Fritz Peter Heßberger

Similar documents
Nuclear Structure of Superheavy Nuclei Investigated at GSI

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

Nustar Seminar

Gamma spectroscopy in the fermium region at SHIP

ASRC International Workshop Perspectives in Nuclear Fission

Production of Super Heavy Nuclei at FLNR. Present status and future

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

Synthesis of New Elements and New Approaches in SHE Research

Correlation between alpha-decay energies of superheavy nuclei

Quantum-State Selective Decay Spectroscopy of 213 Ra and 53 Co m

* * TASCA in Small Image Mode Spectroscopy

Nuclear and Chemical Studies with Hassium Isotopes

Production and decay studies of 261 Rf, 262. Db, 265 Sg, and 266 Bh for superheavy element chemistry at RIKEN GARIS

Synthesis of SHE with S3

Spectroscopy of 252No to Investigate its K-isomer

Nuclear Structure Studies with Penning Traps

Towards TASCA

Production of superheavy elements. Seminar: Key experiments in particle physics Supervisor: Kai Schweda Thorsten Heußer

Fission research at JAEA and opportunity with J-PARC for fission and nuclear data

The Helmholtz Institute Mainz. Structure, Symmetry, and Stability

Citation EPJ Web of Conferences (2014), provided the original work is prope

The Synthesis of Super Heavy Elements (SHE) requirements for the synthesis of SHE. the basic technical requirement: beam intensity

Superheavy elements* Yury Ts. Oganessian. Pure Appl. Chem., Vol. 76, No. 9, pp , IUPAC

Nuclear Reactions. Shape, interaction, and excitation structures of nuclei scattering expt. cf. Experiment by Rutherford (a scatt.

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

capture touching point M.G. Itkis, Perspectives in Nuclear fission Tokai, Japan, March

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Present status of the heaviest elements study using GARIS at RIKEN

The neutron multiplicity study at spontaneous fission of short-lived isotopes (z > 100) using VASSILISSA recoil separator

Super-Heavy Nuclei: Current Status and Future Developments

MRTOF mass measurements at GARIS-II: Toward SHE identification via mass spectroscopy

RITU and the GREAT Spectrometer

Subbarrier cold fusion reactions leading to superheavy elements( )

What do we know experimentally about the N=149, N=151 and N=153 isotones?

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

On the search for elements beyond Z =118. An outlook based on lessons from the heaviest known elements

Gas-phase chemistry of element 114, flerovium

SPECTROSCOPY OF TRANSFERMIUM ISOTOPES AT DUBNA: RESULTS AND PLANS

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Preparation of 249 Cf targets for the synthesis of element 120

Method of active correlations in the experiment 249 Cf+ 48 Ca n

The new isotopes 240 Es and 236 Bk

Laser Spectroscopy on Bunched Radioactive Ion Beams

News from the chemistry of heaviest elements around flerovium, element Christoph E. Düllmann

Influence of entrance channels on formation of superheavy nuclei in massive fusion reactions

PHL424: Nuclear fusion

Ciencias Nucleares STUDY OF SUPERHEAVY ELEMENTS

High-resolution Study of Gamow-Teller Transitions

Production of new neutron rich heavy and superheavy nuclei

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

Measurement of the g-factors of 2 + states in stable A=112,114,116 Sn isotopes using the transient field technique

Fusion probability in heavy ion induced reac4ons. G.N. Knyazheva FLNR, JINR Interna5onal Symposium Superheavy Nuclei 2015 Texas, USA, March 2015

Fusion probability and survivability in estimates of heaviest nuclei production R.N. Sagaidak Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RF

First synthesis and investigation

Results from the FRS Ion Catcher with projectile and fission fragments

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Present ISOLDE facility Aims of HIE-ISOLDE upgrade First steps towards HIE-ISOLDE

Stability Peninsulas at the Neutron Drip Line

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Theoretical description of decay chains of SHN

RIKEN GARIS for Superheavy Element Chemistry

Development and application of the RFQs for FAIR and GSI Projects

Microscopic Fusion Dynamics Based on TDHF

ALPHA-DECAY AND SPONTANEOUS FISSION HALF-LIVES OF SUPER-HEAVY NUCLEI AROUND 270Hs

Measurements of cross sections for the fusion-evaporation reactions 244 Pu 48 Ca,xn 292 x 114 and 245 Cm 48 Ca,xn 293 x 116

