Research Article Generalized Fractional Integral Inequalities for Continuous Random Variables

Similar documents
Research Article New General Integral Inequalities for Lipschitzian Functions via Hadamard Fractional Integrals

Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals

ON THE OSTROWSKI-GRÜSS TYPE INEQUALITY FOR TWICE DIFFERENTIABLE FUNCTIONS

On The Hermite- Hadamard-Fejér Type Integral Inequality for Convex Function

New Inequalities in Fractional Integrals

On Hadamard and Fejér-Hadamard inequalities for Caputo k-fractional derivatives

FURTHER GENERALIZATIONS. QI Feng. The value of the integral of f(x) over [a; b] can be estimated in a variety ofways. b a. 2(M m)

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX.

Citation Abstract and Applied Analysis, 2013, v. 2013, article no

CALDERON S REPRODUCING FORMULA FOR DUNKL CONVOLUTION

ON NEW INEQUALITIES OF SIMPSON S TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE CONVEX

GENERALIZATION OF SOME INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL CALCULUS

1. Introduction. 1 b b

Convergence of Singular Integral Operators in Weighted Lebesgue Spaces

Research Article An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order

Contraction Mapping Principle Approach to Differential Equations

e t dt e t dt = lim e t dt T (1 e T ) = 1

Analytic solution of linear fractional differential equation with Jumarie derivative in term of Mittag-Leffler function

Positive and negative solutions of a boundary value problem for a

2k 1. . And when n is odd number, ) The conclusion is when n is even number, an. ( 1) ( 2 1) ( k 0,1,2 L )

A new model for solving fuzzy linear fractional programming problem with ranking function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Green s Functions and Comparison Theorems for Differential Equations on Measure Chains

Fractional Calculus. Connor Wiegand. 6 th June 2017

Hermite-Hadamard and Simpson Type Inequalities for Differentiable Quasi-Geometrically Convex Functions

Integral Transform. Definitions. Function Space. Linear Mapping. Integral Transform

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

4.8 Improper Integrals

Research Article The General Solution of Differential Equations with Caputo-Hadamard Fractional Derivatives and Noninstantaneous Impulses

Mathematics 805 Final Examination Answers

3. Renewal Limit Theorems

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Characteristic Function for the Truncated Triangular Distribution., Myron Katzoff and Rahul A. Parsa

Procedia Computer Science

A LIMIT-POINT CRITERION FOR A SECOND-ORDER LINEAR DIFFERENTIAL OPERATOR IAN KNOWLES

Application on Inner Product Space with. Fixed Point Theorem in Probabilistic

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

Journal of Mathematical Analysis and Applications. Two normality criteria and the converse of the Bloch principle

Refinements to Hadamard s Inequality for Log-Convex Functions

FM Applications of Integration 1.Centroid of Area

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER ITERATIVE BOUNDARY-VALUE PROBLEM

LAPLACE TRANSFORM OVERCOMING PRINCIPLE DRAWBACKS IN APPLICATION OF THE VARIATIONAL ITERATION METHOD TO FRACTIONAL HEAT EQUATIONS

Weighted Inequalities for Riemann-Stieltjes Integrals

Abstract. W.W. Memudu 1 and O.A. Taiwo, 2

MTH 146 Class 11 Notes

A Simple Method to Solve Quartic Equations. Key words: Polynomials, Quartics, Equations of the Fourth Degree INTRODUCTION

5.1-The Initial-Value Problems For Ordinary Differential Equations

A Time Truncated Improved Group Sampling Plans for Rayleigh and Log - Logistic Distributions

INTEGRALS. Exercise 1. Let f : [a, b] R be bounded, and let P and Q be partitions of [a, b]. Prove that if P Q then U(P ) U(Q) and L(P ) L(Q).

