Transition in Kitaev model

Similar documents
Kitaev honeycomb lattice model: from A to B and beyond

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES

Universal phase transitions in Topological lattice models

quasi-particle pictures from continuous unitary transformations

Topology driven quantum phase transitions

Criticality in topologically ordered systems: a case study

arxiv: v2 [cond-mat.stat-mech] 9 Mar 2011

Mutual Chern-Simons Landau-Ginzburg theory for continuous quantum phase transition of Z2 topological order

Classification of Symmetry Protected Topological Phases in Interacting Systems

Topological order from quantum loops and nets

A Superconducting Quantum Simulator for Topological Order and the Toric Code. Michael J. Hartmann Heriot-Watt University, Edinburgh qlightcrete 2016

Linked-Cluster Expansions for Quantum Many-Body Systems

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Understanding Topological Order with PEPS. David Pérez-García Autrans Summer School 2016

Topological quantum computation

Newton s Method and Localization

Fermionic topological quantum states as tensor networks

Field-driven Instabilities of the Non-Abelian Topological Phase in the Kitaev Model

Jiannis K. Pachos. Introduction. Berlin, September 2013

Realizing non-abelian statistics in quantum loop models

Symmetry protected topological phases in quantum spin systems

Matrix product states for the fractional quantum Hall effect

Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order

Introduction to Topological Quantum Computation

Golden chain of strongly interacting Rydberg atoms

3 Symmetry Protected Topological Phase

Topological order of a two-dimensional toric code

Quantum Phase Transitions

Frustration-free Ground States of Quantum Spin Systems 1

arxiv: v1 [quant-ph] 10 Dec 2013

Defects in topologically ordered states. Xiao-Liang Qi Stanford University Mag Lab, Tallahassee, 01/09/2014

Symmetric Surfaces of Topological Superconductor

Phase transitions in topological lattice models via topological symmetry breaking

Chiral spin liquids. Bela Bauer

Almost any quantum spin system with short-range interactions can support toric codes

arxiv: v3 [cond-mat.str-el] 27 May 2014

Braid Group, Gauge Invariance and Topological Order

Vacuum degeneracy of chiral spin states in compactified. space. X.G. Wen

Enclosure 1. Fonn Approved OMB NO Oct 2008 Final Report 01 Aug Jul06. A New Class ofmaterials for Quantum Information Processing

Topological quantum computation

Topological Quantum Computation A very basic introduction

Frustration-free Ground States of Quantum Spin Systems 1

Boundary Degeneracy of Topological Order

Topological Quantum Computation from non-abelian anyons

Topological Quantum Computation

Transversal logical gates

Anyons and topological quantum computing

arxiv: v2 [quant-ph] 1 Nov 2017

Quantum Order: a Quantum Entanglement of Many Particles

Spin liquids in frustrated magnets

Quantum Monte Carlo study of a Z 2 gauge theory containing phases with and without a Luttinger volume Fermi surface

Universal Topological Phase of 2D Stabilizer Codes

Composite Dirac liquids

Solving the sign problem for a class of frustrated antiferromagnets

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

quantum statistics on graphs

The Kitaev models. The toric code 1. PHYS598PTD A.J.Leggett 2016 Lecture 27 The Kitaev models 1

From Majorana Fermions to Topological Order

arxiv: v3 [quant-ph] 23 Jun 2011

Symmetry Protected Topological Phases of Matter

Storage of Quantum Information in Topological Systems with Majorana Fermions

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

Characterization of Topological States on a Lattice with Chern Number

On the study of the Potts model, Tutte and Chromatic Polynomials, and the Connections with Computation Complexity and Quantum Computing.

Entanglement in Topological Phases

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015

Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model

Valence Bonds in Random Quantum Magnets

Modern Statistical Mechanics Paul Fendley

Non-abelian statistics

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Phase Transitions and Renormalization:

Loop optimization for tensor network renormalization

The Toric-Boson model and quantum memory at finite temperature

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Ψ({z i }) = i<j(z i z j ) m e P i z i 2 /4, q = ± e m.

