Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Similar documents
HILIC Method Development in a Few Simple Steps

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems

Comparison of Solid Core HPLC Column Performance: Effect of Particle Diameter

A Study of Stability, Robustness and Time Efficiency of a New HPLC and a New Tandem MS

Hydrophilic Interaction Liquid Chromatography: Method Development Approaches

Insights Into the Nanoworld Analysis of Nanoparticles with ICP-MS

Exploring the Benefits of Automated Unattended Sample Derivatization Prior to Gas Chromatography Analysis

A Strategy for an Unknown Screening Approach on Environmental Samples using HRAM Mass Spectrometry

Complementary Use of Raman and FT-IR Imaging for the Analysis of Multi-Layer Polymer Composites

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer

Evaluation of a New HPLC, a New Tandem MS and a New Data Processing Software for General Clinical Use

Characterization of Polymers and Plastics (pellets, powders and films) by the Thermo Scientific FLASH 2000 Elemental Analyzer

of mass spectrometry

Exploring Mixed-Mode Chromatography Column Chemistry, Properties, and Applications

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany

Analyzing Residual Solvents in Pharmaceutical Products Using GC Headspace with Valve-and-Loop Sampling

( )( ) Selectivity Choices in Reversed-Phase Fast LC. Introduction. R s = 1 a 1 k 4 a 1 + k

Rapid Quan/Qual Metabolic Stability Analysis with Online Oxidative Metabolism Synthesis

International Journal of Chemistry and Pharmaceutical Sciences

Plasma-free Metanephrines Quantitation with Automated Online Sample Preparation and a Liquid Chromatography-Tandem Mass Spectrometry Method

Fitting of ETD Rate Constants for Doubly and Triply Charged Ions in a Linear Ion Trap

Thermo Scientific. Anion-Exchange Column. Determination of Inorganic Anions in Diverse Sample Matrices. Superior Chromatographic Performance

The Raman Spectroscopy of Graphene and the Determination of Layer Thickness

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples

Determinations of Inorganic Anions and Organic Acids in Beverages Using Suppressed Conductivity and Charge Detection

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Optimizing GC Parameters for Faster Separations with Conventional Instrumentation

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

Monitoring Protein PEGylation with Ion Exchange Chromatography

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity

Semi-Targeted Screening of Pharmaceutically- Related Contaminants in the Thames Tideway using LC-HRMS

Improved Throughput and Reproducibility for Targeted Protein Quantification Using a New High-Performance Triple Quadrupole Mass Spectrometer

New Multi-Collector Mass Spectrometry Data for Noble Gases Analysis

Fast, Effective XPS Point Analysis of Metal Components

A Strategy for an Unknown Screening Approach on Environmental Samples Using HRAM Mass Spectrometry

Thermo Scientific ConFlo IV Universal Interface. Continuous Flow Interface. Isotope Ratio MS

New Stationary Phases for Solid-Phase Extraction. Pranathi R. Perati, Rosanne Slingsby, and Carl Fisher Thermo Fisher Scientific, Sunnyvale, CA, USA

Enhancement of Linearity and Response in Charged Aerosol Detection

A Platform Method for Pharmaceutical Counterion Analysis by HPLC

viridis Columns Bringing a New Dimension to SFC Combining state-of-the-art media manufacturing with industry leading column technology, Viridis

[ Care and Use Manual ]

Supported Liquid Extraction (SLE) Guide and FAQ s. User Guide

Thermo Scientific. Anion-Exchange Column

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery

Key Words Q Exactive, Accela, MetQuest, Mass Frontier, Drug Discovery

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography

Introduction to Fourier Transform Infrared Spectroscopy

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

Charged Aerosol Detection and Evaporative Light Scattering Detection Fundamental Differences Affecting Analytical Performance

XPS Surface Characterization of Disposable Laboratory Gloves and the Transfer of Glove Components to Other Surfaces

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Thermo Fisher Scientific, San Jose, CA; 2 Kelleher Lab, Northwestern University, Evanston, IL; 3

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

Method Development for a Simple and Reliable Determination of PCBs in Mineral Insulating Oil by SPME-GC-ECD

Analysis of Silicone Oils by High Performance Liquid Chromatography and Corona Charged Aerosol Detection

Utility of the Charge Detector in Ion Chromatography Applications

Determination of BTEX in Cigarette Filter Fibers Using GC-MS with Automated Calibration

