Biaxial Nematics Fact, Theory and Simulation

Similar documents
Sep 15th Il Palazzone SNS - Cortona (AR)

Biaxial Phase Transitions in Nematic Liquid Crystals

Chem8028(1314) - Spin Dynamics: Spin Interactions

High-resolution Calorimetric Study of a Liquid Crystalline Organo-Siloxane Tetrapode with a Biaxial Nematic Phase

phases of liquid crystals and their transitions

I seminari del giovedì. Transizione di fase in cristalli liquidi II: Ricostruzione d ordine in celle nematiche frustrate

Phase diagrams of mixtures of flexible polymers and nematic liquid crystals in a field

An introduction to Solid State NMR and its Interactions

PHASE BIAXIALITY IN NEMATIC LIQUID CRYSTALS Experimental evidence for phase biaxiality in various thermotropic liquid crystalline systems

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Spin Interactions. Giuseppe Pileio 24/10/2006

Lecture 8. Stress Strain in Multi-dimension

Stability and Symmetry Properties for the General Quadrupolar Interaction between Biaxial Molecules

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

Multiple Integrals and Vector Calculus: Synopsis

Homework 1/Solutions. Graded Exercises

Liquid Crystals. Martin Oettel. Some aspects. May 2014

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

arxiv: v1 [cond-mat.soft] 13 Sep 2015

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

3.2 Hooke s law anisotropic elasticity Robert Hooke ( ) Most general relationship

Algebraic Expressions

3D and Planar Constitutive Relations

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Maxwell s Equations:

LOWELL WEEKLY JOURNAL

Molecular simulation of hierarchical structures in bent-core nematics

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Phase transitions in liquid crystals

Tensor Visualization. CSC 7443: Scientific Information Visualization

Lecture 7. Properties of Materials

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

AMC Lecture Notes. Justin Stevens. Cybermath Academy

Strain Transformation equations

Basic Equations of Elasticity

Crystal Relaxation, Elasticity, and Lattice Dynamics

GG303 Lecture 6 8/27/09 1 SCALARS, VECTORS, AND TENSORS

Linearized Theory: Sound Waves

NIELINIOWA OPTYKA MOLEKULARNA

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Chapter y. 8. n cd (x y) 14. (2a b) 15. (a) 3(x 2y) = 3x 3(2y) = 3x 6y. 16. (a)

IOAN ŞERDEAN, DANIEL SITARU

Brazilian Journal of Physics ISSN: Sociedade Brasileira de Física Brasil

Stress, Strain, Mohr s Circle

3D Elasticity Theory

Electromagnetic Properties of Materials Part 2

Electromagnetism II Lecture 7

CHM 6365 Chimie supramoléculaire Partie 8

Dynamics of Glaciers

Applications of Eigenvalues & Eigenvectors

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

Landau description of ferrofluid to ferronematic phase transition H. Pleiner 1, E. Jarkova 1, H.-W. Müller 1, H.R. Brand 2

1 Arithmetic calculations (calculator is not allowed)

Two Posts to Fill On School Board

Math Exam 2, October 14, 2008

1 Stress and Strain. Introduction

RECENT TOPICS IN THE THEORY OF SUPERFLUID 3 He

Quasi-Harmonic Theory of Thermal Expansion

3 Constitutive Relations: Macroscopic Properties of Matter

Energetic and Entropic Contributions to the Landau de Gennes Potential for Gay Berne Models of Liquid Crystals

Attraction and Repulsion. in Biaxial Molecular Interactions. Interaction Potential

Model for the director and electric field in liquid crystal cells having twist walls or disclination lines

Computer Simulation of Chiral Liquid Crystal Phases

Lecture 8 Analyzing the diffusion weighted signal. Room CSB 272 this week! Please install AFNI

MATH 19520/51 Class 5

Molecular simulation and theory of a liquid crystalline disclination core

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

Model For the Director and Electric Field in Liquid Crystal Cells Having Twist Walls Or Disclination Lines

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

CSE 167: Introduction to Computer Graphics Lecture #2: Linear Algebra Primer

Polynomials. In many problems, it is useful to write polynomials as products. For example, when solving equations: Example:

Little Orthogonality Theorem (LOT)

Lecture #16. Spatial Transforms. Lecture 16 1

Two-dimensional flow in a porous medium with general anisotropy

Elasticité de surface. P. Muller and A. Saul Surf. Sci Rep. 54, 157 (2004).