Magnets, 1D quantum system, and quantum Phase transitions

Detecting signatures of topological order from microscopic Hamiltonians

Small and large Fermi surfaces in metals with local moments

Simulation of Quantum Many-Body Systems

Spinon magnetic resonance. Oleg Starykh, University of Utah

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Matrix Product Operators: Algebras and Applications

4 Matrix product states

Quantum order-by-disorder in Kitaev model on a triangular lattice

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Integer quantum Hall effect for bosons: A physical realization

Quantum Convolutional Neural Networks

The uses of Instantons for classifying Topological Phases

Analysis of the transverse field Ising model by continuous unitary transformations

Topological Order and the Kitaev Model

News on tensor network algorithms

Constructing Landau Formalism for Topological Order: Spin Chains and Ladders

Many-body entanglement witness

Bosonization of lattice fermions in higher dimensions

Bell-like non-locality from Majorana end-states

Transcription:

Transition in Kitaev model Razieh Mohseninia November, 2013 1

Phase Transition Landau symmetry-breaking theory(1930-1980) different phases different symmetry Liquid solid Paramagnetic ferromagnetic 2

Topological order No symmetry breaking. No local order parameter. There is a gap. Long range entanglement. Degeneracy depends on the topology of space. Degeneracy cannot be lifted by any local perturbations. 3

Local Unitary Transformation and Long Range Entanglement = Topological Classes 4

Toric code L ={ H: =, =! "} # = %& ' & 5

Coding Torus =1 =1 +, --./01,230.!0"0!0 - -3.40 2 2,230 +,3.- 2 Degeneracy = 789 7 89 :8 = 4 ;; = 00, ;= = 01 =; = 10, == = 11 6

Ground States ;; >1? @ 0 7A B CD E F G,= C F G,7 D ;;,.,H 0,1 7

Kitaev model,why? 8

What is I J Kitaev model? L L # = % ( + ) ' ( + ) Torus =1 =1 Degeneracy: J89 J 89:8 =! 7 9

Ground States ;; M>1?? 7 JO=?? @ 0 7A B CD E F G,= C F G,7 D ;;.,H 0,,!$1 10

Classical Potts model(1952) # QCRS = = 7 (1+T CT D C,D ) T C =1, 1 = U B, V C,D # WXX = &U B, V C,D JO= = 1! & & ( C D ) Z C,D Z[; T C =1,\,\ 7,\ ],,\ JO= 11

An open problem(1852-1976) Chromatic polynomial: ^(_, +) Chromatic number :` _ =min (+;^(_,+ >0) ^f 4 >0 for any planar graph 12

Potts model and 4-color problem # WXX = %&U B, V C,D I(h )=&0 h B,V k l B,l V {m B } =^(_,+) 13

Quantum Potts model JO= # W = &&((I C I D L ) Z +(I C L I D ) Z ) C,D Z[; o,! --0= 0 A 1 A 2 A! 1 A degeneracy=d 14

Our problem 15

Our problem # =# rcxst +q # WXX # = % ( + L L ) ' ( + ) q JO= ((I C I L D ) Z +(I L C I D ) Z ) C,D Z[; q 0 Degeneracy! 7! Order topological order Phase transition Ferromagnetic order 16

Potts model in magnetic field # v L u = %&w C +w C JO= q! &&((I CI D L ) Z +(I C L I D ) Z ) ' C C,D Z[; 17

Mean Field min # =z S. Λ # Λ z S. Λ Λ = y 9 8 JO= y= C[; C. z ={Λ # u Λ= J 2 &( C C}= + C}= C ) 4q& C ~ C C 18

Wilson loop ƒ =Mw C Mw D L =M t C D t 19

; >1? @? 7A y ; 0 7A ƒ 1, '.-0 0, ^-- 20

Calculation of Wilson loop in q q ƒ = Ψ ƒ Ψ Ψ Ψ O~G8 Š 0 J 8 21

Calculation of Wilson loop in q q ƒ = Ψ ƒ Ψ Ψ Ψ 1 2 0O Œ =}Ž :8 7Ž : 22

Continuous Unitary Transformations(CUTs) = # L # #, # s #> @ # ; # s # CUTs 23

CUTs # = # 0 L ()!() = ()!!#()! =[,# ] 24

Wegner s generator = # J,# h CD = C # D š C ()= C # C & œ,c œ h œc 7 = 2&(š C š œ ) 7 h C,œ 7 C,œ!#()! =[[# J,# ],# ] 25