Advances in Sample Preparation for Accelerated Solvent Extraction

Optimizing a Generic Approach to Analyzing PPCPs in River Water

Determination of the Composition of Natural Products by HPLC with Charged Aerosol Detection. Introduction. Black Cohosh. Corona Detector Parameters

Quantitation and Characterization of Copper and Nickel Plating Bath Additives by Liquid Chromatography

Determination of trace anions in concentrated hydrofluoric acid

Thermo Scientific HyperSep Dispersive SPE Products. Efficient sample preparation and clean-up using the QuEChERS Method

Determination of Verapamil Hydrochloride Purity Using the Acclaim PA Column

Mass Spectral Studies of Polypropylene Chromatographic Well Plates

Key Words Nanoparticles, spicp-ms, ICP-MS, Qtegra ISDS Software, AF4-ICP-MS

Introduction to Fourier Transform Infrared Spectroscopy

Easy Method Transfer from HPLC to RSLC with the Dionex Method Speed-Up Calculator

for XPS surface analysis

Quantitation and Characterization of Copper Plating Bath Additives by Liquid Chromatography with Charged Aerosol Detection

IN QUALITATIVE ANALYSIS,

Metoprolol and Select Impurities Analysis Using a Hydrophilic Interaction Chromatography Method with Combined UV and Charged Aerosol Detection

Exploring Mixed-Mode Chromatography: Column Chemistry, Properties, and Applications

LC Technical Information

Sensitive HILIC UHPLC-UV determination of steviol glycoside natural sweeteners

Keywords Haloacetic acids, Water analysis, 2-D ion chromatography, ICS-3000

MetWorks Metabolite Identification Software

Finnigan TC/EA. High Temperature Conversion Elemental Analyzer

Achieve confident synthesis control with the Thermo Scientific ISQ EC single quadrupole mass spectrometer

Validation of GC-MS/MS for Detection and Confirmation of Low-Level Dioxins

HiTrap HIC Selection Kit

Automating Method Development with an HPLC System Optimized for Scouting of Columns and Eluents

Cyclone Click to go to the page. Cyclone

Comprehensive Neurochemical Profiling of Brain Tissue Samples

Key Words Q Exactive Focus, Orbitrap, veterinary drugs, small molecule HRAM quantitation, small molecule HRAM screening, UHPLC, vdia

Keysight Technologies Measurement Uncertainty of VNA Based TDR/TDT Measurement. Application Note

Thermo Scientific Dionex IonPac AS23 Anion-Exchange Column

Direct Analysis using Paper-Spray Mass Spectrometry: Method Development for the Rapid Screening of Drugs of Abuse for Forensic Toxicology

Liquid Chromatography

Thermo Scientific Pesticide Explorer Collection. Start-to-finish. workflows for pesticide analysis

Quick Guide QUICK GUIDE. Activity 1: Determine the Reaction Rate in the Presence or Absence of an Enzyme

Impact of Instrument Dispersion on Performance of HPLC Capillary Columns

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

Quantification of Trace and Major Anions in Water by Ion Chromatography in a High-Throughput Laboratory

Microbial DNA qpcr Multi-Assay Kit Clostridium perfringens Pathogenicity

Determination of Inorganic Anions in Drinking Water by Ion Chromatography

Screening Method for 30 Pesticides in Green Tea Extract Using Automated Online Sample Preparation with LC-MS/MS

Transcription:

Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency Anthony Edge, 1 Luisa Pereira, 1 Dafydd Milton 1 and Andrew Shalliker 2 1 Thermo Fisher Scientific, Tudor Road, Runcorn, UK; 2 University of Western Sydney, Australia