Unit IV State of stress in Three Dimensions

Math 110: Worksheet 1 Solutions

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

6. 3D Kinematics DE2-EA 2.1: M4DE. Dr Connor Myant

Hyperfine interactions Mössbauer, PAC and NMR Spectroscopy: Quadrupole splittings, Isomer shifts, Hyperfine fields (NMR shifts)

Introduction, Basic Mechanics 2

' Liberty and Umou Ono and Inseparablo "

Unusual Entropy of Adsorbed Methane on Zeolite Templated Carbon. Supporting Information. Part 2: Statistical Mechanical Model

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

Layer-Inversion Zones in Angular Distributions of Luminescence and Absorption Properties in Biaxial Crystals

In this section, mathematical description of the motion of fluid elements moving in a flow field is

ELASTICITY (MDM 10203)

Mechanics of materials Lecture 4 Strain and deformation

x 9 or x > 10 Name: Class: Date: 1 How many natural numbers are between 1.5 and 4.5 on the number line?

MANY BILLS OF CONCERN TO PUBLIC

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

OWELL WEEKLY JOURNAL

An Overview of the Oseen-Frank Elastic Model plus Some Symmetry Aspects of the Straley Mean-Field Model for Biaxial Nematic Liquid Crystals

Variational principles in mechanics

Transcription:

Soft Matter Mathematical Modelling Cortona 12 th -16 th September 2005 Biaxial Nematics Fact, Theory and Simulation Geoffrey Luckhurst School of Chemistry University of Southampton

Fact The elusive biaxial nematic Claims to discovery Recognition of the biaxial nematic

Biaxial Nematic N B molecular organisation Macroscopic definition Frank Symmetry of average tensorial property,t, such as the dielectric susceptibility or the quadrupolar splitting in NMR is biaxial. Principal components T XX T YY T ZZ for N B (n.b. T XX = T YY T ZZ for N U ) T The directors, n, l, m are identified with the principal axes of. η=3 T XX T YY / 2 T ZZ T XX T YY

Lyotropic Biaxial Nematic (potassium laurate (KL), 1-decanol, D 2 ) L J Yu, A Saupe, Phys.Rev.Lett., 1980, 45, 1000-1003 Phase diagram

Identifying a Biaxial Nematic F P Nicoletta, G Chidichimo, A Golemme, P Picci, Liq.Cryst., 1991, 10, 665-674 Discotic (N D ) Another lyotropic biaxial nematic (potassium laurate, decyl ammonium chloride, D 2 ) Cylindric (N C ) The primary 2 H NMR data Biaxial (N Bx ) η=0. 51 Biaxial (N Bx ) η=1 Biaxial (N Bx ) η=0.68

Thermotropic Biaxial Nematics? C 12 H 25 CH 2 C 6 H 13 C 6 H 13 C 12 H 25 CH 2 C 2 C 2 C 12 H 25 C 6 H 13 H H C 6 H 13 C 12 H 25 CH 2 C 6 H 13 C 6 H 13 C 2 H 5 H C 10 H 21 Cu C 10 H 21 H 25 C 12 H 25 C 12 C 12 H 25 H C 12 H 25 C 2 H 5 H 25 C 12 C 12 H 25

Thermotropic Biaxial Nematics 2004 V-shaped molecules L A Madsen, T J Dingemans, M Nakata, and E T Samulski, Phys. Rev. Lett., 2004, 92, 145505 η=0 η=0.11 Biaxiality in q η=0.11 n.b. for lyotropic biaxial nematics η 0. 7 1. 0 η=0. 22

Thermotropic Biaxial Nematics 2005 Tetrapodes: J L Figueirinhas, C Cruz, D Filip, G Feio, A C Ribeiro, Y Frère and T Meyer, G H Mehl Phys. Rev. Lett., 2005, 94, 107802

