LEVEL 61 RPI a-si TFT Model

Similar documents
The Devices. Devices

ECE 342 Electronic Circuits. 3. MOS Transistors

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

MOS Transistor I-V Characteristics and Parasitics

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

N Channel MOSFET level 3

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOS Transistor Properties Review

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Integrated Circuits & Systems

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

MOSFET: Introduction

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

ECE 546 Lecture 10 MOS Transistors

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Lecture 5: CMOS Transistor Theory

EECS130 Integrated Circuit Devices

The Intrinsic Silicon

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Classification of Solids

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Lecture 4: CMOS Transistor Theory

Class 05: Device Physics II

EKV MOS Transistor Modelling & RF Application

ECE 497 JS Lecture - 12 Device Technologies

Device Models (PN Diode, MOSFET )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

The Devices: MOS Transistors

Lecture 12: MOS Capacitors, transistors. Context

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

a-igzo TFT Simulation

Lecture 12: MOSFET Devices

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Lecture 04 Review of MOSFET

MOS Transistor Theory

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

APPENDIX A: Parameter List

Lecture 3: CMOS Transistor Theory

(S&S ) PMOS: holes flow from Source to Drain. from Source to Drain. W.-Y. Choi. Electronic Circuits 2 (09/1)

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

EE5311- Digital IC Design

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Device Models (PN Diode, MOSFET )

Long-channel MOSFET IV Corrections

VLSI Design The MOS Transistor

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

MOS CAPACITOR AND MOSFET

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

The Devices. Jan M. Rabaey

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

FIELD-EFFECT TRANSISTORS

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Section 12: Intro to Devices

Nanoscale CMOS Design Issues

Practice 3: Semiconductors

Chapter 4 Field-Effect Transistors

Robert W. Brodersen EECS140 Analog Circuit Design

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

6.012 Electronic Devices and Circuits Spring 2005

APPENDIX A: Parameter List

Universal Mobility-Field Curves For Electrons In Polysilicon Inversion Layer

EE382M-14 CMOS Analog Integrated Circuit Design

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

Semiconductor Physics fall 2012 problems

MOS Capacitors ECE 2204

GaN based transistors

APPENDIX D: Binning BSIM3v3 Parameters

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ECE 340 Lecture 39 : MOS Capacitor II

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Section 12: Intro to Devices

Electrical Characteristics of MOS Devices

Supporting information

The Physical Structure (NMOS)

ECE321 Electronics I

MOS Transistor Theory

Lecture 11: MOS Transistor

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Semiconductor Physics Problems 2015

CMOS Digital Integrated Circuits Analysis and Design

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Thin Film Transistors (TFT)

1. The MOS Transistor. Electrical Conduction in Solids

A Verilog-A Compact Model for Negative Capacitance FET

MOSFET Physics: The Long Channel Approximation

Transcription:

LEVEL 61 RPI a-si TFT Model Star-Hspice LEVEL 61 is an AIM-SPICE MOS15 amorphous silicon (a-si) thin-film transistor (TFT) model. Model Features AIM-SPICE MOS15 a-si TFT model features include: Modified charge control model; induced charge trapped in localized states Above threshold includes: Field effect mobility becoming a function of gate bias Band mobility dominated by lattice scattering Below threshold Fermi level located in deep localized states Relate position of Fermi level, including the deep DOS back to the gate bias Empirical expression for current at large negative gate biases for hole-induced leakage current Interpolation techniques are applied to the equations to unify the model Using LEVEL 61 with Star-Hspice When using the AIM-SPICE MOS15 a-si TFT model: 1. Set LEVEL=61 to identify the model as the AIM-SPCIE MOS15 a-si TFT model. 2. The default value for L is 100m, and the default value for W is 100m. 3. The LEVEL 61 model is a 3-terminal model. No bulk node exists; therefore no parasitic drain-bulk or source-build diodes are appended to the model. A fourth node can be specified, but does not affect simulation results. 4. The default room temperature is 25C in Star-Hspice, but is 27C in some other simulators. The user may choose whether or not to set the nominal simulation temperature to 27C, by adding.option TNOM=27 to the netlist. Example This is an example of how the Star-Hspice model and element statement modified for use with LEVEL 61. mckt drain gate source nch L=10e-6 W=10e-6.MODEL nch nmos LEVEL=61 http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 1/7

+ alphasat = 0.6 cgdo = 0.0 cgso = 0.0 def0 = 0.6 + delta = 5.0 el = 0.35 emu = 0.06 eps = 11 + epsi = 7.4 gamma = 0.4 gmin = 1e23 iol = 3e-14 + kasat = 0.006 kvt = -0.036 lambda = 0.0008 m = 2.5 + muband = 0.001 rd = 0.0 rs = 0.0 sima0 = 1e-14 + tnom = 27 tox = 1.0e-7 v0 = 0.12 vaa = 7.5e3 + vdsl = 7 vfb = -3 vgsl = 7 vmin = 0.3 vto = 0.0 LEVEL 61 Model Parameters Name Unit Default Description ALPHASAT - 0.6 Saturation modulation parameter CGDO F/m 0.0 Gate-drain overlap capacitance per meter channel width CGSO F/m 0.0 Gate-source overlap capacitance per meter channel width DEF0 ev 0.6 Dark Fermi level position DELTA - 5 Transition width parameter EL ev 0.35 Activation energy of the hole leakage current EMU ev 0.06 Field effect mobility activation energy EPS - 11 Relative dielectric constant of substrate EPSI - 7.4 Relative dielectric constant of gate insulator GAMMA - 0.4 Power law mobility parameter GMIN 1E23 Minimum density of deep states http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 2/7

m-3ev-1 IOL A 3E-14 Zero bias leakage current parameter KASAT 1/ C 0.006 Temperature coefficient of ALPHASAT KVT V/ C -0.036 Threshold voltage temperature coefficient LAMBDA 1/V 0.0008 Output conductance parameter M - 2.5 Knee shape parameter MUBAND m2/vs 0.001 Conduction band mobility RD µ 0.0 Drain resistance RS µ 0.0 Source resistance SIGMA0 A 1E-14 Minimum leakage current parameter TNOM oc 25 Parameter measurement temperature TOX m 1E-7 Thin-oxide thickness V0 V 0.12 Characteristic voltage for deep states VAA V 7.5E3 Characteristic voltage for field effect mobility VDSL V 7 Hole leakage current drain voltage parameter VFB V -3 Flat band voltage VGSL V 7 Hole leakage current gate voltage parameter http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 3/7

VMIN V 0.3 Convergence parameter VTO V 0.0 Zero-bias threshold voltage Equivalent Circuit Model Equations Drain Current http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 4/7

http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 5/7

Temperature Dependence Capacitance http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 6/7

Star-Hspice Manual - Release 2001.2 - June 2001 http://www.ece.uci.edu/docs/hspice/hspice_2001_2-179.html 7/7