Hardy s inequality in L 2 ([0, 1]) and principal values of Brownian local times

How to prove the Riemann Hypothesis

Fractional operators with exponential kernels and a Lyapunov type inequality

Probability, Estimators, and Stationarity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

TEACHING STUDENTS TO PROVE BY USING ONLINE HOMEWORK Buma Abramovitz 1, Miryam Berezina 1, Abraham Berman 2

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

REAL ANALYSIS I HOMEWORK 3. Chapter 1

FRACTIONAL-order differential equations (FDEs) are

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

( ) ( ) ( ) ( ) ( ) ( y )

The Hadamard s inequality for quasi-convex functions via fractional integrals

1.0 Electrical Systems

AN EIGENVALUE PROBLEM FOR LINEAR HAMILTONIAN DYNAMIC SYSTEMS

HUI-HSIUNG KUO, ANUWAT SAE-TANG, AND BENEDYKT SZOZDA

Solutions for Nonlinear Partial Differential Equations By Tan-Cot Method

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

Honours Introductory Maths Course 2011 Integration, Differential and Difference Equations

LAGRANGIAN AND HAMILTONIAN MECHANICS WITH FRACTIONAL DERIVATIVES

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

Solutions to Problems from Chapter 2

The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results

M r. d 2. R t a M. Structural Mechanics Section. Exam CT5141 Theory of Elasticity Friday 31 October 2003, 9:00 12:00 hours. Problem 1 (3 points)

On Tempered and Substantial Fractional Calculus

Inventory Management Models with Variable Holding Cost and Salvage value

Improvement of Ostrowski Integral Type Inequalities with Application

Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients

f t f a f x dx By Lin McMullin f x dx= f b f a. 2

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

SOLUTION FOR A SYSTEM OF FRACTIONAL HEAT EQUATIONS OF NANOFLUID ALONG A WEDGE

Research Article Wirtinger-Type Inequality and the Stability Analysis of Delayed Lur e System

FRACTIONAL EULER-LAGRANGE EQUATION OF CALDIROLA-KANAI OSCILLATOR

WENJUN LIU AND QUÔ C ANH NGÔ

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model

On Gronwall s Type Integral Inequalities with Singular Kernels

ASYMPTOTIC BEHAVIOR OF INTERMEDIATE SOLUTIONS OF FOURTH-ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH REGULARLY VARYING COEFFICIENTS

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

September 20 Homework Solutions

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

Yan Sun * 1 Introduction

Asymptotic relationship between trajectories of nominal and uncertain nonlinear systems on time scales

Improvement of Grüss and Ostrowski Type Inequalities

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

arxiv: v1 [math.ca] 28 Jan 2013

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

On Two Integrability Methods of Improper Integrals

On the Pseudo-Spectral Method of Solving Linear Ordinary Differential Equations

Journal of Inequalities in Pure and Applied Mathematics

Fractional Laplace Transform and Fractional Calculus

Transcription:

Journl of Proiliy nd Sisics Volume 2015, Aricle ID 958980, 7 pges hp://dx.doi.org/10.1155/2015/958980 Reserch Aricle Generlized Frcionl Inegrl Inequliies for Coninuous Rndom Vriles Adullh Akkur, Zeynep Kçr, nd Hüseyin Yildirim Deprmen of Mhemics, Fculy of Science nd Ars, Universiy of Khrmnmrş Süçü İmm, 46000 Khrmnmrş, Turkey Correspondence should e ddressed o Adullh Akkur; dullhm@gmil.com Received 5 Ocoer 2014; Acceped 9 Decemer 2014 AcdemicEdior:Z.D.Bi Copyrigh 2015 Adullh Akkur e l. This is n open ccess ricle disriued under he Creive Commons Ariuion License, which permis unresriced use, disriuion, nd reproducion in ny medium, provided he originl work is properly cied. Some generlized inegrl inequliies re eslished for he frcionl expecion nd he frcionl vrince for coninuous rndom vriles. Specil cses of inegrl inequliies in his pper re sudied y Brne e l. nd Dhmni. 1. Inroducion Inegrl inequliies ply fundmenl role in he heory of differenil equions, funcionl nlysis, nd pplied sciences. Imporn developmen in his heory hs een chieved in he ls wo decdes. For hese, see [1 8 nd he references herein. Moreover, he sudy of frcionl ype inequliies is lso of vil impornce. Also see [9 13 for furher informion nd pplicions. The firs one is given in [14; in heir pper, using Korkine ideniy nd Holder inequliy for doule inegrls, Brne e l. eslished severl inegrlinequliiesfor he expecione(x) nd he vrince σ 2 (X) of rndom vrile X hving proiliy densiy funcion (p.d.f.) f : [, R.In[15 17 he uhors presened new inequliies for he momens nd for he higher order cenrl momens of coninuous rndom vrile. In [17, 18 Dhmni nd Mio nd Yng gve new upper ounds for he sndrd deviion σ(x), for he quniy σ 2 (X)( E(X)) 2, [,,ndforhel p solue deviion of rndom vrile X. Recenly, Ansssiou e l. [9 proposed generlizion of he weighed Mongomery ideniy for frcionl inegrls wih weighed frcionl Peno kernel. More recenly, Dhmni nd Niezgod [17, 19 gve inequliies involving momens of coninuous rndom vrile defined over finie inervl. Oher ppers deling wih hese proiliy inequliies cn e found in [20 22. In his pper, we inroduce new conceps on generlized frcionl rndom vriles. We oin new generlized inegrl inequliies for he generlized frcionl dispersion nd he generlized frcionl vrince funcions of coninuous rndom vrile X hving he proiliy densiy funcion (p.d.f.) f:[, R y using hese conceps. Our resuls re exension of [12, 14, 17. 2. Preliminries Definiion 1 (see [23). Le f L 1 [,. The Riemnn- Liouville frcionl inegrls J α f(x) nd Jα f(x) of order α 0redefined y J α x 1 [f (x) = J α 1 [f (x) = x (x ) α 1 f () d x>, (1) ( x) α 1 f () d x<, (2) respecively, where Γ(α) = e u u α 1 du is Gmm funcion 0 nd J 0 f(x) = J0 f(x) = f(x). We give he following properies for he J α : J α Jβ [f () =J αβ [f (), α 0, β 0, (3) J α Jβ [f () =J β J α [f (), α 0, β 0.