Tetrapodes: the NMR Evidence

Theory Molecular field approach Landau approach

General Notation Molecular Field Theory Single molecule potential U= u 2 mn 1 δ m2 1 δ n 2 1 δ p 2 R 2 pm R 2 p n Symmetry adapted functions Dependence on Euler angles 2 = 3 cos 2 β 1 /2 R 0 0 R 2 0 2 = 3 8 sin 2 β cos 2 γ R 2 2 0 = 3 8 sin 2 β cos 2 2 α R 2 2 2 = 1 2 1 2 1 cos 2 β γ cos 2 α cos 2 γ cos β sin 2 α sin 2 rder parameters are averages of R 2 mn Strength parameters u 200 u 220 u 202 u 222

rientational rder Parameters Biaxial molecule in biaxial phase Limit major ZZ 2 S zz = <(3l zz 1)/2> 1 molecular biaxial S xx ZZ - S yy ZZ = <3(l xz 2 l yz2 )/2> 0 phase biaxial S zz XX S zz YY = <3(l zx 2 l zy2 )/2> 0 phase biaxial (S xx XX S xx YY ) (S yy XX S yy YY ) = <3{(l xx 2 l xy2 ) - (l yx 2 l yy2 )/ 2}> 3 Axes: molecular xyz and space XYZ 8 8 R 2 0 0 R 2 3 0 2 R 2 3 2 0 6 R 2 22

Molecular Field Theory N Boccara, R Medjani, L de Seze, J.Phys., 1977, 38, 149-151 Phase diagram (molecular biaxiality ε = λ 6 ) Geometric mean approximation 1 u 220 = u u 2 200 222 λ= u 222 2 u 200 1 Bounds on ε of 0 and 3 correspond to uniaxial molecules ε = 1is the maximum biaxiality giving the Landau point

Molecular Field Theory A M Sonnet, E G Virga and G E Durand, Phys. Rev., E, 2003, 67, 061701 Phase Diagram I 1/β N U N B u 220 =0 λ ~u 222 /u 200 λ

Landau Theory Uniaxial nematic of uniaxial molecules Key order parameter for nematic-isotropic transition: S A=A 0 BS 2 CS 3 DS 4 Free energy expansion of invariants Assumption: B=b T T Dependence on S and magnitude of other coefficients related to experimental quantities

Landau Theory Biaxial phase of biaxial molecules rder parameters Major S= 3 cos 2 β 1/2 = R 2 0 0 Molecular biaxial T = sin 2 β cos 2 γ = 8 3 R 2 0 2 Phase biaxial U= sin 2 β cos 2 α = 8 3 R 2 2 0

Landau Theory Phase / molecular biaxial V = 1 2 1 cos 2 β cos 2 α cos 2 γ cos β sin 2 α sin 2 γ =2 R 2 2 Uniaxial nematic S 0 T 0 U=0 V =0 Biaxial nematic S 0 T 0 U 0 V 0

Landau Theory D W, Allender, M A Lee, N Hafiz, Mol. Cryst. Liq. Cryst., 1985, 124, 45-52 Free energy A N A I = A S 2 /2 T 2 U 2 V 2 /18 B S 3 /4 3 SU 2 /2 3 ST 2 /2 SV 2 /12 TUV C 1 S 2 /2 T 2 U 2 V 2 /18 2 C 2 VS/2 2TU 2 D 1 S 2 /2 T 2 U 2 V 2 /18 S 3 /4 3 ST 2 /2 3 SU 2 /2 SV 2 /12 TUV D 2 SV /3 2 TU SV 2 /4 TV 2 /2 U 2 V /2 V 3 /108...

Landau Theory Free energy (continued)... E 1 S 2 /2 T 2 U 2 V 2 /18 3 E 2 S 2 /2 T 2 U 2 V 2 /18 SV /3 2TU 2 E 3 S 3 /4 ST 2 /2 3 SU 2 /2 TUV S V 2 /12 2 E 4 S 2 V /4 U 2 V /2 T 2 V /2 3 STU V 3 /108 2 E 5... Assumptions A is linear in temperature ~ ( T T * ) B, C 1, C 2, D 1, D 2, E 1, E 2, E 3, E 4, E 5 are temperature independent.