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

Status & Future for In-Beam Spectrometers for Tagging at JYFL

FAVORABLE HOT FUSION REACTION FOR SYNTHESIS OF NEW SUPERHEAVY NUCLIDE 272 Ds

Mapping Low-Energy Fission with RIBs (in the lead region)

Sunday Monday Thursday. Friday

Mass measurements of n-rich nuclei with A~70-150

G SI Darmstadt. TASCA TransActinide Separator and Chemistry Apparatus

Physics with Exotic Nuclei

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues

Entrance-channel potentials in the synthesis of the heaviest nuclei

Theoretical Study on Alpha-Decay Chains of

Statistical Behaviors of Quantum Spectra in Superheavy Nuclei

Status of the magnetic spectrometer PRISMA

Coulomb excitation experiments at JAEA (Japan Atomic Energy Institute)

Testing the shell closure at N=82 via multinucleon transfer reactions at energies around the Coulomb barrier

Chemistry GARIS

Addendum to the ISOLDE and Neutron Time-of-Flight Committee

Conversion Electron Spectroscopy in Transfermium Nuclei

DEVELOPMENT OF JINR FLNR HEAVY-ION ACCELERATOR COMPLEX IN THE NEXT 7 YEARS

Status of the SHIPTRAP Project: A Capture and Storage Facility for Heavy Radionuclides from SHIP

Bogdan Fornal. Institute of Nuclear Physics, Polish Academy of Sciences Krakow, Poland

Development of the UNILAC towards a Megawatt Beam Injector

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

Heavy-ion fusion reactions and superheavy elements. Kouichi Hagino

Perspectives for laser spectroscopy of the heaviest elements

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Mapping Fission in Terra Incognita in the neutron-deficient lead region

Radiometric Dating (tap anywhere)

Annax-I. Investigation of multi-nucleon transfer reactions in

Superheavy-element spectroscopy: Correlations along element 115 decay chains

Reactions with Relativistic Radioactive Beams

Stability of heavy elements against alpha and cluster radioactivity

Atomic Physics with Stored and Cooled Ions

Transcription:

Fritz Peter Heßberger GSI Helmholtzzentrum für Schwerionenforschung mbh, D-64291 Darmstadt, Germany Helmholtz Institut Mainz D-55099 Mainz, Germany International Conference Beyond 2010 Cape Town, South Africa 1. - 6. February 2010 Version 5. 2. 2010

Outline of the talk Physical Motivation Experimental Set-ups at GSI GSI Experiments on Search for SHE GSI Experiments on Nuclear Structure of SHE New Accelerator Project New Separator Projects New detection set-ups and techniques Conclusions Collaborations

Predictions of Superheavy Elements 126 126 Macroscopic Microscopic Calculations 114 114 82 82 184 184 (164) (164) 126 126 H. Meldner Arkiv fys. 36,593 (1967)

Skyrme-Hartree-Fock (SHF) and Relativistic Mean Field (RMF) Approaches Self-consistent Skyrme-Hartree-Fock (SHF) calculation and Relativistic Mean Field (RMF) calculations, using different parametrizations. SHF: SkP, SkI3, SLy6, SkI4 and RMF: NL3, NL-Z2. Results different for different parametrizations, also different from macroscopic-microscopic calculations SkP predicts proton shell Z=126, other SHF param. rather Z=120, SkI4 shows also stromg shell effects at Z=114; SHF predict neutron shell essentially at N=184, partly strong shell effects also at N=172 RMF predict proton shell at Z=120 and strong neutron shell rather at N=172. Where are the shells really??? From: M.Bender et al. Phys. Lett. B 515, 42 (2001)

Excerpt from the Charts of Nuclei Regions of Research Z 120 114 108 Bh Hs Mt Ds 112 Rg 270 Hs 184 100 152 162 N

48 Ca E lab = 220 MeV Production of Superheavy Elements 209 Bi 257 Lr E * = 22 MeV n ye - 255 Lr (<0.1%) 'prompt disruption' (>99.9 %) n xγ Production of SHE in complete fusion reactions Cold fusion: Pb, Bi Targets, medium heavy projectiles (e.g. 48 Ca, 54 Cr, 64 Ni), low excit. energy E*(B fus ) < 20 MeV, 1n (2n), high dyn. fusion hindrance Hot fusion: Actinide targets ( 244 Pu, 248 Cm), projectile 48 Ca (mostly so far); high excit. energy, E*(B fus ) > 30 MeV, 3n, 4n, (5n), lower dyn. fusion hindrance, more neutron rich nuclei, closer to N=184 F.P.Heßberger 2.5.2005 Hot Fusion 10 8 10 6 fusion cross-section 209 Bi( 48 Ca,xn) 257-x Lr Cold Fusion σ / nb 10 4 10 2 256 Lr (1n) 255 Lr (2n) 254 Lr (3n) 253 Lr (4n) 10 0 Yu. Oganessian, J. Phys. G 34, 165 (2007) 10-2 10 15 20 25 30 35 40 45 F.P.Heßberger, EPJ D45, 33 (2007) E* / MeV

