Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Similar documents
3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Supplementary information

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Aluminum Siting in the ZSM-5 Framework by Combination of

Supporting Information

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

SUPPORTING INFORMATION

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

Supplemental Material

Electronic Supplementary information

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Supporting Information

Supporting Information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Electronic Supplementary Information (ESI) for Chem. Commun.

University of Groningen

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

A Computational Model for the Dimerization of Allene: Supporting Information

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

A theoretical study on the thermodynamic parameters for some imidazolium crystals

Supporting Information

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

China; University of Science and Technology, Nanjing , P R China.

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Supporting Information

Supporting Information

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Supporting information on. Singlet Diradical Character from Experiment

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

(1) 2. Thermochemical calculations [2,3]

Electronic Supplementary Information for:

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

Supplementary Material

SUPPLEMENTARY INFORMATION

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Supporting Information. A rare three-coordinated zinc cluster-organic framework

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Supporting Information

Computational Material Science Part II

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Supporting Information For

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

Dynamics of H-atom loss in adenine: Supplementary information

The Chemist Journal of the American Institute of Chemists

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Supporting Information

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Supporting Information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Supporting Information

Supporting Information

Which NICS Aromaticity Index for Planar π Rings is Best?

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß

Supporting Information

A phenylbenzoxazole-amide-azacrown linkage as a selective fluorescent receptor for ratiometric sening of Pb(II) in aqueous media

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information

Supporting Information

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Supplementary Information

Pyrogallol[4]arenes as frustrated organic solids

Diphosphene Photobehaviour

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Supporting information

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Electronic Supplementary Information (ESI )

Supplementary Information:

Tuning the electron transport band gap of bovine serum. albumin by doping with Vb12

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Electrophilicity and Nucleophilicity of Commonly Used. Aldehydes

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Supporting Information (Part 1) for

Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., Warszawa, Poland 2

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ Том 51, 2 Март апрель С

Transcription:

S1 Decomposition!of!Malonic!Anhydrides Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION Complete Reference 26: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. Table S1. Average rate constants (s -1 ) from linear and nonlinear fits for decomposition of malonic anhydrides (2abc) from repeated runs at the same temperature ( C), along with the %variation. anhydride T 10 4 <k lin > %! k T 10 4 <k NL > %! k T 2a 0.8 1.68 4.1 1.67 5.1 2b 10.6 7.7 7.2 7.8 5.3 2b 10.7 7.8 7.9 7.8 7.5 2c 15.6 2.64 1.2 2.85 3.9

S2 Table S2. Energies (hartrees) by different methods. Molecule\Method HF/6-31G(d) a MP2/6-31G(d) a MP2/6-31G(d) MP2/cc-pVDZ 2a -339.351967-340.253535-340.203529-340.252546 Ketene -151.724672-152.147489-152.115475-152.145831 CO 2-187.634176-188.107747-188.096236-188.122014 Ketene + CO 2-339.358848-340.255237-340.211711-340.267845 2a -339.289561-340.200230-340.154030-340.206593 Molecule\Method MP2/aug-cc-pVDZ B3LYP/6-31G(d) B3LYP/cc-pVTZ G3 2a -340.322131-341.129879-341.262332-340.993700 Ketene -152.173303-152.566725-152.632364-152.503369 CO 2-188.158319-188.569348-188.648876-188.497674 Ketene + CO 2-340.331622-341.136073-341.281240-341.001043 2a -340.279818-341.082532-341.220452 Molecule\Method B3LYP/6-311+G(3df,2p) UBPW91/6-311+G(3df,2p) B3LYP/6-31G(d) b UBPW91/6-31G(d) b 2a -341.260977-341.240868-341.138414-341.121137 Ketene -152.631184-152.616386 CO 2-188.648678-188.639562 Ketene + CO 2-341.279862-341.255948 2a -341.219934-341.204252-341.097176-341.083085 Molecule\Method B3LYP/6-31G(d) B3LYP/cc-pVTZ G3 B3LYP/6-311+G(3df,2p) 2b -380.418825-380.565447-380.267619-380.563142 MeKetene -191.851760-191.930592-191.770590-191.928233 MeKetene + CO 2-380.421108-380.579468-380.268264-380.576911 2b -380.373729-380.525302-380.523624 Molecule\Method B3LYP/6-31G(d) B3LYP/cc-pVTZ G3 B3LYP/6-311+G(3df,2p) 2c -419.708158-419.868864-419.544251-419.865735 Me 2 Ketene -231.139278-231.231426-231.041672-231.227986 Me 2 Ketene + CO 2-419.708626-419.880302-419.539346-419.876664 2c -419.660574-419.825530-419.823048 a ZPE-uncorrected. b PCM(solvent=chloroform).

