito s Formula ::::::::::::: 95 4.3.4 Connection Between Fokker-Planck Equation and Stochastic Differential Equation ::::::::::::::: 96 4.3.5 Multivariable Systems :::::::::::::::::::: 97 4.3.6 Stratonovich s Stochastic Differential Equation : :::::: 98 4.3.7 Dependence on Initial Conditions and Parameters ::::: 101 4.4 Some Examples and Solutions :::::::::::::::::::: 102 4.4.1 Coefficients Without x Dependence ::::::::::::: 102 4.4.2 Multiplicative Linear White Noise Process ::::::::: 103 4.4.3 Complex Oscillator with Noisy Frequency ::::::::: 104 4.4.4 Ornstein-Uhlenbeck Process ::::::::::::::::: 106 4.4.5 Conversion from Cartesian to Polar Coordinates :::::: 107 4.4.6 Multivariate Ornstein-Uhlenbeck Process :::::::::: 109 4.4.7 The General Single Variable Linear Equation :::::::: 112 4.4.8 Multivariable Linear Equations ::::::::::::::: 114 4.4.9 Time-Dependent Ornstein-Uhlenbeck Process : :::::: 115 5. The Fokker-Planck Equation ::::::::::::::::::::::: 117 5.1 Background :::::::::::::::::::::::::::::: 117 5.2 Fokker-Planck Equation in One Dimension ::::::::::::: 118 5.2.1 Boundary Conditions :::::::::::::::::::: 118 5.2.2 Stationary Solutions for Homogeneous Fokker-Planck Equations :::::::::::::::::::::::::::124 5.2.3 Examples of Stationary Solutions : ::::::::::::: 126 5.2.4 Boundary Conditions for the Backward Fokker-Planck Equation ::::::::::::::::::::::::::::128 5.2.5 Eigenfunction Methods (Homogeneous Processes) ::::: 129 5.2.6 Examples ::::::::::::::::::::::::::: 132 5.2.7 First Passage Times for Homogeneous Processes :::::: 136 5.2.8 Probability of Exit Through a Particular End of the Interval 142 5.3 Fokker-Planck Equations in Several Dimensions :::::::::: 143 5.3.1 Change of Variables : :::::::::::::::::::: 144 5.3.2 Boundary Conditions :::::::::::::::::::: 146 5.3.3 Stationary Solutions: Potential Conditions ::::::::: 146 5.3.4 Detailed Balance ::::::::::::::::::::::: 148 5.3.5 Consequences of Detailed Balance ::::::::::::: 150 5.3.6 Examples of Detailed Balance in Fokker-Planck Equations 155

XIV 5.3.7 Eigenfunction Methods in Many Variables Homogeneous Processes : ::::::::::::::::::165 5.4 First Exit Time from a Region (Homogeneous Processes) ::::: 170 5.4.1 Solutions of Mean Exit Time Problems : :::::::::: 171 5.4.2 Distribution of Exit Points : ::::::::::::::::: 174 6. Approximation Methods for Diffusion Processes :::::::::::: 177 6.1 Small Noise Perturbation Theories : ::::::::::::::::: 177 6.2 Small Noise Expansions for Stochastic Differential Equations ::: 180 6.2.1 Validity of the Expansion : ::::::::::::::::: 182 6.2.2 Stationary Solutions (Homogeneous Processes) :::::: 183 6.2.3 Mean, Variance, and Time Correlation Function :::::: 184 6.2.4 Failure of Small Noise Perturbation Theories :::::::: 185 6.3 Small Noise Expansion of the Fokker-Planck Equation : :::::: 187 6.3.1 Equations for Moments and Autocorrelation Functions :: 189 6.3.2 Example ::::::::::::::::::::::::::: 192 6.3.3 Asymptotic Method for Stationary Distributions :::::: 194 6.4 Adiabatic Elimination of Fast Variables ::::::::::::::: 195 6.4.1 Abstract Formulation in Terms of Operators and Projectors :::::::::::::::::::::::::198 6.4.2 Solution Using Laplace Transform ::::::::::::: 200 6.4.3 Short-Time Behaviour :::::::::::::::::::: 203 6.4.4 Boundary Conditions :::::::::::::::::::: 205 6.4.5 Systematic Perturbative Analysis : ::::::::::::: 206 6.5 White Noise Process as a Limit of Nonwhite Process :::::::: 210 6.5.1 Generality of the Result ::::::::::::::::::: 215 6.5.2 More General Fluctuation Equations :::::::::::: 215 6.5.3 Time Nonhomogencous Systems : ::::::::::::: 216 6.5.4 Effect of Time Dependence in L, : ::::::::::::: 217 6.6 Adiabatic Elimination of Fast Variables: The General Case : ::: 218 6.6.1 Example: Elimination of Short-Lived Chemical Intermediates ::::::::::::::::::::218 6.6.2 Adiabatic Elimination in Haken s Model :::::::::: 223 6.6.3 Adiabatic Elimination of Fast Variables: ANonlinear Case : ::::::::::::::::::::::227 6.6.4 An Example with Arbitrary Nonlinear Coupling :::::: 232 7. Master Equations and Jump Processes ::::::::::::::::: 235 7.1 Birth-Death Master Equations One Variable :::::::::::: 236 7.1.1 Stationary Solutions : :::::::::::::::::::: 236 7.1.2 Example: Chemical Reaction X *) A :::::::::::: 238 7.1.3 A Chemical Bistable System :::::::::::::::: 241 7.2 Approximation of Master Equations by Fokker-Planck Equations : 246 7.2.1 Jump Process Approximation of a Diffusion Process : ::: 246 7.2.2 The Kramers-Moyal Expansion ::::::::::::::: 245 7.2.3 Van Kampen s System Size Expansion : :::::::::: 250

XV 7.2.4 Kurtz s Theorem ::::::::::::::::::::::: 254 7.2.5 Critical Fluctuations : :::::::::::::::::::: 255 7.3 Boundary Conditions for Birth-Death Processes :::::::::: 257 7.4 Mean First Passage Times :::::::::::::::::::::: 259 7.4.1 Probability of Absorption : ::::::::::::::::: 261 7.4.2 Comparison with Fokker-Planck Equation ::::::::: 261 7.5 Birth-Death Systems with Many Variables ::::::::::::: 262 7.5.1 Stationary Solutions when Detailed Balance Holds ::::: 263 7.5.2 Stationary Solutions Without Detailed Balance (Kirchoff s Solution) :::::::::::::::::::::266 7.5.3 System Size Expansion and Related Expansions :::::: 266 7.6 Some Examples : ::::::::::::::::::::::::::: 267 7.6.1 X + A *) 2X :::::::::::::::::::::::::: 267 7.6.2 X *) Y *) A :::::::::::::::::::::::::: 267 7.6.3 Prey-Predator System :::::::::::::::::::: 268 7.6.4 Generating Function Equations ::::::::::::::: 273 7.7 The Poisson Representation : :::::::::::::::::::: 277 7.7.1 Kinds of Poisson Representations : ::::::::::::: 282 7.7.2 Real Poisson Representations :::::::::::::::: 282 7.7.3 Complex Poisson Representations : ::::::::::::: 282 7.7.4 The Positive Poisson Representation :::::::::::: 285 7.7.5 Time Correlation Functions ::::::::::::::::: 289 7.7.6 Trimolecular Reaction :::::::::::::::::::: 294 7.7.7 Third-Order Noise :::::::::::::::::::::: 299 8. Spatially Distributed Systems :::::::::::::::::::::: 303 8.1 Background :::::::::::::::::::::::::::::: 303 8.1.1 Functional Fokker-Planck Equations :::::::::::: 305 8.2 Multivariate Master Equation Description : ::::::::::::: 307 8.2.1 Diffusion ::::::::::::::::::::::::::: 307 8.2.2 Continuum Form of Diffusion Master Equation :::::: 308 8.2.3 Reactions and Diffusion Combined ::::::::::::: 313 8.2.4 Poisson Representation Methods : ::::::::::::: 314 8.3 Spatial and Temporal Correlation