Similar documents
Optimal Timing of Decisions: A General Theory Based on Continuation Values 1

Solving Sequential Decision Problems via Continuation Values 1

Continuation Value Methods for Sequential Decisions: Optimality and Efficiency 1

Math Homework 2

Math 715 Homework 1 Solutions

ERRATA: Probabilistic Techniques in Analysis

Selected Solutions To Problems in Complex Analysis

Monte-Carlo MMD-MA, Université Paris-Dauphine. Xiaolu Tan

Aero III/IV Conformal Mapping

MS 3011 Exercises. December 11, 2013

or E ( U(X) ) e zx = e ux e ivx = e ux( cos(vx) + i sin(vx) ), B X := { u R : M X (u) < } (4)

8 8 THE RIEMANN MAPPING THEOREM. 8.1 Simply Connected Surfaces

Lecture 17: Likelihood ratio and asymptotic tests

Technische Universität Dresden Herausgeber: Der Rektor

Math 185 Fall 2015, Sample Final Exam Solutions

Complex Analysis Qual Sheet

Qualifying Exam Complex Analysis (Math 530) January 2019

Department of mathematics MA201 Mathematics III

Transformations from R m to R n.

Problems for MATH-6300 Complex Analysis

MORE NOTES FOR MATH 823, FALL 2007

Complex qual study guide James C. Hateley

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Solutions to Exercises 6.1

13 Maximum Modulus Principle

5.3 The Upper Half Plane

The Poincare map for randomly perturbed periodic mo5on

11 COMPLEX ANALYSIS IN C. 1.1 Holomorphic Functions

[ zd z zdz dψ + 2i. 2 e i ψ 2 dz. (σ 2 ) 2 +(σ 3 ) 2 = (1+ z 2 ) 2

Math 220A Homework 4 Solutions

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

INTRODUCTION TO REAL ANALYTIC GEOMETRY

Complex Representation in Two-Dimensional Theory of Elasticity

Proof of a conjecture by Ðoković on the Poincaré series of the invariants of a binary form

Conformal Mappings. Chapter Schwarz Lemma

CHAPTER 9. Conformal Mapping and Bilinear Transformation. Dr. Pulak Sahoo

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

CHAPTER 2. CONFORMAL MAPPINGS 58

MATH COMPLEX ANALYSIS. Contents

Introduction to Probability and Stocastic Processes - Part I

MATH8811: COMPLEX ANALYSIS


I. Relationship with previous work

Oblique derivative problems for elliptic and parabolic equations, Lecture II

Chapter 3 : Likelihood function and inference

Complex Variables & Integral Transforms

Part IB. Complex Analysis. Year

Dynamic Identification of DSGE Models

MATH 185: COMPLEX ANALYSIS FALL 2009/10 PROBLEM SET 9 SOLUTIONS. and g b (z) = eπz/2 1

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Chapter 9. Analytic Continuation. 9.1 Analytic Continuation. For every complex problem, there is a solution that is simple, neat, and wrong.

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

MA3111S COMPLEX ANALYSIS I

Complex Analysis Study Guide

Quasi-stationary-states in Hamiltonian mean-field dynamics

An Inverse Problem for Gibbs Fields with Hard Core Potential

Complex Analysis Important Concepts

lim n C1/n n := ρ. [f(y) f(x)], y x =1 [f(x) f(y)] [g(x) g(y)]. (x,y) E A E(f, f),

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

Math 185 Homework Exercises II

Functions of a Complex Variable and Integral Transforms

Homoclinic Orbits for Asymptotically Linear Hamiltonian Systems

Growth Theorems and Harnack Inequality for Second Order Parabolic Equations

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Alberto Bressan. Department of Mathematics, Penn State University

Effective dynamics for the (overdamped) Langevin equation

Evaluation of integrals

Hilbert Transform Pairs of Wavelets. September 19, 2007


6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

The Uniformization Theorem

Statistical Approaches to Learning and Discovery. Week 4: Decision Theory and Risk Minimization. February 3, 2003

Appendix A Vector Analysis

Quasi-conformal maps and Beltrami equation

1 Several complex variables

Lecture 14 Conformal Mapping. 1 Conformality. 1.1 Preservation of angle. 1.2 Length and area. MATH-GA Complex Variables

Lecture 21: Convergence of transformations and generating a random variable

6.2 Mean value theorem and maximum principles

Properties for systems with weak invariant manifolds

Composition operators: the essential norm and norm-attaining

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

FIXED POINT AND COMMON FIXED POINT THEOREMS IN CONE BALL-METRIC SPACES. 1. Introduction and preliminaries