Production of Superheavy Elements 100000 10000 σ / pbarn 1000 100 10 1 0,1 (4n) 'cold' fusion (Pb,Bi-targets) 34 S + actinide targets 48 Ca + actinide targets (3n) 48 Ca + actinide targets (4n) 22 Ne, 30 Si + 238 U (5n) 50 Ti + 208 Pb 54 Cr + 208 Pb 58 Fe + 208 Pb 64 Ni + 208 Pb 70 Zn + 208 Pb decrease of E* for maxumim of 1n channel 0,01 102 105 108 111 114 117 120 Z ER konferenzen/tours/quersschn 14.8.2006 48 Ca + 244 Pu

Schematic Experimental Set-up for SHE - Research sf sf

Velocity separator SHIP SHIP Separation time: 1 2 μs Transmission: 20 50 % Background: 10 50 Hz Det. E. resolution: 18 25 kev Det. Pos. resolution: 150 μm Dead time: 25 μs Mastertitelformat bearbeiten

Gas filled Separator TASCA Modes of Operation: Æ High Transmission Mode (HTM); DQhQv focussing; ε = 57±5 % for 253No (48Ca + 207Pb) Beam spot size: 120x40 mm2 Æ Small Image Mode (SIM); DQvQh focussing; ε = 35±6 % for 253No (48Ca + 207Pb) Beam spot size: 30x30 mm2

Synthesis of 283 112 by the reaction 48 Ca + 238 U σ = 2.5 + 1.8 1.1 pb σ = 0.72 + 0.58 0.35 pb New result: b sf ( 283 112) = 50±20 %

Synthesis of Element 114 by 48 Ca + 244 Pu 12 decay chains σ 5 pb E* 41 MeV 5 decay chains σ 1.7 pb E* 41 MeV New results at TASCA: α-decay branch in 281 Ds new isotope 277 Hs

54 Cr + 248 Cm:σ 25 fb (4n) 58 Fe + 244 Pu: σ 5 fb (4n) 64 Ni + 238 U: σ 4 fb (3n) Towards Element 120 First attempt at SHIP: 64 Ni + 238 U (S.Hofmann et al. GSI Sci. Rep. 2008, 131) 50 Ti + 249 Cf: σ 50fb (4n) 50 Ti + 252 Cf: σ 250 fb (4n) Beam dose: 2.11 x 10 19 (116 days) : σ < 90 fb B f (mac.-mic) 7 MeV ( 300 120 (N=180)) (p-shell at Z = 114) B f (SLy6,SKP...) (10-12) MeV ( 300 120 (N=180)) (p-shell at Z 120) Cross-section enhancement expected at higher B f Problem: fusion probability!! V. Zagrebaev, W. Greiner PR C 78, 034610 (2008) Next step: 54 Cr + 248 Cm (in preparation) Alternatively: 50 Ti + 249 Cf, 252 Cf σ(3n) 10 pb σ(4n) 1 pb σ(3n) σ (3n) 10 fb σ (4n) 1 fb σ (4n) 0.005 fb A.K.Nasirov et al. PR C79,024606 (2009)

Nuclear Structure Investigations 184 j15/2 7/2+[624] 152 9/2-[734] g9/ 2 114 114 1/2-[521] f7/2 100 i13/2 h9/2 142 126 7/2-[514] f5/2 d5/2 134 96 3/2-[521] 7/2+[633] 1/2+[631] 82 Nilsson Diagrams for Neutron (left) and proton (right) single particle levels

Prompt alpha-gamma spectroscopy 207 Pb( 48 Ca,2n) 253 No : σ 900 nb h; 330 000 α-decays collected in 96 h irrad. time counts 12k 11k 10k 9k 8k 7k 6k 5k 4k 3k 2k 1k K-x-rays (Fm) 151 kev 222 kev 280 kev counts 300 250 200 150 100 20 15 10 5 0 75 kev 58 kev 128 kev 209 kev 50 100 150 200 250 300 650 700 E γ / kev 297 kev 670 kev 0 100 200 300 400 500 600 700 E γ / kev hess/konferenzen/tan_0907/no253_r239_r260 F.P.Heßberger, 19.9.2007