S3 Table S3. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the HF/6-31G level. C 0.000268 1.144885 0.000000 H -0.888789 1.760360 0.000000 H 0.889956 1.759480 0.000000 O -0.000253-0.947822 0.000000 O -0.000027-0.174043 2.146164 O -0.000027-0.174043-2.146164 C -0.000027-0.001825-0.993920 C -0.000027-0.001825 0.993920 Table S4. Optimized Cartesian coordinates (Å) of ketene (5a) at the HF/6-31G level. C 0.000000 0.000000 0.106125 O 0.000000 0.000000 1.251094 C 0.000000 0.000000-1.199529 H 0.000000 0.933769-1.724161 H 0.000000-0.933769-1.724161 Table S5. Optimized Cartesian coordinates (Å) of CO 2 at the HF/6-31G level. O 0.000000 0.000000 1.143226 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.143226 Table S6. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the HF/6-31G level. C 0.081829 1.044596 0.000028 H 0.054803 1.658421-0.891958 H 0.054811 1.658356 0.892059 O 2.285354-0.241212-0.000031 C 1.304126 0.265621 0.000003 O -2.163910 0.192644-0.000036 C -1.028848-0.166157 0.000004

S4 O -0.402976-1.224074 0.000029 Table S7. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the MP2/6-31G(d) level. C -0.003847 1.144148 0.000000 H -0.901551 1.766351 0.000000 H 0.890429 1.771317 0.000000 O 0.004140-0.994228 0.000000 C 0.000039 0.006610 1.006937 O 0.000039-0.158004 2.192108 C 0.000039 0.006610-1.006937 O 0.000039-0.158004-2.192108 Table S8. Optimized Cartesian coordinates (Å) of ketene (5a) at the MP2/6-31G(d) level. C 0.000000 0.000000 0.099014 O 0.000000 0.000000 1.280109 C 0.000000 0.000000-1.220977 H 0.000000 0.939401-1.754545 H 0.000000-0.939401-1.754545 Table S9. Optimized Cartesian coordinates (Å) of CO 2 at the MP2/6-31G(d) level. O 0.000000 0.000000 1.179704 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.179704 Table S10. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the MP2/6-31G(d) level. C 0.162483 1.116568 0.314023 H -0.009814 1.245238 1.381435 H 0.233884 2.057772-0.235094 O -0.363191-1.161260 0.403924

S5 C 1.211170 0.226452 0.040320 O 2.158559-0.290709-0.382819 C -1.014315-0.158284 0.007974 O -2.092881 0.150540-0.436136 Table S11. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the MP2/cc-pVDZ level. C 0.000445 1.152572 0.000000 H -0.903624 1.778474 0.000000 H 0.905138 1.777593 0.000000 O -0.000419-0.990622 0.000000 C -0.000030 0.005351 1.008401 O -0.000030-0.163171 2.189385 C -0.000030 0.005351-1.008401 O -0.000030-0.163171-2.189385 Table S12. Optimized Cartesian coordinates (Å) of ketene (5a) at the MP2/cc-pVDZ level. C 0.000000 0.000000 0.104551 O 0.000000 0.000000 1.280409 C 0.000000 0.000000-1.226897 H 0.000000 0.952940-1.754599 H 0.000000-0.952940-1.754599 Table S13. Optimized Cartesian coordinates (Å) of CO 2 at the MP2/cc-pVDZ level. O 0.000000 0.000000 1.177084 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.177084 Table S14. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the MP2/cc-pVDZ level. C 1.198906 0.207632 0.038917