Solutions to Complex Analysis Prelims Ben Strasser

Ph.D. Qualifying Exam: Algebra I

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Homework #6 : final examination Due on March 22nd : individual work

THE STEINER REARRANGEMENT IN ANY CODIMENSION

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Conformal Mapping, Möbius Transformations. Slides-13

4. CONTINUOUS RANDOM VARIABLES

arxiv: v2 [math-ph] 30 Aug 2016

On a question by D. I. Mendeleev A. Markov read in the session of the Physicomathematical Section on 24 October 1889

z, w = z 1 w 1 + z 2 w 2 z, w 2 z 2 w 2. d([z], [w]) = 2 φ : P(C 2 ) \ [1 : 0] C ; [z 1 : z 2 ] z 1 z 2 ψ : P(C 2 ) \ [0 : 1] C ; [z 1 : z 2 ] z 2 z 1

Laplace s Equation. Chapter Mean Value Formulas

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

Part II. Riemann Surfaces. Year

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

Transcription:

5

n

N := {1, 2,...} N 0 := {0} N R ++ := (0, ) R + := [0, ) a, b R a b := max{a, b} f g (f g)(x) := f(x) g(x) (Z, Z ) bz Z Z R f := sup z Z f(z) κ: Z R ++ κ f : Z R f(z) f κ := sup z Z κ(z).

f κ < f κ b κ Z Z R Z κ (b κ Z, κ ) P (Z, Z ) P : Z Z [0, 1] z P (z, B) Z B Z B P (z, B) z Z P (z, B) z Z B Z n N P n (z, B) := P (z, B)P n 1 (z, dz ) z B Z n Z h : Z R (P n h)(z) :=: E z h(z n ) := h(z )P n (z, dz ) n N 0, P 0 h := h P h := P 1 h P P h h bz Z R m Z f : Z Z R + Z f(z z)dz = 1 z Z P f P (z, B) = B f(z z) dz z Z B Z (Z n ) n 0 (Ω, F, P) (Z, Z ) P {F n } n 0 F (Z n ) n 0 P z Z 0 = z E z τ N 0 {F n } n 0 P{τ < } = 1 {τ n} F n n 0 τ = n n M {F n } n 0 Z R m (Ω, F ) Ω = n=0z F σ Z

t 0 Z t r(z t ) c(z t ) t+1 Z t+1 r : Z R c: Z R β (0, 1) v z Z { τ 1 } v (z) := sup E z β t c(z t ) + β τ r(z τ ). τ M t=0 τ M σ Z {0, 1} 0 1 σ τ := inf{t 0 σ(z t ) = 1} z Z ψ (z) := c(z) + β v (z )P (z, dz ). Z g : Z R + n N 0 a 1,, a 4, m, d R + βm < 1 z Z r(z ) P n (z, dz ) a 1 g(z) + a 2, c(z ) P n (z, dz ) a 3 g(z) + a 4, g(z )P (z, dz ) mg(z) + d. n = 0

E z r(z n ) E z c(z n ) g E z g(z t ) E z g(z t ) r c n := 0 g := r c m := 1 d := 0 v { } v (z) = max r(z), c(z) + β v (z )P (z, dz ) = max {r(z), ψ (z)}. ψ ψ (z) = c(z) + β max {r(z ), ψ (z )} P (z, dz ). Q Qψ(z) = c(z) + β max{r(z ), ψ(z )}P (z, dz ). Q ψ Q m d l: Z R ( n 1 ) n 1 l(z) := m E z r(z t ) + E z c(z t ) + g(z) + d, t=1 t=0 Q (b l Z, l ) Q b l Z ψ σ (z) = 1{r(z) ψ (z)} n = 0 l(z) = g(z) + d n = 1 l(z) = m c(z) + g(z) + d n n > n n 1 N 0 n 2 N 0 g