Overview The use of active flow technology is presented, demonstrating the benefits for the chromatographic efficiency of removing the peripheral flow and analyzing just the flow from the central region of the column. Using a model developed by Gritti [1], a comparison between a simulation with and without radial mass transfer effects included is compared to experimentally derived data. Introduction Active Flow Technology (AFT) is the term that encompasses a range of new chromatography columns that are designed to eliminate wall effects, minimise solute band broadening due to radial heterogeneity and decrease the peak volume of eluting components. This is achieved through the use of novel endfittings which separate the peripheral flow from the central flow. These endfittings have been used in two different configurations, namely with the endfitting solely at the outlet of the column, referred to as parallel segmented flow (PSF), or with the endiftting placed at both the outlet and the inlet of the column, referred to as curtain flow (CF). Figure 1 shows a diagram of the endfitting and the two possible configurations. Studies detailing the practical gains in separation performance of AFT columns have been published [2,3] on particle packed column formats from the preparative scale down to narrow bore columns. These formats of columns have also been demonstrated on monolithic columns. The results have shown conclusively that substantial gains in efficiency are obtained, although the gains cannot be generalised as they are dependent on numerous factors, which include column length, flow rate, particle diameter, the degree of retention and the segmentation ratio. Nevertheless, the magnitude of the gain in chromatographic performance is typified by the results reported on analytical scale columns packed with reversed phase silica particles, which were in the order of 20% in efficiency (N) in comparison to conventional columns of the same internal diameter. This poster will investigate if the improvements in efficiency can be effectively modelled, to better understand how the retention of analytes is affected by splitting the peripheral flow from the central flow. Experimental data will be compared with modelling data to demonstrate the applicability of the modelling work. Initially, only the parallel segmented flow will be considered. FIGURE 1. Design of the endfitting and the two configurations under evaluation for the Active Flow Technology Solid Ring Outer porous frit Inner porous frit Peripheral flow to waste Pump 1 Central flow Pump 2 Curtain Flow Injector Parallel Segmented Flow Detector Peripheral flow to waste Pump 1 Central flow Injector CurtainFlow Detector 2 Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Experimental Performance of Parallel Segmented Flow Columns: Thermo Scientific Hypersil GOLD 5 m, 100 x 4.6 mm (in standard and PSF configurations) Mobile phase: 70:30 methanol:water Segmentation ratio at column outlet: 10 to 65% every 5%; Injection volume: 5 L Test solutes: Theophylline, propylbenzene. The frit had an internal surface area to peripheral surface area ratio of 1:6, which would result in a natural split ratio of, assuming no load post column, of 5 parts going to the peripheral flow (waste) and 1 part going to the detector. A series of experiments were initially performed to identify the optimum split ratio using this configuration of frit. This was achieved by varying the post column load on the peripheral line by using different lengths of tubing and therefore pressure applied to column outlet. Monitoring the flow to the peripheral line allowed a determination of the correct flow rate ratio, and hence allowed the size of the virtual column within the physical column to be determined. Initially the standard column configuration was tested, and this was then followed by testing of the parallel segmented flow outlet. van Deemter plots were plotted for both configurations, obtained by monitoring the chromatographic efficiency vs. the flow rate. Results The data obtained for these first set of experiments is shown in Figure 2. This diagram shows that as the flow to the detector is decreased from 100 to 40%, effectively decreasing the size of the virtual column, the chromatographic performance increases. A maximum is reached at about 30 40%. However, it is thought that this observed reduction in performance at very low flow rates to detector (virtual diameters) may be due to the band dispersion post column in the connecting tubing and in the detector. This hypothesis has not yet been tested though. Thermo Scientific Poster Note PN20962_HPLC_2014_E_05/14S 3

FIGURE 2. Effect of varying the flow to the detector, effectively altering the diameter of the virtual column 10000 9500 9000 8500 Plates (USP) 8000 7500 7000 6500 6000 5500 STD column 5000 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 % volumetric flow to detector The van Deemter plot shown in Figure 3 clearly shows that there is an improvement in chromatographic performance of about 10 20% when using the AFT. The data obtained in these experiments also shows consistency across the flow rate range, and that there does not appear to be a flow dependency on the improvement observed under the conditions used in this experiment. FIGURE 3. van Deemter plots with and without the parallel segmented flow technology 2.40 2.30 No PSF With PSF 2.20 h 2.10 2.00 1.90 1.80 1.70 0.4 0.6 0.8 1 1.2 1.4 1.6 Flow rate (ml/min) 4 Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Modelling There are a variety of dispersion models available for modeling of dispersion processes in a chromatographic system. A very comprehensive review of these models was given by Gritti [1] who suggested the following model to simulate the dispersion processes in a column. One advantage of this model is that there is a radial dispersion term incorporated which allows for a very simple evaluation of parallel segmented flow technology. There are three terms typically used to describe the dispersion processes within a packed bed, referred to as A (eddy dispersion), B (longitudinal dispersion), and C (resistance to mass transfer). A term The A term has been the topic of much conversation in academic journals. Initially this was considered flow independent, but work by Knox [4] and may others demonstrated that there is a flow dependency associated with this term. Other work has demonstrated that the term can be decoupled and considered as a combination of short range dispersive effects and also long range trans column effects, due to the effects of the wall. This is ideal for modeling the AFT, as the radial dispersion of the packing material can either be added to the model or removed as required (Equation 1). All the terms are explained in Figure 4. Equation 1. Model used for the A term incorporating a trans column dispersion term B Term The Torquato model has been used to describe the longitudinal dispersion process as a function of flow rate. This model has been successfully used to describe beds packed with fully porous media as well as solid core material. One area that has been investigated is the use of solid core material and it is envisaged that using a more general equation will allow for the model to be more applicable to different types of substrate designs. The equations which describe this are given in equation 2. Equation 2. Torquato model used for the B dispersion term Thermo Scientific Poster Note PN20962_HPLC_2014_E_05/14S 5