2 Journl of Proiliy nd Sisics Definiion 2 (see [24). Consider he spce L p,k (, ) (k 0, 1 p < ) of hose rel-vlued Leesgue mesurle funcions f on [, for which f L p,k(,) 1/p =( f (x) p x k dx) <, 1 p<, k 0. Definiion 3 (see [24). Consider he spce X p c (, ) (c R, 1 p < ) ofhoserel-vluedleesguemesurle funcions f on [, for which f X p c nd for he cse p= f X c =( xc f (x) p dx 1/p x ) <, (1 p<, c R) (4) (5) = ess sup [x c f (x), c R. (6) x In priculr, when c = (k 1)/p (1 p<,k 0)he spce X p c (, ) coincides wih he L p,k(, )-spce nd lso if we ke c = (1/p) (1 p< ) he spce X p c (, ) coincides wih he clssicl L p (, )-spce. Definiion 4 (see [24). Le f L 1,k [,. The generlized Riemnn-Liouville frcionl inegrls f(x) nd f(x) of orders α 0nd k 0redefined y (k1)1 α f (x) = (k1)1 α f (x) = x (x k1 k1 ) α 1 k f () d ( k1 x k1 ) α 1 k f () d x x>, (7) > x. (8) Here Γ(α) is Gmm funcion nd J 0,k f(x) = J 0,k f(x) = f(x).inegrlformuls(7) nd (8) reclledrighgenerlized Riemnn-Liouville inegrl nd lef generlized Riemnn- Liouville frcionl inegrl, respecively. Definiion 5. The frcionl expecion funcion of orders α 0nd k 0, for rndom vrile X wih posiive p.d.f. f defined on [,, is defined s E X,α () := [f () = (k1)1 α ( k1 τ k1 ) α 1 τ k1 f (τ) dτ, <. Inhesmewy,wedefinehefrcionlexpecionfuncion of X E(X)y wh follows. (9) Definiion 6. The frcionl expecion funcion of orders α 0, k 0,nd<, for rndom vrile X E(X), is defined s E X E(X),α () := (k1)1 α ( k1 τ k1 ) α 1 (τ E(X)) τ k f (τ) dτ, where f:[, R is he p.d.f. of X. For =, we inroduce he following concep. (10) Definiion 7. The frcionl expecion of orders α 0, <,ndk 0, for rndom vrile X wih posiive p.d.f. f defined on [,, is defined s E X,α = (k1)1 α ( k1 τ k1 ) α 1 τ k1 f (τ) dτ. (11) For he frcionl vrince of X,we inroducehe following wo definiions. Definiion 8. The frcionl vrince funcion of orders α 0, <,ndk 0, for rndom vrile X hving p.d.f. f:[, R, is defined s σ 2 X,α := Jα,k [( E(X))2 f () = (k1)1 α ( k1 τ k1 ) α 1 (τ E(X)) 2 τ k f (τ) dτ, (12) where E(X) := τf(τ)dτ is he clssicl expecion of X. Definiion 9. The frcionl vrince of order α 0,for rndom vrile X wih p.d.f. f:[, R, is defined s σ 2 X,α = (k1)1 α ( k1 τ k1 ) α 1 (τ E(X)) 2 τ k f (τ) dτ. We give he following imporn properies. (13) (1) If we ke α=1nd k=0in Definiion 5,weoin he clssicl expecion E X,1 = E(X). (2) If we ke α = 1 nd k = 0 in Definiion 7, we oin he clssicl vrince σ 2 X,1 =σ2 (X) = (τ E(X)) 2 f(τ)dτ. (3) If we ke k = 0 in Definiions 5 9, weoin Definiions 2.2 2.6 in [17. (4) For α > 0,hep.d.f.f sisfies J α [f() = ( ) α 1 /Γ(α). (5) For α = 1, we hve he well known propery J α [f() = 1.

Journl of Proiliy nd Sisics 3 3. Min Resuls Theorem 10. Le X e coninuous rndom vrile hving p.d.f. f:[, R.Then () for ll <, α 0,ndk 0, [f ()σ2 X,α () (E X E(X),α()) 2 f 2 [ [ (k1) 1 α ( k1 k1 ) α Γ (α1) [2k2 (14) If, in (18),wekep() = f() nd g() = h() = k1 E(X), (, ),henwehve (k1) 2 2α =2 ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 f(τ) f(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ [f ()Jα,k [f () (k1 E(X)) 2 ( [)2, 2[ f() (k1 E(X)) 2. (19) provided h f L [, ; () he inequliy [f ()σ2 X,α () (E X E(X),α ()) 2 1 2 (k1 k1 ) 2 ( [)2 (15) is lso vlid for ll <, α 0,ndk 0. Proof. Le us define he quniy for p.d.f. g nd h: H (τ, ρ) := (g (τ) g (ρ)) (h (τ) h (ρ)) ; τ, ρ (, ), <, α 0. (16) Tking funcion p:[, R, muliplying (16) y (( k1 τ k1 ) α 1 /Γ(α))p(τ)τ k,τ (,), nd hen inegring he resuling ideniy wih respec o τ from o,wehve (k1) 1 α ( k1 τ k1 ) α 1 p (τ) H (τ, ρ) τ k f (τ) dτ = [pgh () h(ρ)jα,k [pg () g(ρ) [ph () g (ρ) h (ρ) Jα,k [p (). (17) Similrly, muliplying (17) y (( k1 ρ k1 ) α 1 /Γ(α))p(ρ)ρ k, ρ (, ), nd inegring he resuling ideniy wih respec o ρ over (, ),wecnwrie On he oher hnd, we hve (k1) 2 2α ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 f(τ) f(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ f 2 [ 2 (k1)1 α ( k1 k1 ) α Γ (α1) [2k2 [ 2( [)2. Thnks o (19) nd (20), we oin pr () of Theorem 10. For pr (), we hve (k1) 2 2α ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 (20) f(τ) f(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ sup (τk1 ρ k1 ) τ,ρ [, 2 [J α,k f ()2 (k1) 2 2α ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 =( k1 k1 ) 2 [ f ()2. (21) =2 2 p(τ) p (ρ) H (τ, ρ) τ k ρ k f (τ) dτ dρ [p ()Jα,k [pgh () [pg ()Jα,k [ph (). (18) Then, y (19) nd (21), we ge he desired inequliy (14). We give lso he following corollry. Corollry 11. Le X e coninuous rndom vrile wih p.d.f. f defined on [,.Then