w t c 0 w t = w(z t ) (Z t ) t 0 r(z) = u(w(z))/(1 β) z u β c 0 := u( c 0 ) (Z t ) t 0 Z := R Z t+1 = ρz t + b + ε t+1, (ε t ) t 1 N(0, σ 2 ), ρ [ 1, 1]. { } u(w(z )) Qψ(z) = c 0 + β max 1 β, ψ(z ) f(z z) dz, f(z z) = N(ρz + b, σ 2 ) w(z) := e z u(w) = w1 δ 1 δ ( δ 0 δ 1) u(w) = ln w ( δ = 1). {ε t } δ 0 δ 1 ρ [0, 1) n N 0 β e ρnξ < 1 ξ := ξ 1 + ξ 2 ξ 1 := (1 δ)b ξ 2 := (1 δ) 2 σ 2 /2 e (1 δ)z P n (z, dz ) = b n e ρn (1 δ)z, b n := e ξ t 1 1 i=0 ρi +ξ t 1 2 i=0 ρ2i. {K j } Z = j=1 K j Γ(K j ) K j+1 Γ : Z 2 Z {Z t } Γ X N(µ, σ 2 ) E e sx = e sµ+s2 σ 2 /2 s R ( Z t Z 0 = z N b t 1 i=0 ρi, σ 2 t 1 i=0 ) ρ2i

g(z) = e ρn (1 δ)z m = d = e ρnξ, a 1 = b n (1 β)(1 δ), a 2 = a 3 = 0, a 4 = c 0. r(z) = e (1 δ)z /((1 β)(1 δ)) r(z ) P n (z, dz ) = b n e ρn (1 δ)z 1 (1 β)(1 δ) = a 1g(z) + a 2, g(z )P (z, dz ) = e ρn+1 (1 δ)z e ρn ξ 1 +ρ 2n ξ 2 (g(z) + 1) e ρnξ = mg(z) + d. ρ = 1 δ = 1 ρ [ 1, 0] c r r c r c (w t ) t 0 ln w t = ξ + ε t, (ε t ) t 0 N(0, γ ε ). ξ ξ N(µ, γ) f(w µ, γ) = LN(µ, γ+γ ε ) w ξ w N(µ, γ ) γ = 1/ (1/γ + 1/γ ε ) µ = γ (µ/γ + ln w /γ ε ).

h h(z )P (z, dz ) = h(w, µ, γ )f(w µ, γ) dw, µ γ { } u(w ) Qψ(µ, γ) = c 0 + β max 1 β, ψ(µ, γ ) f(w µ, γ) dw. δ 0 δ 1 n := 1 g(µ, γ) := e (1 δ)µ+(1 δ)2 γ/2 m := 1 d := 0 w 1 δ f(w µ, γ) dw = e (1 δ)2 γ ε/2 e (1 δ)µ+(1 δ)2 γ/2. r(w) := w 1 δ /((1 δ)(1 β)) c c 0 E µ,γ g(µ, γ ) := g(µ, γ )f(w µ, γ) dw = g(µ, γ) = mg(µ, γ) + d. l Q (b l Y, l ) ψ Y := R R ++ δ = 1 (µ, γ) w (w, µ, γ) r(w )f(w µ, γ) dw = e (1 δ)2 γ ε/2 e (1 δ)µ+(1 δ)2γ/2 /((1 β)(1 δ)) a 1 := e (1 δ)2 γ ε/2 /((1 β)(1 δ)) a 2 := 0 a 3 := 0 a 4 := c 0

Z := R p t = p(z t ) = e Zt γ > 0 β = e γ K r(z) = (p(z) K) + c 0 Qψ(z) = e γ max{(p(z ) K) +, ψ(z )}f(z z) dz. ρ ( 1, 1) ξ := b + σ 2 /2 n N 0 e γ+ ρn ξ < 1 g(z) := e ρnz + e ρnz m := d := e ρn ξ e γ+ξ < 1 n = 0 ρ [ 1, 1] Z t Z := R + r(z t ) = Z t c 0 > 0 θ > 0 F (z z) := P(Z t+1 z Z t = z) = 1 e θ(z z) (z z). Qψ(z) = c 0 + β max{z, ψ(z )} df (z z). n := 0 g(z) := z m := 1 d := 1/θ a t a t = a(z t ) = e Zt Z t Z := R c f > 0 q(a, l) = al α α (0, 1) l

p w r(z) = c(z) = Ga(z) 1 1 α cf G = (αp/w) 1 1 α (1 α)w/α ) } Qψ(z) = (Ga(z) 1 1 α cf + β max {Ga(z ) 1 1 α cf, ψ(z ) f(z z) dz. ρ [0, 1) n N 0 βe ρn ξ < 1 ξ := b 1 α + σ2 2(1 α) 2 g(z) := e ρn z/(1 α) m := d := e ρnξ ρ = 1 P z h(z )P (z, dz ) Z h c r l z r(z ) P (z, dz ) z l(z )P (z, dz ) n = 0 P c r g z E z g(z 1 ) g z E z g(z 1 ) z E z r(z t ), E z c(z t ) t = 0,..., n ψ P r P f(z z) z c l z r(z ) f(z z) dz, l(z )f(z z) dz ψ n = 0 r(z) a 1 g(z) + a 2 r, g z E z g(z 1 ) z E z r(z 1 )