Comparison of decay properties of N=151 isotones 251 Fm: α + 249 Cf, σ 10 mb, b α = 1.8 % 253 No: 207 Pb( 48 Ca,2n) 253 No, σ 0.9 µb, b α 80 % 255 Rf: 207 Pb( 50 Ti,2n) 255 Rf σ 10 nb, b α 50% 9/2 - [734] 251 Fm 9/2 - [734] 253 No 9/2 - [734] 255 Rf 800 7/2 - [743] α (6639, 0.006) α (6834, 0.87) 7/2 - [743] α (6929, 0.018) α (7620, 0.001) E * / kev 600 400 9/2 - [734] 7/2 + 5/2 + [622] α (8004, 0.96) α (8078, 0.04) α (8730, >0.9) E1 (0.24) E1 (0.57) E1 (0.19) 9/2 - [734] 200 0 11/2 + M1 5/2 + [622] 11/2 + E1 (0.23) E1 (0.63) 9/2 + 9/2 + 9/2 + 7/2 + [624] 7/2 + [624] 7/2 + [624] 247 Cf E1 (0.14) 249 Fm M1 9/2 - [734] E1 (0.45) E1 (0.55) 251 No I. Ahmad et al. PR C 8, 737 (1973) F.P. Heßberger EPJ D 45, 33 (2007) and this work F.P.Heßberger et al. EPJ A 30, 561 (2006)

Systematics of low lying Nilsson levels in N = 149 isotones 700 700 600 Theory (A.Parkhomenko, A.Sobiczewski, Act. Phy. Pol. B 36, 3115 (2005)) 600 7/2 - [743] Experiment 1/2 + [631] 500 7/2 - [743] 500 E * / kev 400 300 E * / kev 400 300 9/2 - [734] 1/2 + [631] 5/2 + [622] 200 200 100 5/2 + [622] 9/2 - [734] 100 1.02 s 0 7/2 + [624] 243 Pu 245 Cm 247 Cf 249 Fm 251 No 253 Rf 255 Sg 0 7/2 + [624] 243 Pu 245 Pu 247 Cf 249 Fm 251 No

Decay of K-Isomeric states in 254 No 100 254m2 No (198 ms) 198 ± 13 μs (16 -,16 + ) 2917 ± 3 kev b sf 1.2x10-4 counts / kev counts / kev 50 0 200 150 100 50 53 (x0.5) 111 82 133 157, 168, 179 151, 159 (214) 606 254m1 No (275 ms) 0 100 200 600 700 800 900 E γ / kev F.P.Heßberger et al. EPJ A 43, 55 (2010) 778 841 856 887 953 (x0.5) 18 + 16 + 14 + 12 + 10 + 445 412 366 318 267 8 + 6 + 214 4 + 159 102 0 + 44 778 179 168 157 (145) 133 (123) 111 K=8 2 + 254 No 347 302 606 325 (256) 1295 ± 2 kev 275 ± 7 ms 15-14 - 13-12 - 11-10 - 9-8 - 53 π9/2 + [624] x π7/2 - [514] b sf =(2.0±1.2)x10-4 b α 1x10-4 856 887 K=3 7 + 82 151 69 58 126 5 +6+ 103 45 3 +4+ 841 (M1) 943 (M1) 987 kev π1/2 - [521] x π7/2 - [514]

Decay of a K-Isomeric state in 252 No Counts 250 200 150 100 206 Pb( 48 Ca,2n) 252m No 107 (4+ --> 2+) (line dublett) K α1,2 (+ 123?) 133 156 167 (6+ --> 4+) 224 (8+ --> 6+) 882 911 920 12 + 10 + 8 + 252 No 328 277 711 687 911 828 920 862 883 133 (25) 1229 (7-) 156 1148 (6-) 1073 (5-) 107 1015 (4-) 966 (3-) 929 (2-) 100 ms 1254 kev (8 _ ) 50 No252iso F.P.Heßberger 14.8.2006 687 710 0 50 100 150 200 700 750 800 850 900 950 E γ / kev 828 862 6 + 224 167 4 + 107 2 + 46 0 + No252_KIsomer_140806 F.P.Heßberger 14.8.2006 100 4+,5-,8-9/2+ 7/2-1/2-7/2+ 3/2-1/2+ 152 3/2+ 1/2+ 7/2+ 11/2-9/2-7/2+ 5/2+ Z N B. Sulignano et al. EPJ A 33, 327 (2007) 8-