Pertubative Continuous Unitary Transformations # ž =Ÿ+ž 1) The unperturbed Hamiltonian Ÿ must have an equidistant spectrum bounded from below.by R the corresponding subspaces are denoted. Ÿ = 2) The perturbing Hamiltonian links subspaces C and D only if. H is bounded from above. There is a number >0such R[}A R[OAF R that can be written as = F R increments(or decrements, if <0) the number of energy quanta by. Ÿ,F R = F R where # ž =Ÿ+ž R[}A R[OAF R 26

Pertubative Continuous Unitary Transformations # ž, =Ÿ+ž () 1) The unperturbed Hamiltonian Ÿ must have an equidistant spectrum bounded from below.by R the corresponding subspaces are denoted. Ÿ = 2) The perturbing Hamiltonian links subspaces C and D only if. H is bounded from above. There is a number >0such R[}A R[OAF R that can be written as = F R increments(or decrements, if <0) the number of energy quanta by. Ÿ,F R = F R where # ž, =Ÿ+ž R[}A R[OAF R () 27

Kitaev-Potts for d=3 # v u = ] L w 7 C C +w C ( ) ž (I C I D L +I C L I D ) C,D 2 E 1 E z = = 2+3 0 E z ; = 2 Ÿ C = 0 0 0 0 1 0 0 0 1 = O( B} B )}7Q ] Ÿ = Ÿ C C 3 2 &w C+w C L C = 9 2 Ÿ 28

F R operators I C I D L 00= 12 +2 21= 00 2 10= 22 +1 11= 20 1 12= 21 &(I C I D L +I C L I D ) C,D =F O7 +F O= +F ; +F }= +F }7 29

PCUT # = 9 2 Ÿ+{F O7 +F O= +F ; +F }= +F }7 } = Ÿ,# = 2F O7 F O= ()+F }= ()+2F }7 () Modified Generator: = Ÿ,# = F O7 F O= ()+F }= ()+F }7 () modified generator preserves the initial block band structure. 30

Flow equation!#()! =,# =[ F O7 F O= ()+F }= ()+F }7 (),H ] F ; =2[F }7 (),F O7 ]+2[F }= (), F O= ] F }7 = 9F }7 +[F }7 (),F ; ] F O7 = 9F O7 [F O7 (),F ; ] F }= = «7 F }= +2[F }7 (),F O= ]+[F }= (), F ; ] F O= = «7 F O= +2[F }= (),F O7 ]+[F ; (), F O= ] 31

Solving flow equation Example: F R = &F R œ () œ[= œo= F œ }7 ()= 9F œ }7 ()+&[F D }7 (),F œod ; () ] D[= F }7 = ()= 9F }7 = () F }7 = =F }7 0 O«# s = «7 Ÿ+F ;+ = «([F }7,F O7 ]+[F }=,F O= ])+ 7 = 8([F }7,[F ;,F O7 ]]+[[F }7,F ; ],F O7 ])- = = ([F }=,[F }=,F O7 ]]+[[F }7,F O= ],F O= ])+ 7 = ([F }=,[F ;,F O= ]]+[[F }=,F ; ],F O= ]) 32

# s =# ; +# = +# 7 + 33

34

Small coupling results 35

References 1. Topological order: from long-range entangled quantum matter to a unified origin of light and electrons, Xiao-Gang Wen. 2. Kitaev, A. Yu. Fault-tolerant quantum computation by anyons. Annals Phys.,303, 2003. 3. James R. Wootton, Jiannis K. Pachos. Universal Quantum Computation with Abelian Anyon Models. ENTCS, 270, 2011. 4. Christian Knetter, Kai P. Schmidt, Goetz S. Uhrig. The Structure of Operators in Effective Particle-Conserving Models. J. Phys. A: Math. Gen, 36, 2003. 5. Christian Knetter, Goetz S. Uhrig. Perturbation Theory by Flow Equations: Dimerized and Frustrated S=1/2 Chain. Eur. Phys. J. B, 13, 2000. 6. S. Dusuel, M. Kamfor, K. P. Schmidt R. Thomale J. Vidal. Bound states in two-dimensional spin systems near the Ising limit: A quantum finite lattice study. Phys. Rev. B 81, 064412 (2010) 36