r c r c ψ P f c z f(z z) ψ ψ P f(z z) = N(ρz + b, σ 2 ) z c c 0 g z E z g(z 1 ) z E z r(z t ) t N l z E z l(z 1 ) n = 1 P c c 0 r g (µ, γ) E µ,γ r(w ), E µ,γ g(µ, γ ) E µ,γ r(w ) := r(w ) f(w µ, γ) dw ψ ψ r(z) e z + K z (e z + K)f(z z) dz z E z r(z 1 ) & n = 0 h : Z R z h(z ) df (z z) P r c g z E z g(z 1 ) z P (z, dz ) = z θe θ(z z) dz = z + 1/θ. [z, ) ψ ψ

r P c z max{r(z ), ψ(z )}P (z, dz ) ψ b l Z ψ ρ 0 f(z z) = N(ρz + b, σ 2 ) z r c ψ ρ 0 ψ ψ r(w) µ µ f(w µ, γ) = N(µ, γ + γ ε ) µ E µ,γ (r(w ) ψ(µ, γ )) µ ψ µ c c 0 ψ µ Z = Z 1 Z m R m z = (z 1,..., z m ) h : Z R D j i h(z) j h z i f D j i f(z z) := j f(z z)/ (z i ) j D i c(z) z int(z) i = 1,..., m z i := (z 1,..., z i 1, z i+1,..., z m ) z 0 Z δ > 0 B δ (z0) i := {z i Z i : z i z0 i < δ} B δ (z0) i P f i = 1,..., m Di 2 f(z z) (z, z ) int(z) Z

(z, z ) D i f(z z) z i D 2 i f(z z) = 0 z i (z, z i ) z 0 int(z) δ > 0 A Z z / A z i (z, z i 0 ) / B δ (z i 0) z i D 2 i f(z z) = 0 z 0 int(z) z z i (z, z i 0 ) k k(z )D i f(z z) dz < z int(z) k {r, l} i = 1,..., m ψ ψ z int(z) i = 1,..., m D i ψ (z) = D i c(z) + max{r(z ), ψ (z )}D i f(z z) dz. i = 1,..., m z D i c(z) int(z) k z k(z )D i f(z z) dz int(z) k {r, l} z D i ψ (z) int(z) i = 1,..., m h(z, a) := e a(ρz+b)+a2 σ 2 /2 / 2πσ 2 2 f(z z) z 2 f(z z) z dz = ρ 2 σ π e az f(z z) z h(z, a) exp = 0 z (z ) := z b±σ ρ } { [z (ρz+b+aσ 2 )] 2 ρz + ρ(ρz+b) 2σ 2 σ 2

z z z ψ ψ v ψ v ψ v z = 3 ψ Θ R k P θ, r θ c θ vθ ψ θ θ Θ γ = 0.04 K = 20 b = 0.2 σ = 1 ρ = ±0.65

n θ a iθ m θ d θ g θ θ n := sup n θ m := sup m θ d := sup d θ ā := 4 i=1 sup a iθ θ Θ θ Θ θ Θ θ Θ θ Θ βm < 1 n, d, ā < m d l : Z Θ R ( n 1 ) n 1 l(z, θ) := m E θ z r θ (Z t ) + E θ z c θ (Z t ) + g θ (z) + d, t=1 t=0 Q b l (Z Θ) (z, θ) ψθ (z) E θ z P θ (z, ) P θ (z, ) (z, θ) h(z )P θ (z, dz ) h : Z R (z, θ) c θ (z), r θ (z), l(z, θ), rθ (z ) P θ (z, dz ), l(z, θ)p θ (z, dz ) (z, θ) ψθ (z) Θ := [ 1, 1] A B C A, B R ++, R C R Θ θ = (ρ, σ, b, c 0 ) (θ, z) ψθ (z)

Z R m Z = X Y X R Y R m 1 (Z t ) t 0 {(X t, Y t )} t 0 (X t ) t 0 (Y t ) t 0 X Y (X t ) t 0 (Y t ) t 0 Y t (X t+1, Y t+1 ) X t P (z, dz ) (x, y ) y F y (x, y ) P (z, dz ) = P ((x, y), d(x, y )) = df y (x, y ) c : Y R r X y Y x X r(x, y) = c(y) + β v (x, y ) df y (x, y ) X t Y t X Y x : Y X x x r( x(y), y) = ψ (y) y Y { 1{x x(y)}, r x σ (x, y) = 1{x x(y)}, r x r x x θ θ Θ (y, θ) x θ (y)

