Transmission spectra of exoplanet atmospheres

Similar documents
Evaporation of planetary atmospheres

Challenges in Exoplanet Research for the UV

Atmospheres and evaporation of extrasolar planets

Transit spectrum of Venus as an exoplanet model prediction + HST programme Ehrenreich et al. 2012, A&A Letters 537, L2

A dozen years of hot exoplanet atmospheric investigations. Results from a large HST program. David K. Sing. #acrosshr Cambridge.

Evaporation of extrasolar planets

Star-Planet interaction

Extrasolar Transiting Planets: Detection and False Positive Rejection

Characterizing the Atmospheres of Extrasolar Planets. Julianne I. Moses (Space Science Institute)

Recovering the EUV flux of HD Tom Louden University of Warwick. Supervisor: Dr. Peter Wheatley

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Proxima Cen b: theoretical spectral signatures for different atmospheric scenarios

ORE Open Research Exeter

Exoplanet Atmosphere Characterization & Biomarkers

Thermal Atmospheric Escape: From Jupiters to Earths

Exoplanet Atmospheres Observations. Mercedes López-Morales Harvard-Smithsonian Center for Astrophysics

Adam Burrows, Princeton April 7, KITP Public Lecture

Exoplanet Forum: Transit Chapter

Atmospheric Study of Exoplanets by Transmission Spectroscopy (keynote talk)

arxiv:astro-ph/ v1 15 Dec 2003

A Precise Optical to Infrared Transmission Spectrum for the Inflated Hot Jupiter WASP-52b

Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b

arxiv: v1 [astro-ph] 12 Mar 2008

arxiv: v1 [astro-ph.ep] 30 Oct 2013

Transit Spectroscopy Jacob Bean

What is to expect from the transit method. M. Deleuil, Laboratoire d Astrophysique de Marseille Institut Universitaire de France

Hands-on Session: Detection and Spectroscopic Characterization of Transiting Exoplanets with the James Webb Space Telescope

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

SPICA Science for Transiting Planetary Systems

Searching for Other Worlds: The Methods

E-ELT s View of Exoplanetary Atmospheres

Atmospheric Dynamics of Exoplanets: Status and Opportunities

ORE Open Research Exeter

Comparative Planetology: Transiting Exoplanet Science with JWST

Extra Solar Planetary Systems and Habitable Zones

Interior Structure of Rocky and Vapor Worlds

The formation of giant planets: Constraints from interior models

A Framework for Atmospheric Escape from Low-Mass Planets. Ruth Murray-Clay Harvard-Smithsonian Center for Astrophysics

Icarus 226 (2013) Contents lists available at SciVerse ScienceDirect. Icarus. journal homepage:

arxiv: v2 [astro-ph.ep] 20 Dec 2010

A giant comet-like cloud of hydrogen escaping the warm Neptunemass exoplanet GJ 436b

Predicting the Extreme-UV and Lyman-α Fluxes Received by Exoplanets from their Host Stars

Characterization of Transiting Planet Atmospheres

Observations of Extrasolar Planets

Key words: techniques: spectroscopic stars: individual: HD planetary systems.

arxiv:astro-ph/ v1 3 Mar 2004

arxiv: v2 [astro-ph.ep] 2 Jun 2011

Star-planet interaction and planetary characterization methods

The modern era of exoplanet research started in 1995 with the

arxiv: v2 [astro-ph.ep] 8 May 2018

HST Transmission Spectral Survey: observations, analysis and results

Finding terrestrial planets in the habitable zones of nearby stars

Internal structure and atmospheres of planets

Search for Transiting Planets around Nearby M Dwarfs. Norio Narita (NAOJ)

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

Searching for the atmospheric signature of transiting extrasolar planets. Department of Physics, University of Tokyo Yasushi Suto

Observational Techniques: Ground-based Transits

Planetary interiors: What they can(not) tell us about formation

Exo-Planetary atmospheres and host stars. G. Micela INAF Osservatorio Astronomico di Palermo

