Heavy Fermion systems

Similar documents
Metal-insulator transitions

Mott insulators. Introduction Cluster-model description Chemical trend Band description Self-energy correction

Intermediate valence in Yb Intermetallic compounds

Mott insulators. Mott-Hubbard type vs charge-transfer type

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

High-T c superconductors

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Two energy scales and slow crossover in YbAl 3

Intermediate valence metals: Current issues

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Jim Freericks (Georgetown University) Veljko Zlatic (Institute of Physics, Zagreb)

Itinerant to localized transition of f electrons in antiferromagnetic superconductor UPd 2 Al 3

NiO - hole doping and bandstructure of charge transfer insulator

f-electron Fermi surface exclusion above T K in CeRu 2 Si 2 Dr. Jim Allen, Univ of Michigan (KITP Correlated Electrons Program 9/17/02) 1

Optical conductivity of CeMIn 5 (M=Co, Rh, Ir)

The Hubbard model in cold atoms and in the high-tc cuprates

Electronic structure of Ce 2 Rh 3 Al 9

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Electronic structure calculations results from LDA+U method

Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5. Florida State University, Tallahassee, FL Version Date: January 19, 2001

Ultrahigh-resolution photoemission study of superconductors and strongly correlated materials using quasi-cw VUV laser

Material Science II. d Electron systems

Magnetic Moment Collapse drives Mott transition in MnO

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

Probing the Electronic Structure of Complex Systems by State-of-the-Art ARPES Andrea Damascelli

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Photoemission Studies of Strongly Correlated Systems

Kondo satellites in photoemission spectra of heavy fermion compounds

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

arxiv:cond-mat/ v1 [cond-mat.str-el] 24 Feb 2003

Mean field theories of quantum spin glasses

Phase diagrams of pressure-tuned Heavy Fermion Systems

The High T c Superconductors: BCS or Not BCS?

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Topological Kondo Insulators!

Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions

Phases of Na x CoO 2

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

2.1 Experimental and theoretical studies

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

Electronic correlations in models and materials. Jan Kuneš

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

X-ray spectroscopy and diffraction experiments by using mini-coils: applications to valence state transitions and frustrated magnets

Electron Correlation

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Spin-Charge Separation in 1-D. Spin-Charge Separation in 1-D. Spin-Charge Separation - Experiment. Spin-Charge Separation - Experiment

Angle Resolved Photoemission Spectroscopy. Dan Dessau University of Colorado, Boulder

Optical and transport properties of small polarons from Dynamical Mean-Field Theory

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Magnetism in correlated-electron materials

Subir Sachdev. Yale University. C. Buragohain K. Damle M. Vojta

Quantum phase transitions in Mott insulators and d-wave superconductors

An introduction to the dynamical mean-field theory. L. V. Pourovskii

arxiv: v1 [cond-mat.mtrl-sci] 30 Dec 2018

Inelastic light scattering and the correlated metal-insulator transition

O. Parcollet CEA-Saclay FRANCE

Conference on Superconductor-Insulator Transitions May 2009

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Photoelectron Spectroscopy

Syro Université Paris-Sud and de Physique et Chimie Industrielles - Paris

Scanning Tunneling Microscopy/Spectroscopy

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Can superconductivity emerge out of a non Fermi liquid.

Resonating Valence Bond point of view in Graphene

Neutron scattering from quantum materials

Quantum simulations, adiabatic transformations,

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Correlated Electron Compounds: from real materials to model systems and back again

On-site Coulomb energy versus crystal-field splitting for the insulator-metal transition in La 1Àx Sr x TiO 3

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Exotic Kondo-hole band resistivity and magnetoresistance of Ce 1 x La x Os 4 Sb 12 alloys

FROM NODAL LIQUID TO NODAL INSULATOR

Nernst effect and Kondo scattering in (CeLa)Cu 2 Si 2

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Dynamical properties of strongly correlated electron systems studied by the density-matrix renormalization group (DMRG) Takami Tohyama