Y y = (y 1,..., y m 1 ) h : Y R l : X Y R D i h(y) := h(y)/ y i D i l(x, y) := l(x, y)/ y i D x l(x, y) := l(x, y)/ x r int(z) x int(y) D i x(y) = D ir( x(y), y) D i ψ (y) D x r( x(y), y) y int(y) i = 1,..., m. (x, y) r(x, y) ψ (y) x y x(y) y i y i x r X x { } u(w) v (w, µ, γ) = max 1 β, c 0 + β v (w, µ, γ )f(w µ, γ) dw,

x := w R ++ =: X y := (µ, γ) R R ++ =: Y w : Y R w µ µ

Q β = 0.95 γ ε = 1.0 c 0 = 0.6 δ = 3, 4, 5, 6 (µ, γ) [ 10, 10] [10 4, 10] 200 µ 100 γ µ γ µ γ µ µ γ µ 178 f t R {f t } h f h(f) df < x t x t = ξ t +ε x t {ε x t } N(0, γ x ) ξ t ε x t 10 4 σ = 3, 4, 5, 6 w [10 4, 10] 50 µ γ f t < 0

ξ t = ρξ t 1 + ε ξ t, {ε ξ t} N(0, γ ξ ). y t+1 t y t = ξ t + ε y t {ε y t } N(0, γ y ) ξ N(µ, γ) y ξ y N(µ, γ ) γ = 1/ ( 1/γ + ρ 2 /(γ ξ + γ y ) ) µ = γ (µ/γ + ρy /(γ ξ + γ y )). u(x) = (1 e ax ) /a a > 0 ( ) r(f, µ, γ) := E µ,γ [u(x)] f = 1 e aµ+a2 (γ+γ x)/2 /a f c 0 x := f R =: X y := (µ, γ) R R ++ =: Y Qψ(µ, γ) = β max {E µ,γ [u(x )] f, ψ(µ, γ )} p(f, y µ, γ) d(f, y ), p(f, y µ, γ) = h(f )l(y µ, γ) l(y µ, γ) = N(ρµ, ρ 2 γ +γ ξ +γ y ) n := 1 g(µ, γ) := e µ+a2 γ/2 m := 1 d := 0 l f : Y R Q (b l Y, l ) ψ f(µ, γ) = E µ,γ [u(x)] ψ (µ, γ) ψ f ρ 0 ψ µ ρ {ξ t } β = 0.95 a = 0.2 γ x = 0.1 γ y = 0.05 h = LN(0, 0.01) ρ = 1 γ ξ = 0 (µ, γ) [ 2, 10] [10 4, 10] 100 {f t } R

{ P f f(µ, γ) } µ γ µ γ 921 w t = η t + θ t ξ t, ln θ t = ρ ln θ t 1 + ln u t, ρ [ 1, 1]. {ξ t } h {η t } v η 1 v(η) dη < {u t } LN(0, γ u ) {ξ t } {η t } {θ t } 10 4 f [10 4, 10] µ γ

θ t ξ t η t Qψ(θ) = c 0 + β { } u(w ) max 1 β, ψ(θ ) f(θ θ)h(ξ )v(η ) d(θ, ξ, η ), w = η + θ ξ f(θ θ) = LN(ρ ln θ, γ u ) w R ++ =: X θ R ++ =: Y w δ δ = 1 ρ ( 1, 1) n N 0 βe ρ2n γ u < 1 g(θ) := θ ρn + θ ρn m := d := e ρ2n γ u ρ ( 1, 1) Q (b l Y, l ) ψ w(θ) = e (1 β)ψ (θ) ψ w w (θ) = (1 β) w(θ)ψ (θ). ρ 0 ψ w θ w w θ w θ θ w ψ (θ) [(1 β) w(θ)] 1 βe γu/2 < 1 ρ = 1 ρ = 1 δ 0 δ 1 β = 0.95 c 0 = 0.6 γ u = 10 4 v = LN(0, 10 6 ) h = LN(0, 5 10 4 ) ρ [0, 1] 100

θ [10 4, 10] 200 θ ρ = 0 {θ t } LN(0, γ u ) θ θ θ ρ > 0 θ θ ρ ρ θ < 1 ρ θ > 1 1733 w π