Structures ::::::::::::: 315 8.3.1 Reaction X *) Y ::::::::::::::::::::::: 315 8.3.2 Reactions B + X *) C, A + X! 2X : ::::::::::::: 319 8.3.3 A Nonlinear Model with a Second-Order Phase Transition : 324 8.4 Connection Between Local and Global Descriptions :::::::: 328 8.4.1 Explicit Adiabatic Elimination of Inhomogeneous Modes : 328 8.5 Phase-Space Master Equation :::::::::::::::::::: 331 8.5.1 Treatment of Flow :::::::::::::::::::::: 331 8.5.2 Flow as a Birth-Death Process :::::::::::::::: 332 8.5.3 Inclusion of Collisions the Boltzmann Master Equation : 336 8.5.4 Collisions and Flow Together :::::::::::::::: 339

XVI 9. Bistability, Metastability, and Escape Problems :::::::::::: 342 9.1 Diffusion in a Double-Well Potential (One Variable) :::::::: 342 9.1.1 Behaviour for D =0 : :::::::::::::::::::: 343 9.1.2 Behaviour if D is Very Small :::::::::::::::: 343 9.1.3 Exit Time ::::::::::::::::::::::::::: 345 9.1.4 Splitting Probability : :::::::::::::::::::: 345 9.1.5 Decay from an Unstable State :::::::::::::::: 347 9.2 Equilibration of Populations in Each Well : ::::::::::::: 348 9.2.1 Kramers Method :::::::::::::::::::::: 349 9.2.2 Example: Reversible Denaturation of Chymotrypsinogen : 352 9.2.3 Bistability with Birth-Death Master Equations (One Variable) :::::::::::::::::::::::::354 9.3 Bistability in Multivariable Systems ::::::::::::::::: 357 9.3.1 Distribution of Exit Points : ::::::::::::::::: 357 9.3.2 Asymptotic Analysis of Mean Exit Time :::::::::: 362 9.3.3 Kramers Method in Several Dimensions :::::::::: 363 9.3.4 Example: Brownian Motion in a Double Potential ::::: 372 10. Simulation of Stochastic Differential Equations :::::::::::: 373 10.1 The One Variable Taylor Expansion ::::::::::::::::: 374 10.1.1 Euler Methods :::::::::::::::::::::::: 374 10.1.2 Higher Orders :::::::::::::::::::::::: 374 10.1.3 Multiple Stochastic Integrals :::::::::::::::: 375 10.1.4 The Euler Algorithm : :::::::::::::::::::: 375 10.1.5 Milstein Algorithm :::::::::::::::::::::: 378 10.2 The Meaning of Weak and Strong Convergence : :::::::::: 379 10.3 Stability : ::::::::::::::::::::::::::::::: 379 10.3.1 Consistency : :::::::::::::::::::::::: 381 10.4 Implicit and Semi-implicit Algorithms :::::::::::::::: 382 10.5 Vector Stochastic Differential Equations ::::::::::::::: 383 10.5.1 Formulae and Notation :::::::::::::::::::: 383 10.5.2 Multiple Stochastic Integrals :::::::::::::::: 384 10.5.3 The Vector Euler Algorithm ::::::::::::::::: 386 10.5.4 The Vector Milstein Algorithm ::::::::::::::: 386 10.5.5 The Strong Vector Semi-implicit Algorithm :::::::: 387 10.5.6 The Weak Vector Semi-implicit Algorithm ::::::::: 387 10.6 Higher Order Algorithms ::::::::::::::::::::::: 388 10.7 Stochastic Partial Differential Equations ::::::::::::::: 389 10.7.1 Fourier Transform Methods ::::::::::::::::: 390 10.7.2 The Interaction Picture Method ::::::::::::::: 390 10.8 Software Resources :::::::::::::::::::::::::: 391 References : :::::::::::::::::::::::::::::::::: 393 Bibliography :::::::::::::::::::::::::::::::::: 399

XVII Symbol Index :::::::::::::::::::::::::::::::::: 403 Author Index :::::::::::::::::::::::::::::::::: 407 Subject Index :::::::::::::::::::::::::::::::::: 409