4 Journl of Proiliy nd Sisics (i) if f L [,,henfornyα 0nd k 0,onehs ( k1 k1 ) (α 1) σ 2 X,α E2 X,α f 2 ( k1 k1 ) 2α2 k1 [ Γ (α1) Γ (α3) (( k1 ) α1 ) ; Γ (α1) [ (22) (ii) he inequliy ( k1 k1 ) (α 1) σ 2 X,α E2 X,α 1 2 [ ( k1 k1 ) 2α [ (23) is lso vlid for ny α 0nd k 0. Remrk 12. (r1) Tking α=1nd k=0in (i) of Corollry 11, we oin he firs pr of Theorem 1 in [14. (r2) Tking α=1nd k=0in (ii) of Corollry 11, we oin he ls pr of Theorem 1 in [14. We will furher generlize Theorem 10 y considering wo frcionl posiive prmeers. Theorem 13. Le X e coninuous rndom vrile hving p.d.f. f:[, R. Then one hs he following. () For ll <, α 0, β 0,ndk 0, [f ()σ2 X,β () Jβ,k [f ()σ 2 X,α () 2(E X E(X),α ())(E X E(X),β ()) f 2 [ [ f 2 [ [ (k1) 1 α ( k1 k1 ) α Γ (α1) (k1) 1 β ( k1 k1 ) β 2( where f L [,. () The inequliy [f ()σ2 X,β Γ(β1) [)(Jβ,k J β,k [ 2k2 [), () Jβ,k [f ()σ 2 X,α () [2k2 2 (24) Proof. Using (15),we cn wrie (k1) 2 α β Γ(β) = ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 [p ()Jβ,k p(τ) p (ρ) H (τ, ρ) τ k ρ k f (τ) dτ dρ [pgh ()J β,k [ph ()Jβ,k [pg () [p () [pgh () J β,k [ph () [pg (). (26) Tking p() = f() nd g() = h() = k1 E(X), (, ), in he ove ideniy, yields (k1) 2 α β Γ (β) = We hve lso (k1) 2 α β Γ(β) ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 p(τ) p(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ [f ()Jβ,k [f () ( k1 E(X)) 2 J β,k [f () [f () (k1 E(X)) 2 2 [f () (k1 E(X)) J β,k [f() ( k1 E(X)). f 2 [ [ ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 p(τ) p(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ (k1) 1 α ( k1 k1 ) α Γ (α1) J β,k [ 2k2 (k1)1 β ( k1 k1 ) β Γ(β1) [2k2 (27) 2(E X E(X),α ())(E X E(X),β ()) ( k1 k1 ) 2 ( [)(Jβ,k [) (25) 2( [)(Jβ,k [). (28) is lso vlid for ny <, α 0, β 0,ndk 0. Thnks o (27) nd (28), we oin ().