ρ = 0.75 β = 0.95 c 0 = 0.6 γ u = 10 4 v = LN(0, 10 6 ) h = LN(0, 5 10 4 ) (θ, w) [10 4, 10] 2 (θ, w) (200, 200) (200, 300) (200, 400) (300, 200) (300, 300) (300, 400) (400, 200) (400, 300) (400, 400) 10 4 t Z t c(z t ) t + 1 s(z t ) t + 1 α Z g : Z R + n N 0 a 1,, a 4 m, d R + βm < 1 z Z s(z ) P n (z, dz ) a 1 g(z) + a 2

c(z ) P n (z, dz ) a 3 g(z) + a 4 g(z )P (z, dz ) mg(z) + d v (z) r (z) z Z v r { } v (z) = max r (z), c(z) + β v (z )P (z, dz ), r (z) = s(z) + αβ v (z )P (z, dz ) + (1 α)β r (z )P (z, dz ). ψ := c + βp v v = r ψ ψ r ψ = c + βp (r ψ) r = s + αβp (r ψ) + (1 α)βp r. m d κ : Z R + n 1 κ(z) := m E z [ s(z t ) + c(z t ) ] + g(z) + d t=0 (b κ Z b κ Z, ρ κ ) ρ κ b κ Z b κ Z ρ κ ((ψ, r), (ψ, r )) = ψ ψ κ r r κ. (b κ Z b κ Z, ρ κ ) (b κ Z, κ ) L b κ Z b κ Z ( ) ( ) ψ c + βp (r ψ) L =. r s + αβp (r ψ) + (1 α)βp r m d κ

L (b κ Z b κ Z, ρ κ ) L b κ Z b κ Z h := (ψ, r ) b 1, b 2 R + z Z v (z) n 1 t=0 βt E z [ r(z t ) + c(z t ) ] + b 1 g(z) + b 2 ψ (z) n 1 t=1 βt E z r(z t ) + n 1 t=0 βt E z c(z t ) + b 1 g(z) + b 2 m 1 E z r(z n ) a 1 g(z) + a 2 E z c(z n ) a 3 g(z) + a 4 E z g(z 1 ) mg(z) + d z Z t 1 E z g(z t ) = E z [E z (g(z t ) F t 1 )] = E z ( E Zt 1 g(z 1 ) ) m E z g(z t 1 ) + d. t 0 E z g(z t ) m t g(z) + 1 mt d. 1 m t n E z r(z t ) = E z [E z ( r(z t ) F t n )] = E z ( E Zt n r(z n ) ) a 1 E z g(z t n ) + a 2.

t n ( E z r(z t ) a 1 m t n g(z) + 1 ) mt n 1 m d t n ( E z c(z t ) a 3 E z g(z t n ) + a 4 a 3 m t n g(z) + 1 ) mt n 1 m d + a 2. S(z) := t 1 βt E z [ r(z t ) + c(z t ) ] + a 4. n 1 S(z) β t E z [ r(z t ) + c(z t ) ] + a 1 + a 3 1 βm g(z) + (a 1 + a 3 )d + a 2 + a 4. (1 βm)(1 β) t=1 v r + c + S ψ c + S b 1 := a 1+a 3 1 βm b 2 := (a 1+a 3 )d+a 2 +a 4 (1 βm)(1 β) (X, X, ν) (Y, Y, u) p : Y X R x q : Y X R x q p Y X x q(y, x)u(dy) x p(y, x)u(dy) ( ) E z sup k 1 k 0 t=0 βt c(z t ) + β k r(z k ) < z Z k 1 sup β t c(z t ) + β k r(z k 0 k ) β t [ r(z t ) + c(z t ) ] t=0 t 0 P z z Z