Metal-Mott insulator transitions

Electronic structure of correlated electron systems. Lecture 2

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids

More a progress report than a talk

What's so unusual about high temperature superconductors? UBC 2005

Orbital order and Hund's rule frustration in Kondo lattices

SUPPLEMENTARY INFORMATION

Correlatd electrons: the case of high T c cuprates

Comparison of the Crystal Structure of the Heavy-Fermion Materials

When Landau and Lifshitz meet

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

Polaronic Effects in the Lightly Doped Cuprates. Kyle M. Shen Stanford University

Hybridization effects in 4f systems as observed by photoemission spectroscopy

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Transcription:

Heavy Fermion systems Satellite structures in core-level and valence-band spectra Kondo peak Kondo insulator Band structure and Fermi surface d-electron heavy Fermion and Kondo insulators

Heavy Fermion systems Satellite structures in core-level and valence-band spectra

Double peak structure in photoemission spectra of Ce compounds with 4f4 1 configuration Ce intermetallics Ce monopnictides 4f 1 4f 0 Photoemission BIS on-resonance off-resonance 4f-derived emission 4d-4f resonant photoemission Intensity ratio f 1 f 2 f 1 f 0 µ J.W. Allen et al., PRB 83 A. Franciosi et al., PRB 81

Cluster-model analysis of Ce 4f-derived photoemission spectra from 4f4 1 ground state Ground state Final state Cluster model ~ 1 ev many-electron energy f 1 f 0 f 1 L photoemission N N-1 ~2V Binding energy µ A. Fujimori, PRB 83

Cluster-model analysis of Ce core-level photoemission spectra from 4f4 1 ground state Ground state Final state cf 1 cf 2 L Binding energy 3d 5/2 3d 7/2 many-electron energy photoemission f 1 J. C. Fuggle et al., PRB 83 A. Fujimori, PRB 83

Cluster-model analysis of Ce core-level photoemission spectra from hybridized state Ground state Ψ I = c I0 4f 0 > + c I1 4f 1 L> Final state Ψ F = c F0 c4f 0 > + c F1 c4f 1 L> + c F2 c4f 2 L 2 > many-electron energy cf 0 cf 1 L cf 2 L 2 photoemission Binding energy f 0 f 0 f 0 peak intensity ~ 1 - n f f 1 L A. Fujimori, PRB 83

Cluster-model analysis of Ce core-level photoemission spectra from hybridized state Ce 3d XPS of CeO 2 cf 0 f 0 many-electron energy cf 1 L cf 2 L 2 photoemission Binding energy f 0 f 1 L A. Fujimori, PRB 83

Cluster-model analysis of Ce core-level photoemission spectra from hybridized state cf 0 f 0 many-electron energy cf 1 L cf 2 L 2 photoemission Binding energy f 0 f 1 L J. C. Fuggle et al., PRB 83 A. Fujimori, PRB 83

Single-impurity Anderson model analysis of Ce 4f-derived photoemission spectra f 0 c-f hybridization f 1 L one-electron energy E = 0 ε f f-electron emission E = ε f - ε dominant in ground state E = - ε E = ε f - ε - ε Binding energy µ O. Gunnarsson and K. Schonhammer, PRB 83

Single-impurity Anderson model analysis of photoemission spectra Ce 3d XPS spectrum Ce 4f-derived spectrum O. Gunnarsson et al., PRB 83

Valence fluctuation/kondo effect one-electron energy f 0 c-f hybridization f 1 L ε f E = 0 E = ε f - ε many-electron energy f 0 f 1 L k B T K E = ε f Kondo singlet S =0 conduction electron/hole f electron