K-isomers in N=150 isotones E* / kev 2000 1800 1600 1400 1200 1000 2-quasi p 2-quasi n 8+ (7/2-,9/2-) 4+ (1/2+,7/2+) 7- (5/2+,9/2-) 4- (3/2-,5/2+) exp. 8- T 1/2 =? 8- (7/2+,9/2-) 3- (1/2-,5/2+) 6+ (5/2+,7/2+) 5- (3/2-,7/2+) 2+ (1/2-,3/2-) 4+ (1/2-,7/2-) 7- (7/2+,7/2-) 1.8 s 4- (1/2-,7/2+) 4+ (1/2-,7/2-) 0.1 s Decay schemes of 252 No and 250 Fm similar; but different to that of 254 No!! Suggests similar structure of isomers in 252 No and 250 Fm. Supported by calculatuions; lowest 2quasi particle configuration predicted as 2quasi neutron state with I π = 8 -. Common trend in N=150 isotones? next heavier candidate is 254 Rf 246 Cm 248 Cf 250 Fm 252 No calc. J.-P. Delaroche et al. Nucl. Phys. A 771, 103 (2006)

Mean time of flight / μs 90 85 80 75 253 No 2+ SHIPTRAP 70-3 -2-1 0 1 2 3 Excitation frequency / Hz - 850012 Stopping Cell 1 2 Extraction RFQ 1. deceleration 2. cooling 3. accumulation 4. purifucation 5. storage 6. detection fusion products from SHIP Buncher 3 Purification Trap 1 2 4 3 Measurement Trap 6 5 Detector Downstream Experiments Plans: 254,255,256 Lr,... towards doubly magic 270 Hs, trap assisted spectroscopy 4 7 Tesla Solenoid 5 6 Masses Measured 252,253,254 No (M.Block et al. accepted for publication in Nature) 255 Lr (first resonance) (M. Dworschak, PHD)

7.5 AMeV cw LINAC for the GSI SHE Program Proposal submitted September 2009 (W. Barth, GSI) (not yet approved) Cooperation: GSI Darmstadt, Helmholtz Institute Mainz, Inst. Applied Phys. Goethe Universität Frankfurt Main Features: ( new 28 MHZ ECR source, in progress) ( new RFQ, in commissioning) energy range 3.5-7.3 AMEV 100% duty cycle (presently 25%) intensity increase (> x10) improved beam quality Upgrade presently in progress 28 GHz ECR source + High Charge Injector (RFQ, IH)

New Separators Project: Separator for Transfer Reaction Products Inelastic Reaction Isotope Separator for Heavy Elements (IRIS) (J. Dvorak, C.E. Düllmann, M. Schädel) Brainstorming Workshop, March 1st, 2010 Replacement of SHIP, in operation since 1976 (under consideration) SuperSHIP

New Detector Set-up - TASISpec Configuration of TASISpec (TASCA in Small Image Mode Spectroscopy) Double sided Si-strip detector (DSSSD); implantation detector, 32x32 strips, active area 58 mm x 58 mm; 0.31 mm thickn. Box of 4 single sided strip detectors (SSSSD) 60 mm x 60 mm active aream 1.0 mm thickn. 1 seven-crystal Ge - Cluster detector (behind implantation detector) 4 four-crystal Ge-Clover detectors expected γ-efficiency 40 % at 200 kev L.L. Andersson et al., GSI Scientific Report 2008, 142 and in preparation to be submitted to NIM

TRAP assisted spectroscopy First Commissioning Experiment in September 2009: 170 Er( 48 Ca,5n) 213 Ra Main features: Clean samples, mass separated (no admixtures with isotones) Avoid energy summing of α-particles with conversion electrones D. Rudolph et al. GSI Scientific Report 2009, in press