d 1 := a 1 + a 3 d 2 := a 2 + a 4 βm < 1 m d m + d 1 m > 1 β(m + d 1 m ) < 1 d (d 2 m + d)/(m + d 1 m 1) Q Qψ Qϕ ψ, ϕ b l Z ψ ϕ Q0 b l Z Qψ Z ψ b l Z Q(ψ +al) Qψ +aβ(m+d 1 m )l a R + ψ b l Z (Q0)(z) c(z) r(z l(z) l(z) + β ) l(z) P (z, dz ) (1 + β)/m < z Z Q0 l < Qψ E z r(z t ) P (z, dz ) = E z r(z t+1 ) E z c(z t ) P (z, dz ) = E z c(z t+1 ). h(z) := n 1 t=1 E z r(z t ) + n 1 t=0 E z c(z t ) n n h(z )P (z, dz ) = E z r(z t ) + E z c(z t ). t=2 m d m+d 1 m > 1 (d 2 m +d+d )/(m+d 1 m ) d ( n ) n l(z )P (z, dz ) = m E z r(z t ) + E z c(z t ) t=2 t=2 t=1 ( n 1 ) n 1 m E z r(z t ) + E z c(z t ) t=1 t=1 + g(z )P (z, dz ) + d + (m + d 1 m )g(z) + d 2 m + d + d ( (m + d 1 m m ) m + d 1 m h(z) + g(z) + d 2m + d + d ) m + d 1 m (m + d 1 m )l(z). ψ b l Z a R + z Z Q(ψ + al)(z) = c(z) + β max { r(z ), ψ(z ) + al(z ) } P (z, dz ) c(z) + β max { r(z ), ψ(z ) } P (z, dz ) + aβ l(z )P (z, dz ) Qψ(z) + aβ(m + d 1 m )l(z).

ψ Q ψ b l Z ψ Q b l Z τ := inf{t 0 : v (Z t ) = r(z t )} b l cz b l Z l b l cz b l Z ψ Q(b l cz) b l cz ψ b l cz h(z) := max{r(z), ψ(z)} G R + h(z) r(z) + Gl(z) =: h(z) z h(z) ± h(z) (z m ) m 0 Z z m z Z ( h(z ) ± h(z )) P (z, dz ) lim inf ( h(z ) ± h(z )) P (z m, dz ). m lim m h(z )P (z m, dz ) = h(z )P (z, dz ) ( ) ± h(z )P (z, dz ) lim inf ± h(z )P (z m, dz ), m (a m ) m 0 (b m ) m 0 R lim a m lim inf (a m + b m ) = lim a m + lim inf b m m m m m lim sup h(z )P (z m, dz ) h(z )P (z, dz ) lim inf h(z )P (z m, dz ), m m z h(z )P (z, dz ) c Qψ b l cz Q(b l cz) b l cz ψ b l iz b l Z ψ Q(b l iz) b l iz µ(z) := max{r(z ), ψ (z )}f(z z) dz µ i (z) := max{r(z ), ψ (z )}D i f(z z) dz

i = 1,..., m P f D i f(z z) (z, z ) int(z) Z z 0 int(z) δ > 0 k {r, l} k(z ) sup D i f(z z) dz < z i B δ (z0 i ) D i µ(z) = µ i (z) z int(z) i = 1,..., m (z i = z i 0 ). z 0 int(z) {z n } int(z) z i n z i 0 zi n z i 0 z i n = z i 0 n N δ > 0 N N zn i B δ (z0 i ) n N z i = z0 i ξ i (z, z n, z 0 ) B δ (z0 i ) i (z, z n, z 0 ) := f(z z n ) f(z z 0 ) zn i z0 i = D i f(z z) z i =ξ i (z,z n,z 0 ) sup D i f(z z). z i B δ (z0 i ) ψ Gl G R + n N max{r(z ), ψ (z )} i (z, z n, z 0 ) ( r(z ) + Gl(z )) sup D i f(z z) z i B δ (z0 i ) ( r(z ) + Gl(z )) sup D i f(z z) dz < z i B δ (z0 i ) max{r(z ), ψ (z )} i (z, z n, z 0 ) max{r(z ), ψ (z )}D i f(z z 0 ) n µ(z n ) µ(z 0 ) z i n z i 0 = max{r(z ), ψ (z )} i (z, z n, z 0 ) dz max{r(z ), ψ (z )}D i f(z z 0 ) dz = µ i (z 0 ). D i µ(z 0 ) = µ i (z 0 ) z 0 int(z) δ > 0 A Z z / A z i (z, z i 0 ) / B δ(z i 0 ) z i = z i 0 sup D i f(z z) = D i f(z z) z z i B i δ (z0 i ) =z0 i +δ D if(z z) z i =z0 i δ =: hδ (z, z 0 ).