C Term As with the A term there has been much discussion on the exact nature of the dispersion due to mass transfer. The C term does have flow dependency. It was noted during the modeling work, and using the parameters that relate to the practical component, that the C term did not contribute significantly to the band broadening. Therefore, for the initial work this term has been dropped, to allow simplification of the modeling processes. The parameters used in the modeling are: D p (particle diameter) = 0.005mm, ε t = 0.65 (total porosity of column), ε e = 0.4 (external porosity of media in column), D eff = 0.00051mm 2 s -1, (effective diffusion coefficient), γ r (factor for radial dispersion through convection)= 0.3, p 1 (integer derived from flow profile)= 8, p 2 (integer derived from flow profile)= 225, D c (column diameter) = 4.6mm, D m (bulk diffusion coefficient) = 0.001 mm 2 s -1, k = 3.3 (capacity factor), m r (ratio of column diameter to particle diameter)= 1700, Ω = 1, ξ (Torquato model parameter) =0.328, ω βc (the relative flow velocity between the centre and the wall of the column)= 1.5% FIGURE 4. Comparison of experimental and modeling work 2.40 2.30 2.20 Std column Model (with radial dispersion) Model (no radial dispersion) PSF Data 2.10 h 2.00 1.90 1.80 1.70 0.4 0.6 0.8 1 1.2 1.4 1.6 Flow Rate (ml/min) The data shown in Figure 4, shows that the model accurately matches the experimental data, given the same input parameters. The model also allows for the improvement in the chromatographic performance to be calculated when using solid core materials. 6 Active Flow Technology Understanding How the Flow Rate Profile Affects the Chromatographic Efficiency

Conclusion A model has been presented which simulates the dispersion processes that occurs in segmented flow and standard columns, by assuming that the trans (radial) column dispersion is either not present or is present. The model needs to be tested for robustness but initial data would suggest that it accurately reflects the experimentally derived data. References 1. G. Guiochon, F. Gritti, J. Chromatogr. A. 1221 (2012) 2-40 2. M. Camenzuli, H.J Ritchie, J.R Ladine, R.A. Shalliker, The Analyst, 136 (2011) 5127 3. D. Kocic, L. Pereira, D. Foley, T. Edge, J. Mosely, H. Ritchie, X. Conlan, R.A. Shalliker, J. Chromatogr. A, J. Chromatogr. A 1305 (2013) 102. 4. J.H. Knox, J. Chromatogr. A, 831 (1999) 3-15 www.thermoscientific.com 2014 Thermo Fisher Scientific Inc. All rights reserved. ISO is a trademark of the International Standards Organization. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. Africa +43 1 333 50 34 0 Australia +61 3 9757 4300 Austria +43 810 282 206 Belgium +32 53 73 42 41 Brazil +55 11 3731 5140 Canada +1 800 530 8447 China 800 810 5118 (free call domestic) 400 650 5118 Denmark +45 70 23 62 60 Europe-Other +43 1 333 50 34 0 Finland +358 9 3291 0200 France +33 1 60 92 48 00 Germany +49 6103 408 1014 India +91 22 6742 9494 Italy +39 02 950 591 Japan +81 6 6885 1213 Korea +82 2 3420 8600 Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Norway +46 8 556 468 00 Thermo Fisher Scientific, Sunnyvale, CA USA is ISO 9001:2008 Certified. Russia/CIS +43 1 333 50 34 0 Singapore +65 6289 1190 Sweden +46 8 556 468 00 Switzerland +41 61 716 77 00 Taiwan +886 2 8751 6655 UK/Ireland +44 1442 233555 USA +1 800 532 4752 PN20962_E 05/14S