S6 O 2.148374-0.311056-0.374066 C 0.176910 1.151332 0.282792 H -0.023740 1.266244 1.354602 H 0.311808 2.102085-0.254530 O -2.112500 0.117966-0.419442 C -1.025387-0.159071 0.004258 O -0.334704-1.127870 0.411524 Table S15. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the MP2/aug-ccpVDZ level. C 0.001216 1.149550 0.000000 H -0.903156 1.772363 0.000000 H 0.907247 1.769998 0.000000 O -0.001159-1.000533 0.000000 C -0.000075 0.009138 1.013760 O -0.000075-0.159066 2.198686 C -0.000075 0.009138-1.013760 O -0.000075-0.159066-2.198686 Table S16. Optimized Cartesian coordinates (Å) of ketene (5a) at the MP2/aug-cc-pVDZ level. C 0.000000 0.000000 0.104323 O 0.000000 0.000000 1.282901 C 0.000000 0.000000-1.229667 H 0.000000 0.952285-1.755573 H 0.000000-0.952285-1.755573 Table S17. Optimized Cartesian coordinates (Å) of CO 2 at the MP2/aug-cc-pVDZ level. O 0.000000 0.000000 1.180223 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.180223 Table S18. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of

S7 malonic anhydride (2a) at the MP2/aug-cc-pVDZ level. C 0.129171 1.097082 0.291401 H 0.164494 2.029948-0.289100 C 1.238698 0.250983 0.034173 H -0.001807 1.250047 1.370629 O 2.196297-0.272527-0.340734 O -2.113174 0.162599-0.392816 C -1.011617-0.156595 0.008707 O -0.370647-1.193673 0.347648 Table S19. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the B3LYP/6-31G(d) level. C 0.000241 1.150157 0.000000 H -0.894894 1.777625 0.000000 H 0.896918 1.775742 0.000000 O -0.001150-0.982069 0.000000 O 0.000205-0.166225 2.184188 O 0.000205-0.166225-2.184188 C 0.000205 0.005154-1.009459 C 0.000205 0.005154 1.009459 Table S20. Optimized Cartesian coordinates (Å) of ketene (5a) at the B3LYP/6-31G(d) level. C 0.000000 0.000000 0.101129 O 0.000000 0.000000 1.272504 C 0.000000 0.000000-1.213710 H 0.000000 0.939296-1.752276 H 0.000000-0.939296-1.752276 Table S21. Optimized Cartesian coordinates (Å) of CO 2 at the B3LYP/6-31G(d) level. O 0.000000 0.000000 1.169167 C 0.000000 0.000000 0.000000

S8 O 0.000000 0.000000-1.169167 Table S22. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the B3LYP/6-31G(d) level. C 0.178489 1.122136 0.284077 H 0.273927 2.060485-0.269763 C 1.223641 0.217697 0.044340 H -0.013453 1.274115 1.346624 O 2.167842-0.299842-0.357819 O -2.109225 0.151894-0.403757 C -1.027580-0.158711 0.003053 O -0.372088-1.154719 0.378365 Table S23. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the B3LYP/cc-pVTZ level. C 0.001192 1.144825 0.000000 H -0.890169 1.768599 0.000000 H 0.893674 1.767058 0.000000 O -0.001321-0.980528 0.000000 C -0.000003 0.006132 1.008103 O -0.000003-0.164623 2.174166 C -0.000003 0.006132-1.008103 O -0.000003-0.164623-2.174166 Table S24. Optimized Cartesian coordinates (Å) of ketene (5a) at the B3LYP/cc-pVTZ level. C 0.000000 0.000000 0.102046 O 0.000000 0.000000 1.262388 C 0.000000 0.000000-1.205672 H 0.000000 0.937000-1.738672 H 0.000000-0.937000-1.738672 Table S25. Optimized Cartesian coordinates (Å) of CO 2 at the B3LYP/cc-pVTZ level.

S9 O 0.000000 0.000000 1.160338 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.160338 Table S26. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the B3LYP/cc-pVTZ level. C 0.165466 1.110876 0.261609 H 0.252378 2.036449-0.305720 C 1.219024 0.216360 0.038864 H -0.011263 1.280089 1.320383 O 2.171091-0.286791-0.327834 O -2.111962 0.147023-0.370060 C -1.021592-0.153364 0.002697 O -0.361441-1.155203 0.343683 Table S27. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the G3 level. C 0.000058 1.142596 0.000000 H -0.895450 1.768085 0.000000 H 0.895637 1.767985 0.000000 O -0.000057-0.992900 0.000000 C -0.000003-0.158006 2.189813 O -0.000003-0.158006-2.189813 C -0.000003 0.006637-1.005707 O -0.000003 0.006637 1.005707 Table S28. Optimized Cartesian coordinates (Å) of ketene (5a) at the G3 level. C 0.000000 0.000000 0.098880 O 0.000000 0.000000 1.278769 C 0.000000 0.000000-1.219310 H 0.000000 0.938858-1.753790 H 0.000000-0.938858-1.753790