G R + z i = z i 0 sup D i f(z z) sup D i f(z z) 1(z A) + h δ (z, z 0 ) 1(z A c ) z i B δ (z0 i ) z A,z i B δ (z0 i ) ) G 1(z A) + ( D i f(z z) z i =z i0 +δ + D if(z z) z i =z i0 δ 1(z A c ). D i ψ (z) = D i c(z) + µ i (z) z int(z) D i ψ (z) = D i c(z) + µ i (z) int(z) D i c(z) ψ z µ i (z) int(z) ψ Gl G R + max{r(z ), ψ (z )}D i f(z z) ( r(z ) + Gl(z )) D i f(z z), z, z Z. z z [ r(z ) + Gl(z )] D i f(z z) dz z µ i (z) r(f, µ, γ ) ( ) 1/a + e a2 γ x/2 /a e aµ +a 2 γ /2 + f. e aµ +a 2 γ /2 P (z, dz ) = e aµ +a 2 γ /2 l(y µ, γ) dy = e aµ+a2γ/2. µ f := f h(f) df r(f, µ, γ ) ( ) P (z, dz ) (1/a + µ f ) + e a2 γ x/2 /a e aµ+a2γ/2. n := 1 g(µ, γ) := e aµ+a2 γ/2 m := 1 d := 0 P (µ, γ) (µ, γ) (µ, γ) E µ,γ r(z 1 ) g

g(µ, γ) = E µ,γ g(µ, γ ) l µ ρ 0 w = η + θξ ln w 1/w + w ln w P (z, dz ) (1/η + η )v(η ) dη + ξ h(ξ ) dξ θ f(θ θ) dθ = µ η + µ + η + µ ξ e γu/2 θ ρ, µ + η := ηv(η) dη µ η := η 1 v(η) dη µ ξ := ξh(ξ) dξ ( ln w P t (z, dz ) a (t) 1 θ ρt + a (t) 2 a (t) 1 θ ρt + θ ρt) + a (t) 2 a (t) 1 a(t) 2 > 0 θ t N n g m d θ ρn+1 + θ ρn+1 θ ρn + θ ρn + 1 θ > 0 ρ [ 1, 1] g(θ )f(θ θ) dθ = ( θ ρn+1 + θ ρn+1) e ρ2n γ u/2 mg(θ) + d. θ f(θ θ) θ (θ, θ ) f(θ θ)/ θ 2 f(θ θ)/ θ 2 = 0 : θ = θ (θ ) = ã i e ln θ /ρ, i = 1, 2 ã 1, ã 2 > 0 ρ > 0 (< 0) θ (θ ) (0) θ θ (θ ) 0 ( ) θ 0 f(θ θ) ρ > 0 X LN(µ, σ 2 ) E X s = e sµ+s2 σ 2 /2 s R

d 1 := a 1 + a 3 d 2 := a 2 + a 4 βm < 1 m, d > 0 m + d 1 m > 1 β(m + d 1 m ) < 1 d d 2m +d m+d 1 m 1 κ(z )P (z, dz ) (m + d 1 m )κ(z). z Z L: (b κ Z b κ Z, ρ κ ) (b κ Z b κ Z, ρ κ ) h := (ψ, r) b κ Z b κ Z p(z) := c(z) + β max{r(z ), ψ(z )}P (z, dz ) q(z) := s(z) + αβ max{r(z ), ψ(z )}P (z, dz ) + (1 α)β r(z )P (z, dz ) p q Z G R + z Z p(z) q(z) κ(z) c(z) s(z) κ(z) + βg κ(z )P (z, dz ) κ(z) 1 m + β(m + d 1m )G <. p b κ Z q b κ Z Lh b κ Z b κ Z L (b κ Z b κ Z, ρ κ ) h 1 := (ψ 1, r 1 ) h 2 := (ψ 2, r 2 ) b κ Z b κ Z ρ κ (Lh 1, Lh 2 ) = I J I := βp (r 1 ψ 1 ) βp (r 2 ψ 2 ) κ J := αβ[p (r 1 ψ 1 ) P (r 2 ψ 2 )] + (1 α)β(p r 1 P r 2 ) κ z Z P (r 1 ψ 1 )(z) P (r 2 ψ 2 )(z) r 1 ψ 1 r 2 ψ 2 (z )P (z, dz ) ( ψ 1 ψ 2 r 1 r 2 )(z )P (z, dz ) ρ κ (h 1, h 2 ) κ(z )P (z, dz ), a b a b a a b b I β(m + d 1 m )ρ κ (h 1, h 2 ) J β(m + d 1 m )ρ κ (h 1, h 2 ) L (b κ Z b κ Z, ρ κ ) β(m + d 1 m ) ρ κ (Lh 1, Lh 2 ) = I J β(m + d 1 m )ρ κ (h 1, h 2 ). ψ r h := (ψ, r ) L h b κ Z b κ Z max{ r (z), ψ (z) } β t E z [ s(z t ) + c(z t ) ], t=0