Heavy Fermion systems Kondo peak

Physical properties of Kondo lattice χ(0) = Cn f / T K γ = π 2 k B n f / 3T K ~T K /3 Wilson ratio: π 2 R W (π 2 k B /3C)(χ(0)/γ) ~ 1

f-electron density of states of valence fluctuation/kondo systems Photoemission Inverse-photoemission Ce (f 0 f 1 ) Yb (f 13 f 14 ) (Yb 3+ Yb 2+ ) f-electron density of states ρ f (ω) f 1 f 0 f 13 f 12 µ U Photoemission Energy ω Kondo peak (f 0 f 1 ) ε f = k B T K U Kondo peak (f 14 f 13 ) ε f = k B T K Yb 3+ Yb 2+ µ f 1 f 2 Ce 3+ Ce 3+ Ce 4+ Inverse-photoemission f 13 f 14 Yb 3+ n f = /[ +πt K /N f ]

f-electron density of states in valence fluctuating/kondo Yb compounds Kondo temperature: T K

High-resolution photoemission spectroscopy α-ce Garnier et al. 1997 E = 5 mev Patthey et al, 1985 E = 20 mev Wieliczka et al. 1984 E = 100 mev Wieliczka et al. 1982 E = 400 mev -600-400 -200 EF

Photoemission spectra of valence fluctuating YbAl 2 f 14 f 13 Yb 3+ f 13 f 12 Yb 2+ Yb 2+ surface bulk E ~ 150 mev S.-J. Oh et al. PRB 88

Temperature dependence of the Kondo peak in YbAl 2 T K ~ 400 K n f ~ 0.77 ~ 0.05 ev E ~ 40 mev L. H. Tjeng et al. PRL 93 Anderson-impurity model fit

Argument against the Kondo scenario Anderson-impurity model fit E ~ 60 mev single crystals J. J. Joyce et al. Physica B, 95

Beamline 23SU at SPring-8 RI expt. hall Helical undulator PGM monochromator bulk sensitive high-resolution photoemission expts with hν = 500-900 ev is made. See, A. Sekiyama et al., Nature 1999

Physical properties of Yb 2 Co 3 X 9 (X=Ga Ga,, Al) Yb 2 Co 3 Ga 9 : T K ~ 260 K Yb 2 Rh 3 Ga 9 : T K ~ 120 K, Yb 2 Ir 3 Ga 9 : T K ~ 250 K Yb 2 Co 3 Al 9 : T N = 1.2 K, T K < 1 K Yb 2 Rh 3 Al 9 : T N = 3.5 K, Yb 2 Ir 3 Al 9 : T N = 5.5 K X=Ga, Al S.K. Dhar et al. Physica B, 99 O. Trovarelli et al., PRB 99

Photoemission spectra of Yb 2 Co 3 X 9 T K ~ 260 K n f ~ 0.9 ~ 0.1 ev Co 3d Co 3d E ~ 5 mev T. Okane et al., PRB 02 400 300 200 100 0 Binding Energy (mev)

Photoemission spectra of Yb 2 Co 3 Ga 9 4f density of states Temperature dependence T. Okane et al., PRB 02

Anderson-impurity model analyses of the Kondo peak --- NCA and beyond Yb 2 Co 3 Ga 9 Energy (ev) NCA+Doniach-Sunjic asymmetric broadening NCA+Lorentzian-Gaussian broadening see, O. Gunnarsson and K. Shonhammer, PRB 40, 4160 (1989) T. Okane et al., PRB 02

Asymmetric broadening of the Kondo peak beyond NCA NCA electron-hole pair excitation asymmetric broadening see, O. Gunnarsson and K. Shonhammer, PRB 89

Thermoelectric material skutterudite-type YbFe 4 Sb Sb 12 Thermoelectric figure of merit Z = S σ κ 3 2 m* µ κ 2 / High carrier mobility High thermopower Low thermal conductivity Electrical resisitivity l Yb Fe Sb Thermopower S & thermal conductivity κ Dilley et al. PRB 00 T. Okane et al. unpublished

Heavy Fermion systems Kondo insulator

Physical properties of Kondo insulator χ( 0 ) = Cn f / T K ~TK /3 γ = π 2 k B n f / 3T K

Renormalized band picture for Kondo insulator f band d, s band G. Aeppli and Z. Fisk, Comments Cond. Matt. Phys. 92