Extrasolar Planets = Exoplanets III.

arxiv: v2 [astro-ph.ep] 4 Aug 2016

Exoplanetary Science with Mul4- Object Spectrographs (and GLAO) Norio Narita (NAOJ)

The effect of Lyman α radiation on mini-neptune atmospheres around M stars: application to GJ 436b

Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? ABSTRACT

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

HST hot Jupiter transmission spectral survey: detection of water in HAT-P-1b from WFC3 near-ir spatial scan observations

Detection and characterization of exoplanets from space

arxiv: v1 [astro-ph.ep] 24 Aug 2012

Detection of atmospheric haze on an extrasolar planet: The micron transmission spectrum of HD189733b with the Hubble Space Telescope

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

Searching for transiting giant extrasolar planets. Department of Physics University of Tokyo Yasushi Suto

CHARACTERIZING EXOPLANET ATMOSPHERES USING GENERAL CIRCULATION MODELS

TRANSITING THE SUN: THE IMPACT OF STELLAR ACTIVITY ON X-RAY AND ULTRAVIOLET TRANSITS

Planetary Upper Atmospheres Under Strong XUV radiation

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

Planetary Temperatures

Science with Transiting Planets TIARA Winter School on Exoplanets 2008

Transiting Extrasolar Planets

arxiv: v1 [astro-ph.ep] 29 Jul 2009

Observations of Gas-Giant Exoplanet Atmospheres

Searching for Other Worlds

An MHD Model for Hot Jupiter Upper Atmospheres: Mass/Angular Momentum Loss & Transits

Studying Exoplanet Atmospheres with TMT. Ian Crossfield Sagan Fellow, UA/LPL 2014/07/18

Characterizing Exoplanet Atmospheres: a new frontier

Types of Gaseous Envelopes of Hot Jupiter Exoplanets

Observations of Extrasolar Planets During the non-cryogenic Spitzer Space Telescope Mission

Jessica Donaldson (Carnegie DTM) Aki Roberge (NASA GSFC)

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Limb-Darkening Anomalies in Stars Eclipsed by Exoplanets

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

arxiv: v3 [astro-ph.ep] 21 Mar 2017

The Rossiter effect of transiting extra-solar planets Yasushi Suto Department of Physics, University of Tokyo

Science Olympiad Astronomy C Division Event National Exam

Extrasolar planets and their hosts: Why exoplanet science needs X-ray observations

Hubble PanCET: An extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470 b

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Direct imaging and characterization of habitable planets with Colossus

Transcription:

Transmission spectra of exoplanet atmospheres David Ehrenreich Grenoble Institute of Planetology and Astrophysics (IPAG) Alain Lecavelier des Etangs (IAP) David K. Sing (U Exeter) J.-M. Désert (Harvard)

Primary transit

Primary transit The planet (partially) eclipses the star Transmission spectroscopy through the limb

Chromatic variations of the optically-thick radius Normalised flux 883 nm 767 nm 758 nm 679 nm GranTeCan spectrophotometry hot jupiter XO-2b Sing et al. (2011) Phase F/F (λ) [R p (λ)/r ] 2 larger absorptions = larger radius/altitude Seager & Sasselov (2000) Brown (2001) Hubbard et al. (2001) Ehrenreich et al. (2006)

Chromatic variations of the optically-thick radius Planet radius (RJ) GranTeCan spectrophotometry hot jupiter XO-2b Sing et al. (2011) Fernandez et al. (2009) Fortney et al. (2010) Wavelength (Å) F/F (λ) [R p (λ)/r ] 2 larger absorptions = larger radius/altitude Seager & Sasselov (2000) Brown (2001) Hubbard et al. (2001) Ehrenreich et al. (2006)

Chromatic variations of the optically-thick radius (ΔF/F) atmo 2(ΔF/F) p (H/R p ) scale height H = k B T/µg Winn (2010)