Summary and Outlook Hot Fusion Reactions successfully applied at SHIP ( 48 Ca + 238 U 286 112*) and TASCA ( 48 Ca + 244 Pu 292 114*); Dubna chains were reproduced and new decay data obtained Next steps at SHIP: 48 Ca + 248 Cm 296 116 (planned June/ July 2010) Medium range plans: 48 Ca + 243 Am 291 115* (exc. function), 54 Cr + 248 Cm 302 120* Further steps: Element 114 chemistry at TASCA ( 48 Ca + 244 Pu); depending on availability of beam and targets, 50 Ti + 249 Bk 299 119*, 50 Ti + 249 Cf 299 120* Extension of α -γ- (α CE)-decay spectroscopy into the region Z > 106 and towards nuclei around the deformed shells at Z = 108, N = 162 challenge: identification of atomic numbers of SHE via K X-rays detailed investigation of K isomers ( 253 No in scheduled April 2010 at TASCA, 270 Ds scheduled in April/May at SHIP); search for new K isomers around Z = 108, N = 162 precise mass measurements of ground-state and isomeric states in nuclei Z > 100 at SHIPTRAP next step: 255 Lr and 255m Lr (E* 50 kev) scheduled in April 2010 Explore possibilities of trap-assisted spectroscopy in the region of SHE New technical projects: accelerator, separators, detector systems, target developments.... On and on but the road is never ending, at least we know, we re on our way (from On and on by Fiddler s Green)

Collaborations SHIP Spokesmen: S.Hofmann, GSI (SHE synthesis) F.P. Heßberger, GSI, Helmholtz Institut Mainz (SHE spectroscopy) GSI, Comenius University Bratislava (Slovakia), FLNR - JINR Dubna (Russia), Univ. Liverpool (UK), Univ. Jväskylä (Finland), JAEA Tokai (Japan), IMP Lanzhou (China), Johannes-Gutenberg Universität Mainz Germany), Helmholtz Institut Mainz (Germany), LLNL Livermore (USA), University of Warsaw (Poland), Goethe Universität Frankfurt (Germany) SHIPTRAP Spokesman: M. Block, GSI GSI, MPI Heidelberg (Germany), Ernst-Moritz-Arndt Universität Greifswald (Germany), Justus- Liebig Universität Gießen (Germany), Johannes-Gutenberg Universtät Mainz (Germany), St. Petersburg Nucl. Phys. Inst. Gatchina (Russia), FLNR-JINR Dubna (Russia), University of Granada (Spain), Ludwig-Maximilians Universität München (Germany), Helmholtz Institut Mainz (Germany), TU Darmstadt (Germany), University of Lund (Sweden), Goethe Universität Frankfurt (Germany) TASCA Spokesman: M. Schädel, GSI GSI, TU München (Germany), Johannes-Gutenberg Universität Mainz (Germany), PSI Villigen (Switzerland), Univ. of Bern (Switzerland), Univ. of Jyväskylä (Finland), LBNL Berkeley (USA), Univ. of California Berkeley (USA), Univ. of Oslo (Norway), Univ. of Lund (Sweden), Univ. of Liverpool (UK), IMP Lanzhou (China), Saha Inst. of Nucl. Phys. Kolkata (India), Helmholtz Institut Mainz (Germany)

TASISpec Spokesman: D. Rudolph (Univ. of Lund) Collaborations GSI, Univ. of Lund (Sweden), Univ. of Liverpool (UK), Johannes-Gutenberg Universität Mainz (Germany), Universidad Nacional de Colombia Bogota (Colombia), PSI Villigen (Switzerland), Univ. of Bern (Switzerland), TU München (Germany), Univ. of Oslo (Norway), Helmholtz Institut Mainz (Germany) EL 114 Physics Spokesman: Ch. E. Düllmann (GSI, Univ. Mainz, Helmholtz Institut Mainz) GSI, TU München (Germany), Johannes-Gutenberg Universität Mainz (Germany), Helmholtz Institut Mainz (Germany), Univ. of Liverpool (UK), LBNL Berkeley (USA), Univ. of California Berkeley (USA), Saha Inst. of Nucl. Phys. Kolkata (India), Univ. of Oslo (Norway), Univ. of Lund (Sweden), Univ. of Jyväskylä (Finland), ITE Warsaw (Poland), PSI Villigen (Switzerland), Univ. of Bern (switzerland) EL 114 Chemistry Spokesman: A. Yakushev (TU München) GSI, TU München (Germany), Johannes-Gutenberg Universität Mainz (Germany), Helnholtz Institut Mainz (Germany), JAEA Tokai (Japan), Univ. of Oslo (Norway), Saha Inst. of Nucl. Phys. Kolkata (India), PSI Villigen (Switzerland), Univ. of Bern (Switzerland)