S10 Table S29. Optimized Cartesian coordinates (Å) of CO 2 at the G3 level. O 0.000000 0.000000 1.178670 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.178670 Table S30. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the B3LYP/6-311+G(3df,2p) level. C 0.000723 1.144974 0.000000 H -0.890983 1.768475 0.000000 H 0.893093 1.767510 0.000000 O -0.000589-0.979608 0.000000 C -0.000062 0.006088 1.007811 O -0.000062-0.165126 2.172864 C -0.000062 0.006088-1.007811 O -0.000062-0.165126-2.172864 Table S31. Optimized Cartesian coordinates (Å) of ketene (5a) at the B3LYP/6-311+G(3df,2p) level. C 0.000000 0.000000 0.102706 O 0.000000 0.000000 1.261574 C 0.000000 0.000000-1.205229 H 0.000000 0.936839-1.738722 H 0.000000-0.936839-1.738722 Table S32. Optimized Cartesian coordinates (Å) of CO 2 at the B3LYP/6-311+G(3df,2p) level. O 0.000000 0.000000 1.159067 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.159067 Table S33. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of

S11 malonic anhydride (2a) at the B3LYP/6-311+G(3df,2p) level. C 0.154056 1.096259 0.258347 H 0.001711 1.281779 1.319069 H 0.217511 2.015588-0.322989 O 2.184676-0.278054-0.313798 C 1.229090 0.223670 0.034602 O -0.372804-1.167787 0.324457 C -1.018578-0.150436 0.004269 O -2.112701 0.156550-0.358082 Table S34. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the UBPW91/6-311+G(3df,2p) level. C 0.000051 1.146814 0.000000 H -0.896217 1.776493 0.000000 H 0.896352 1.776443 0.000000 O -0.000053-0.994735 0.000000 C -0.000001 0.008819 1.013153 O -0.000001-0.161360 2.188282 C -0.000001 0.008819-1.013153 O -0.000001-0.161360-2.188282 Table S35. Optimized Cartesian coordinates (Å) of ketene (5a) at the UBPW91/6-311+G(3df,2p) level. C 0.000000 0.000000 0.101569 O 0.000000 0.000000 1.271336 C 0.000000 0.000000-1.212861 H 0.000000 0.942062-1.751467 H 0.000000-0.942062-1.751467 Table S36. Optimized Cartesian coordinates (Å) of CO 2 at the UBPW91/6-311+G(3df,2p) level. O 0.000000 0.000000 1.170053

S12 C 0.000000 0.000000 0.000000 O 0.000000 0.000000-1.170053 Table S37. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the UBPW91/6-311+G(3df,2p) level. C 1.218707 0.213829 0.047642 H -0.030396 1.257530 1.348120 H 0.283402 2.069052-0.257755 O 2.167761-0.296897-0.358861 C 0.184389 1.121271 0.285117 O -2.108775 0.156472-0.403553 C -1.023684-0.155331 0.001090 O -0.375171-1.160224 0.375732 Table S38. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the B3LYP/6-31G(d) level with PCM (solvent=chloroform). C 0.000145 1.152087 0.000000 H -0.898007 1.778098 0.000000 H 0.898505 1.777805 0.000000 O -0.000143-0.980616 0.000000 O -0.000008-0.171537 2.181977 O -0.000008-0.171537-2.181977 C -0.000008 0.010091 1.006505 C -0.000008 0.010091-1.006505 Table S39. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the B3LYP/6-31G(d) level with PCM (solvent=chloroform). C 0.115534 1.048620 0.195390 H 0.109416 1.908190-0.487183 C 1.284210 0.263325 0.018306 H 0.050366 1.383165 1.239613 O 2.269137-0.257196-0.215117