Landau Theory for Biaxial Nematics Phase diagram C 1 = 0, C 2 = 1, D 1 = 1, D 2 = 1, E 1 = 1, E 2 = 1, E 3 = 1, E 4 = 1, E 5 = -7

Landau Theory for Biaxial Nematics Problems: (b) Large number of unknown parameters (c) Single characteristic temperature, might have expected more (d) Four nematic phases are predicted Phase rder Parameter I 0 - N U1 1 S N U2 N B N B * 2 S, T 2 S, U 4 S, T, U, V

Strategy of Katriel et al. J Katriel, G F Kventsel, G R Luckhurst, T J Sluckin, Liq. Cryst., 1986, 1, 337-355 (1) Free energy A= 1 2 u 200 P 2 2 k B T f β ln 2 f β sin βdβ =U TS (4) rder parameter P 2 = P 2 cos β f β sin βdβ (6) Entropy a functional of distribution function f(β) S=S [ f β ] But A is not yet a function of P!

Strategy of Katriel et al. A=k B T f β ln 2 f β sin βdβ 1 u 200 P 2 2 =U TS 2 Maximise entropy term subject to given P (1) f(β) a function of auxiliary parameter η f β = 1 Z η exp ηp cos β 2 (3) Partition function (5) P a function of η Z η = exp P 2 = ln Z η η ηp 2 cos β sin βdβ A is now a function of ηand P

Strategy of Katriel et al. A=k B T f β ln 2 f β sin βdβ 1 u 200 2 P2 2=U TS (1) Invert equation: (3) A was a function of P and η P 2 = ln Z η η Expand P 2 in a power series in η (6) A is now a function of P Invert power series to required order Expand A in power series in P A=A P 2

Result A= 5 2 k B T T P 2 2 2 5 2 1 k B T P 2 3 425 196 k B T P 2 4... T =u 200 /5 k B

Landau Theory for Biaxial Nematics A molecular field approach Energy U N = 1 2 u 2 mn 1 δ m2 1 δ n 2 1 δ p 2 R 2 pm R 2 p n U N = 1 2 u 200 S 2 2 U 2 4 u 220 ST 2UV 4 u 222 T 2 2 V 2 n.b. expansion coefficients are components of supertensor and not scalars

Simulation Rod-Disc Mixtures Rod-Disc Dimers Flexibility

The phase diagram Mixtures of rods and discs P Palffy-Muhoray, J R Bruyn, D A Dunmur, J.Chem.Phys., 1985, 82, 5294-5295

Rod Disc Dimers I D Fletcher, G R Luckhurst, Liq.Cryst., 1995, 18, 175-183 J J Hunt, R W Date, B A Timimi, G R Luckhurst, D W Bruce, J.Am.Chem.Soc., 2001, 123, 10115-10116 P H J Kouwer, G H Mehl., Mol.Cryst.Liq.Cryst., 2003, 397, 301-316

The Phase Behaviour of Rod-Disc Dimers M A Bates, G R Luckhurst, PCCP, 2005, 7, 2821-2829 The Lebwohl-Lasher lattice Model Anisotropic interactions Torsional potential ε a > 0 symmetry axes orthogonal ε a < 0 symmetry axes parallel d U ij RR = ε RR P 2 r i r j U ij RD =ε RD P 2 r i d j U ij RD =ε RD P 2 d i r j U ij DD = ε DD P 2 d i d j U RD tors =ε a P 2 r d i i r

Parameterisation Scaling Parameter ε RR Relative anisotropy e.g. T =k B T /ε RR ε =ε DD /ε RR Controls the molecular biaxiality Geometric mean or Berthelot approximation ε RD = ε DD ε RR ½ Scaled torsional strength ε a =ε a /ε RR

Rigid Rod-Disc Dimer Phase diagram as function of relative anisotropy ε DD /ε RR T * I N u N u N B

Flexible Rod-Disc Dimers Phase diagram for different torsional strengths ε a ε a /ε RR ε a =0 ε a = 4 ε a = 6 ε a = 7

Flexible Rod-Disc Dimers rientational order parameters R Q AA ε a = 7 and D Q AA [ S α XX, S α YY ε =2.0 ε =1. 75, S α ZZ ] α= R or D

Acknowledgements Fact Gerd Kothe (Freiburg) Jacques Malthete (Paris) Klaus Praefcke (Berlin) Bakir Timimi (Southampton) Theory Tim Sluckin (Southampton) Ken Thomas (Southampton) Simulation Martin Bates (York) Silvano Romano (Pavia)