Kondo insulator versus band insulator Band insulator Kondo insulator

Physical properties of YbB 12 Yb B T K ~ 260 K

Photoemission spectra of YbB 12 E ~ 30 mev T. Susaki et al. PRL 96 T K ~ 260 K n f ~ 0.85 ~ 0.1 ev

Yb 4f density of states and self-energy analysis in YbB 12 T. Susaki et al. PRL 96

Photoemission spectra of YbB 12 ~100 mev peudogap ~10 mev (peudo)gap E ~ 7 mev T. Susaki et al. PRL 99

Effects of Yb dilution on the gap of YbB 12 T. Susaki et al. JPSJ 01

Heavy Fermion systems Band structure and Fermi surface

Pressure-induced superconductivity in quasi-2d heavy Fermion system CeRhIn 5 In Rh, Ir antiferromagnetic Ce supercond. Superconductivity at ambient pressure in CeIrIn 5 (T C = 0.4 K) and CeCoIn 5 (T C = 2.2 K) coexistence of AF and supercond H. Hegger et al. PRL 00 R. Movshovich et al. PRL 01

Superconductivity near quantum critical point Doniach s phase diagram CeRhIn 5 CeCoIn 5 Non-Fermi liquid Antferromagnetic metal CeIrIn 5 superconductor Fermi liquid quantum critical point S. Doniach

Beamline 23SU at SPring-8

Bulk-sensitive photoemission at SPring-8 @ Hi-SOR S.I. Fujimori et al., cond-mat LT23 proceedings

ARPES spectra of CeRhIn 5 CeRhIn 5 Γ-X (Z-R) He I T = 14 K CeRhIn 5 Γ-M (Z-A) He I T = 14 K hν = 21.2 ev Photoemission Intensity (arb. units) θ = 30 25 20 15 10 5 Photoemission Intensity (arb. units) θ = 35 30 25 20 15 10 5 0 0 3 2 1 0 Binding Energy (ev) E F -5 3 2 1 0 Binding Energy (ev) E F -5 S.I. Fujimori et al., cond-mat

CeRhIn 5 : Comparison with band calculations S.I. Fujimori et al., cond-mat

CeIrIn 5 : Comparison with band calculations S.I. Fujimori et al., cond-mat

ARPES Fermi surface in CeIrIn 5 Fermi surface mapping -comparison with LDA- LDA calculation of Fermi surface H. Harima A M The cylindrical Fermi surface centered at M(A) is observed. S.I. Fujimori et al., cond-mat

Band calculations for CeRhIn 5 and LaRhIn 5 H. Harima

Heavy Fermion systems d-electron heavy Fermion and Kondo insulators

Heavy Fermion behavior of LiV 2 O 4 LDA + U calc. Li V O a 1g : localized states e g : conduction electrons Kondo effect C. Urano et al., PRL 00 V.I.Anisimov et al., PRL 99

Electronic structure of LiV 2 O 4 Incoherent coherent * No preferential occupation of a 1g * T-dependent spectral weight transfer as predicted by Hubbard model DMFT J. Matsuno et al., PRB 99, Physca B 00

Z. Schlesinger, PRL 93 V. Jaccarino, PR 67 Kondo-insulator behavior of FeSi Electrical resisitivity Magnetic susceptibility fitted with local moment distorted from NaCl Optical conductivity or narrow band T(K) = Gap ~ 600 cm -1 250 200 150 100 20 Transition ~ 150 K Nonmagnetic insulator Paramagnetic metal

T. Saitoh et al., Sol. St. Commun. 95 T. Susaki et al., PRB 98 Electronic structure of FeSi narrow band gap L.F. Mattheiss and D.R. Hamann, PRB 93

Renormalized band picture for Kondo insulator f band d, s band G. Aeppli and Z. Fisk, Comments Cond. Matt. Phys. 92

Kondo insulator versus band insulator Band insulator Kondo insulator