S13 O -2.152062 0.199252-0.254200 C -1.012170-0.139309 0.006090 O -0.427728-1.232952 0.210424 Table S40. Optimized Cartesian coordinates (Å) of malonic anhydride (2a) at the UBPW91/6-31G(d) level with PCM (solvent=chloroform). C 0.000084 1.153422 0.000000 H -0.902378 1.785730 0.000000 H 0.902648 1.785584 0.000000 O -0.000075-0.996544 0.000000 O -0.000006 0.012697 1.011683 O -0.000006-0.166991 2.197181 C -0.000006 0.012697-1.011683 C -0.000006-0.166991-2.197181 Table S41. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of malonic anhydride (2a) at the UBPW91/6-31G(d) level with PCM (solvent=chloroform). C -0.437732-1.227338 0.296706 H -1.014382-0.141938 0.005123 C -2.130300 0.206207-0.353927 H 1.272251 0.254785 0.037177 O 2.244426-0.270564-0.303683 O 0.142515 1.063810 0.268754 C 0.022773 1.277766 1.344775 O 0.163769 1.995861-0.323870 Table S42. Optimized Cartesian coordinates (Å) of methylmalonic anhydride (2b) at the B3LYP/6-31G(d) level. C -0.269122-0.294990 1.007651 O -0.269122-0.470099 2.183044 C -0.051471 0.835374 0.000000 H -0.886307 1.546348 0.000000

S14 C 1.294418 1.558223 0.000000 H 1.379027 2.190996-0.888361 H 1.379027 2.190996 0.888361 H 2.128947 0.850369 0.000000 O -0.269122-0.470099-2.183044 C -0.269122-0.294990-1.007651 O -0.490371-1.259854 0.000000 Table S43. Optimized Cartesian coordinates (Å) of methylketene (5b) at the B3LYP/6-31G(d) level. C 0.766080 0.128134-0.000001 O 1.871894-0.268568 0.000001 C -0.472871 0.571337-0.000003 H -0.595231 1.650828 0.000009 C -1.686798-0.332826 0.000001 H -2.309269-0.156847-0.885915 H -1.399860-1.388458-0.000002 H -2.309261-0.156849 0.885922 Table S44. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of methylmalonic anhydride (2b) at the B3LYP/6-31G(d) level. C 1.186798-0.314479 0.116608 O 2.073866-0.849051-0.382552 C 0.208845 0.623477 0.493891 H 0.018686 0.572701 1.568394 C 0.317465 2.033588-0.072808 H 0.708869 2.031924-1.093779 H -0.706671 2.421330-0.109783 H 0.931885 2.695500 0.544670 O -2.091408 0.053029-0.380851 C -1.073723-0.457571 0.009880 O -0.581093-1.582921 0.239038

S15 Table S45. Optimized Cartesian coordinates (Å) of methylmalonic anhydride (2b) at the B3LYP/cc-pVTZ level. C -0.269122-0.294990 1.007651 O -0.269122-0.470099 2.183044 C -0.051471 0.835374 0.000000 H -0.886307 1.546348 0.000000 C 1.294418 1.558223 0.000000 H 1.379027 2.190996-0.888361 H 1.379027 2.190996 0.888361 H 2.128947 0.850369 0.000000 O -0.269122-0.470099-2.183044 C -0.269122-0.294990-1.007651 O -0.490371-1.259854 0.000000 Table S46. Optimized Cartesian coordinates (Å) of methylketene (5b) at the B3LYP/cc-pVTZ level. C 0.766080 0.128134-0.000001 O 1.871894-0.268568 0.000001 C -0.472871 0.571337-0.000003 H -0.595231 1.650828 0.000009 C -1.686798-0.332826 0.000001 H -2.309269-0.156847-0.885915 H -1.399860-1.388458-0.000002 H -2.309261-0.156849 0.885922 Table S47. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of methylmalonic anhydride (2b) at the B3LYP/cc-pVTZ level. C 1.186798-0.314479 0.116608 O 2.073866-0.849051-0.382552 C 0.208845 0.623477 0.493891 H 0.018686 0.572701 1.568394 C 0.317465 2.033588-0.072808