Journl of Proiliy nd Sisics 5 Toprove(),weusehefchsup τ,ρ [, (τ k1 ρ k1 ) 2 =( k1 k1 ) 2.Weoin Corollry 16. Le f e he p.d.f. of X on [,. Thenforny α 0nd k 0,onehs (k1) 2 α β Γ(β) ( k1 τ k1 ) α 1 ( k1 ρ k1 ) α 1 ( k1 k1 ) (α 1) σ 2 X,α (E X E(X),α ()) 2 1 4 (k1 k1 ) 2α. (34) f(τ) f(ρ)(τ k1 ρ k1 ) 2 τ k ρ k f (τ) dτ dρ ( k1 k1 ) 2 ( [)(Jβ,k [). And, y (27) nd (29),wege(25). (29) Remrk 14. (r1) Applying Theorem 13 for α=β,weoin Theorem 10. We give lso he following frcionl inegrl resul. Remrk 17. Tking α=1in Corollry 16,weoinTheorem 2of[14. We lso presen he following resul for he frcionl vrince funcion wih wo prmeers. Theorem 18. Le f e he p.d.f. of he rndom vrile X on [,.Thenforll<, α 0, β 0,ndk 0,onehs [f ()σ2 X,β () Jβ,k [f ()σ 2 X,α () Theorem 15. Le f e he p.d.f. of X on [,.Thenforll<, α 0,ndk 0,onehs [f ()σ2 X,α () (E X E(X),α ()) 2 1 4 (k1 k1 ) 2 ( [)2. Proof. Using Theorem 1 of [25, we cn wrie Jα,k [p ()Jα,k [pg2 () ( [pg ())2 1 4 (Jα,k [p())2 (M m) 2. (30) (31) Tking p() = f() nd g() = k1 E(X), (, ), hen M= k1 E(X) nd m= k1 E(X).Hence,(30) llows us o oin 0 [f ()Jα,k [f () (k1 E(X)) 2 ( [f() (k1 E(X)) 2 ) 2 1 4 (Jα,k [f())2 ( k1 k1 ) 2. (32) 2( k1 E(X))( k1 E(X)) [f ()Jβ,k [f () ( k1 k1 2E(X)) ( [f ()(E X E(X),β ()) J β,k [f ()(E X E(X),α ())). Proof. Thnks o Theorem 4 of [25, we cn se h [ [p ()Jβ,k 2 [pg 2 ()J β,k [pg() Jβ,k [pg() 2 [(M (J β,k (J β,k [p () Jα,k [pg ()) [p () [pg2 () [pg () mj β,k [p ()) [pg () mj β,k [p ()) (MJ β,k [p() J β,k [pg()) 2. (35) (36) This implies h [f ()σ2 X,α () (E X E(X),α ()) 2 Theorem 15 is hus proved. 1 4 (k1 k1 ) 2 ( [)2. (33) In (35),wekep() = f() nd g() = k1 E(X), (, ). We oin [ [f ()Jβ,k [f () ( k1 E(X)) 2 J β,k [f () [f () (k1 E(X)) 2 For =, we propose he following ineresing inequliy. 2 [f() (k1 E(X)) J β,k [f() ( k1 E(X)) 2