Chromatic variations of the optically-thick radius (ΔF/F) atmo 2(ΔF/F) p (H/R p ) 10-4 10-3 10-2 ~500 km scale height H = k B T/µg Winn (2010)

Chromatic variations of the optically-thick radius (ΔF/F) atmo 2(ΔF/F) p (H/R p ) 10-4 10-3 10-2 ~500 km 10-6 10-7 10-5 ~10 km scale height H = k B T/µg Winn (2010)

Brighter star, better atmospheric detection S/N F A background light source is required for transmission spectroscopy: the transited star

Space- & ground-based results, from UV to NIR In the visible from the ground with Subaru & GranTeCan High-resolution detection of atmospheric tracers (Na & K) In the visible/nir from space with the HST HD 209458b: temperature inversion & diffusion HD1897333b: diffusion by haze In the UV from space with the HST Atmospheric evaporation of hot jupiters In the NIR from space with Spitzer & HST/Nicmos Molecular composition of hot gas giants

Focus on a couple of studies In the visible from the ground with Subaru & GranTeCan High-resolution detection of atmospheric tracers (Na & K) In the visible/nir from space with the HST HD 209458b: temperature inversion & diffusion HD1897333b: diffusion by haze In the UV from space with the HST Atmospheric evaporation of hot jupiters In the NIR from space with Spitzer & HST/Nicmos Molecular composition of hot gas giants

Atmospheric properties of a hot jupiter Absorption depth (%) Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res Absorption depth (%) Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res HST/STIS med res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res narrow Na core HST/STIS med res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res narrow Na core HST/STIS med res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Na depletion ionization? condensation? Altitude (km) Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res narrow Na core HST/STIS med res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Na depletion ionization? condensation? Altitude (km) model TiO/VO driving thermal inversion? Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Atmospheric properties of a hot jupiter HD 209458b HST/STIS low res narrow Na core HST/STIS med res Absorption depth (%) Rayleigh scattering by H2 broad Na plateau Na depletion ionization? condensation? Altitude (km) model TiO/VO driving thermal inversion? Wavelength (Å) Charbonneau et al. (2002) Sing et al. (2008a,b) Snellen et al. (2008) Lecavelier et al. (2008) Désert et al. (2008)

Temperature inversion Absorption depth (%) Altitude (km) 2000 isotherms (K) Wavelength (Å) 1500 1250 1000 750 500 Sing et al. (2008a,b) Charbonneau et al. (2002) Snellen et al.(2008)

Temperature inversion Absorption depth (%) Altitude (km) 2000 isotherms (K) Wavelength (Å) 1500 1250 1000 750 500 Sing et al. (2008a,b) Charbonneau et al. (2002) Snellen et al.(2008)

Temperature inversion Absorption depth (%) Altitude (km) 2000 isotherms (K) Wavelength (Å) 1500 1250 1000 750 500 Sing et al. (2008a,b) Charbonneau et al. (2002) Snellen et al.(2008)

Connection to the upper atmosphere upper atmosphere T-P profile Yelle (2004) 10,000 K thermosphere EUV heating Pressure (bar) lower atmosphere T-P profiles Barman et al. 2005 Showman et al. 2008 Guillot 2010 Temperature (K) Vidal-Madjar et al. (2011)

Primary transit absorption ~1% ~0.01% The planet (partially) eclipses the star Transmission spectroscopy through the limb

Primary transit in the UV evaporating hydrogen upper atmosphere absorption ~1% ~10% Transits in HI Lyman-α (1216 Å) Exospheric studies (dynamics & composition)

Escape of light & heavy elements from HD209458b Flux (10-14 erg cm -2 s -1 Å -1 ) HST/STIS Wavelength (Å) Flux (10-15 erg cm -2 s -1 Å -1 ) HST/COS C II lines 7.8±1.3% HST/COS Si III 1206 Å 8.2±1.4% Velocity (km s -1 ) Velocity (km s -1 ) Vidal-Madjar et al. (2003, 2004) Linsky et al. (2010) see also: Ehrenreich et al. (2008) Fossati et al. (2010)

Escape of light & heavy elements from HD209458b Flux (10-14 erg cm -2 s -1 Å -1 ) HST/STIS Wavelength (Å) Hydrodynamical mass loss H flow carrying up heavier species Flux (10-15 erg cm -2 s -1 Å -1 ) HST/COS C II lines 7.8±1.3% HST/COS Si III 1206 Å 8.2±1.4% Velocity (km s -1 ) Velocity (km s -1 ) Vidal-Madjar et al. (2003, 2004) Linsky et al. (2010) see also: Ehrenreich et al. (2008) Fossati et al. (2010)

Another case of evaporating hot jupiter: HD 189733b HST/ACS Lecavelier des Etangs et al. (2010)

Another case of evaporating hot jupiter: HD 189733b HST/ACS Lecavelier des Etangs et al. (2010)

Another case of evaporating hot jupiter: HD 189733b HST/ACS HI Lyα 5.1±0.8% transit in the visible is 2.4% Lecavelier des Etangs et al. (2010)

Another case of evaporating hot jupiter: HD 189733b HST/ACS HI Lyα 5.1±0.8% transit in the visible is 2.4% mass-loss rate ~ 10 10 g s -1 hot jupiters are stable lifetime estimations Lecavelier des Etangs et al. (2010)

Lifetime heating efficiency=15% Log [Gravitational potential energy (erg)] WASP-33b WASP-12b WASP-17b HD189733b HD209458b Corot-7b HD80606b GJ436b Kepler-9d Kepler-10b GJ1214b Log [Incident X/EUV energy on top of the atmosphere (erg Gyr -1 )] Ehrenreich & Désert (2011) also: Lecavelier (2007) Davies & Wheatley (2009) Lammer et al. (2009)

Lifetime heating efficiency=15% Log [Gravitational potential energy (erg)] WASP-33b WASP-12b WASP-17b HD189733b HD209458b Corot-7b HD80606b GJ436b Kepler-9d Kepler-10b GJ1214b Log [Incident X/EUV energy on top of the atmosphere (erg Gyr -1 )] Ehrenreich & Désert (2011) also: Lecavelier (2007) Davies & Wheatley (2009) Lammer et al. (2009)

Present-day transit surveys detect VIPs (mostly) at large distances Lifetime Log [Gravitational potential energy (erg)] too far to monitor@lyα < 200 pc HD80606b Log [Incident X/EUV energy on top of the atmosphere (erg Gyr -1 )] Atmospheric tracer (HI) absorbed by ISM nearby targets necessary! PLATO will survey 5000+ nearby M-dwarf stars bright@lyα

Why we need Plato 7 Known transiting planets 8 Known transiting planets 9 10 V (mag) 11 12 13 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)

Why we need Plato 7 Known transiting planets 8 9 Known transiting planets 3σ detection of 1 scale height by HST 10 V (mag) 11 12 13 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)

Why we need Plato 7 Known transiting planets 8 9 Known transiting planets 3σ detection of 1 scale height by HST 10 V (mag) 11 12 13 3σ detection of 1 scale height by JWST /HST 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)

Why we need Plato 7 8 9 Known transiting planets PLATO planets around bright stars Known transiting planets population synthesis model welcome to assess the characterization follow-up possibilities 3σ detection of 1 scale height by HST 10 V (mag) 11 12 13 3σ detection of 1 scale height by JWST /HST 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)

Why we need Plato 7 Known transiting planets 8 Known transiting planets 9 10 V (mag) 11 12 13 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)

Why we need Plato 7 8 9 Known transiting planets 3,000+ stars Known transiting planets V (mag) 10 11 12 13 20,000+ stars 245,000+ stars 14 15 0,00 0,01 0,02 0,03 0,04 0,05 Atmospheric signal of 1 scale height (%)...and more

Thank you!