6 Journl of Proiliy nd Sisics [(M (J β,k ( [f () Jα,k [f () (k1 E(X))) [f () ( k1 E(X)) mj β,k [f ()) [f () (k1 E(X)) m [f ()) (MJ β,k [f() J β,k [f() ( k1 E(X))) 2. (37) Comining (27) nd (37) ndkinginoccounhefch he lef-hnd side of(27) is posiive, we ge [f ()Jβ,k [f () ( k1 E(X)) 2 J β,k [f () [f () (k1 E(X)) 2 2 (M (J β,k ( Therefore, [f () (k1 E(X)) J β,k [f () ( k1 E(X)) [f () Jα,k [f () (k1 E(X))) [f () ( k1 E(X)) mj β,k [f ()) [f () (k1 E(X)) m [f ()) (MJ β,k [f () J β,k [f () ( k1 E(X))). [f ()Jβ,k [f () ( k1 E(X)) 2 J β,k [f () [f () (k1 E(X)) 2 M( [f ()(E X E(X),β ()) J β,k [f () (E X E(X),α ())) m( [f ()(E X E(X),β ()) J β,k [f () (E X E(X),α ())). (38) (39) Susiuing he vlues of m nd M in (33), hensimple clculion llows us o oin (35). Theorem 18 is hus proved. To finish, we presen o he reder he following corollry. Corollry 19. Le f e he p.d.f. of X on [,. Thenforll <, α 0,ndk 0,heinequliy σ 2 X,α () (k1 E(X))( k1 E(X)) [f () is vlid. ( k1 k1 2E(X))E X E(X),α () (40) Conflic of Ineress The uhors declre h here is no conflic of ineress regrding he pulicion of his pper. References [1 N. S. Brne, P. Cerone, S. S. Drgomir, nd J. Roumeliois, Some inequliies for he expecion nd vrince of rndom vrile whose PDF is n-ime differenile, Journl of Inequliies in Pure nd Applied Mhemics, vol.1,no.2,ricle21, 2000. [2 P. L. Cheyshev, Sur les expressions pproximives des inegrles definies pr les ures prises enreles mêmes limies, Proceedings of he Mhemicl Sociey of Khrkov, vol.2,pp.93 98, 1882. [3 S. S. Drgomir, A generlizion of Grussís inequliy in inner produc spces nd pplicions, Journl of Mhemicl Anlysis nd Applicions,vol.237,no.1,pp.74 82,1999. [4D.S.Mirinović, J. E. Pečrić, nd A. M. Fink, Clssicl nd New Inequliies in Anlysis, vol.61ofmhemics nd is Applicions, Kluwer Acdemic Pulishers Group, Dordrech, Dordrech, The Neherlnds, 1993. [5 B. G. Pchpe, On mulidimensionl Gruss ype inegrl inequliies, Journl of Inequliies in Pure nd Applied Mhemics,vol.32,pp.1 15,2002. [6 F.Qi,A.J.Li,W.Z.Zho,D.W.Niu,ndJ.Co, Exensionsof severl inegrl inequliies, Journl of Inequliies in Pure nd Applied Mhemics,vol.7,no.3,pp.1 6,2006. [7 F. Qi, Severl inegrl inequliies, Journl of Inequliies in Pure nd Applied Mhemics,vol.1,no.2,pp.1 9,2000. [8 M. Z. Sriky, N. Akn, nd H. Yildirim, On weighed Čeyšev-Grüss ype inequliies on ime scles, Journl of Mhemicl Inequliies,vol.2,no.2,pp.185 195,2008. [9 G. A. Ansssiou, M. R. Hooshmndsl, A. Ghsemi, nd F. Mofkhrzdeh, Mongomery ideniies for frcionl inegrls nd reled frcionl inequliies, Journl of Inequliies in Pure nd Applied Mhemics,vol.10,no.4,pp.1 6,2009. [10 G. A. Ansssiou, Frcionl Differeniion Inequliies, Springer Science, 2009. [11 S. Belri nd Z. Dhmni, On some new frcionl inegrl inequliies, Journl of Inequliies in Pure nd Applied Mhemics,vol.10,no.3,pp.1 12,2009. [12 Z. Dhmni, New inequliies in frcionl inegrls, InernionlJournlofNonlinerScience,vol.9,no.4,pp.493 497, 2010. [13 Z. Dhmni, On Minkowski nd Hermie-Hdmd inegrl inequliies vi frcionl inegrion, Annls of Funcionl Anlysis,vol.1,no.1,pp.51 58,2010. [14 N. S. Brne, P. Cerone, S. S. Drgomir, nd J. Roumeliois, Some inequliies for he dispersion of rndom vrile whose PDF is defined on finie inervl, Journl of Inequliies in Pure nd Applied Mhemics,vol.2,no.1,pp.1 18,2001. [15 P. Kumr, Momen inequliies of rndom vrile defined over finie inervl, Journl of Inequliies in Pure nd Applied Mhemics,vol.3,no.3,pp.1 24,2002. [16 P. Kumr, Inequliies involving momens of coninuous rndom vrile defined over finie inervl, Compuers nd Mhemics wih Applicions, vol.48,no.1-2,pp.257 273, 2004.

Journl of Proiliy nd Sisics 7 [17 Z. Dhmni, Frcionl inegrl inequliies for coninuous rndom vriles, Mly Journl of Memik, vol. 2, no. 2, pp.172 179,2014. [18 Y. Mio nd G. Yng, A noe on he upper ounds for he dispersion, Journl of Inequliies in Pure nd Applied Mhemics,vol.8,no.3,pp.1 13,2007. [19 M. Niezgod, New ounds for momens of coninuous rndom vriles, Compuers & Mhemics wih Applicions,vol.60, no. 12, pp. 3130 3138, 2010. [20 A. M. Acu, F. Sofone, nd C. V. Murru, Gruss nd Osrowski ype inequliies nd heir pplicions, Scienific Sudies nd Reserch: Series Mhemics nd Informics,vol.23,no.1,pp. 5 14, 2013. [21 T. F. Mori, Shrp inequliies eween cenered momens, Journl of Mhemicl Anlysis nd Applicions, vol.10,no. 4, pp. 1 19, 2009. [22 R.Shrm,S.Devi,G.Kpoor,S.Rm,ndN.S.Brne, A rief noe on some ounds connecing lower order momens for rndom vriles defined on finie inervl, Inernionl Journl of Theoreicl & Applied Sciences,vol.1,no.2,pp.83 85, 2009. [23 S. G. Smko, A. A. Kils, nd O. I. Mrichev, Frcionl Inegrls nd Derivives, Theory nd Applicions, Gordonnd Brech,Yverdon,Swizerlnd,1993. [24 H. Yıldırım nd Z. Kıry, Osrowski inequliy for generlized frcionl inegrl nd reled inequliies, Mly Journl of Memik,vol.2,no.3,pp.322 329,2014. [25 Z. Dhmni nd L. Thri, On weighed Gruss ype inequliies vi frcionl inegrls, JournlofAdvncedReserchin Pure Mhemics,vol.2,no.4,pp.31 38,2010.

Advnces in Operions Reserch hp://www.hindwi.com Advnces in Decision Sciences hp://www.hindwi.com Journl of Applied Mhemics Alger hp://www.hindwi.com hp://www.hindwi.com Journl of Proiliy nd Sisics The Scienific World Journl hp://www.hindwi.com hp://www.hindwi.com Inernionl Journl of Differenil Equions hp://www.hindwi.com Sumi your mnuscrips hp://www.hindwi.com Inernionl Journl of Advnces in Cominorics hp://www.hindwi.com Mhemicl Physics hp://www.hindwi.com Journl of Complex Anlysis hp://www.hindwi.com Inernionl Journl of Mhemics nd Mhemicl Sciences Mhemicl Prolems in Engineering Journl of Mhemics hp://www.hindwi.com hp://www.hindwi.com hp://www.hindwi.com Discree Mhemics Journl of hp://www.hindwi.com Discree Dynmics in Nure nd Sociey Journl of Funcion Spces hp://www.hindwi.com Asrc nd Applied Anlysis hp://www.hindwi.com hp://www.hindwi.com Inernionl Journl of Journl of Sochsic Anlysis Opimizion hp://www.hindwi.com hp://www.hindwi.com