S16 H 0.708869 2.031924-1.093779 H -0.706671 2.421330-0.109783 H 0.931885 2.695500 0.544670 O -2.091408 0.053029-0.380851 C -1.073723-0.457571 0.009880 O -0.581093-1.582921 0.239038 Table S48. Optimized Cartesian coordinates (Å) of methylketene (5b) at the G3 level. C 0.766080 0.128134-0.000001 O 1.871894-0.268568 0.000001 C -0.472871 0.571337-0.000003 H -0.595231 1.650828 0.000009 C -1.686798-0.332826 0.000001 H -2.309269-0.156847-0.885915 H -1.399860-1.388458-0.000002 H -2.309261-0.156849 0.885922 Table S49. Optimized Cartesian coordinates (Å) of methylmalonic anhydride (2b) at the G3 level. C -0.269122-0.294990 1.007651 O -0.269122-0.470099 2.183044 C -0.051471 0.835374 0.000000 H -0.886307 1.546348 0.000000 C 1.294418 1.558223 0.000000 H 1.379027 2.190996-0.888361 H 1.379027 2.190996 0.888361 H 2.128947 0.850369 0.000000 O -0.269122-0.470099-2.183044 C -0.269122-0.294990-1.007651 O -0.490371-1.259854 0.000000 Table S50. Optimized Cartesian coordinates (Å) of methylmalonic anhydride (2b) at the B3LYP/6-311+G(3df,2p) level.

S17 C -0.269122-0.294990 1.007651 O -0.269122-0.470099 2.183044 C -0.051471 0.835374 0.000000 H -0.886307 1.546348 0.000000 C 1.294418 1.558223 0.000000 H 1.379027 2.190996-0.888361 H 1.379027 2.190996 0.888361 H 2.128947 0.850369 0.000000 O -0.269122-0.470099-2.183044 C -0.269122-0.294990-1.007651 O -0.490371-1.259854 0.000000 Table S51. Optimized Cartesian coordinates (Å) of methylketene (5b) at the B3LYP/6-311+G(3df,2p) level. C 0.766080 0.128134-0.000001 O 1.871894-0.268568 0.000001 C -0.472871 0.571337-0.000003 H -0.595231 1.650828 0.000009 C -1.686798-0.332826 0.000001 H -2.309269-0.156847-0.885915 H -1.399860-1.388458-0.000002 H -2.309261-0.156849 0.885922 Table S52. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of methylmalonic anhydride (2b) at the B3LYP/6-311+G(3df,2p) level. C 1.186798-0.314479 0.116608 O 2.073866-0.849051-0.382552 C 0.208845 0.623477 0.493891 H 0.018686 0.572701 1.568394 C 0.317465 2.033588-0.072808 H 0.708869 2.031924-1.093779 H -0.706671 2.421330-0.109783 H 0.931885 2.695500 0.544670

S18 O -2.091408 0.053029-0.380851 C -1.073723-0.457571 0.009880 O -0.581093-1.582921 0.239038 Table S53. Optimized Cartesian coordinates (Å) of dimethylmalonic anhydride (2c) at the B3LYP/6-31G(d) level. C -0.000019 0.596097 0.000000 O 0.000050-1.552150 0.000000 O 0.000011-0.733702 2.183547 O 0.000011-0.733702-2.183547 C 0.000011-0.561484-1.006885 C 0.000011-0.561484 1.006885 C 1.276741 1.444528 0.000000 H 1.297564 2.083083-0.888956 H 1.297564 2.083083 0.888956 H 2.179721 0.825733 0.000000 C -1.276802 1.444478 0.000000 H -1.297650 2.083036 0.888955 H -1.297650 2.083036-0.888955 H -2.179764 0.825656 0.000000 Table S54. Optimized Cartesian coordinates (Å) of dimethylketene (5c) at the B3LYP/6-31G(d) level. C 0.000000 0.000000 0.978886 O 0.000000 0.000000 2.156207 C 0.000000 0.000000-0.338033 C 0.000000 1.307836-1.102149 H 0.885543 1.380156-1.748392 H -0.885539 1.380155-1.748399 H -0.000004 2.177082-0.437703 C 0.000000-1.307836-1.102149 H 0.885539-1.380155-1.748399 H 0.000004-2.177082-0.437703

S19 H -0.885543-1.380156-1.748392 Table S55. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of dimethylmalonic anhydride (2c) at the B3LYP/6-31G(d) level. C 0.148509 0.585471 0.087771 O -0.419216-1.709870 0.359553 O -2.041018-0.390903-0.615858 O 2.199665-0.855502-0.342972 C 1.249153-0.293258-0.028983 C -0.982844-0.702831-0.120686 C 0.133750 1.689821-0.971986 H 0.516827 1.347024-1.937422 H -0.922360 1.948606-1.108297 H 0.690339 2.579185-0.658637 C -0.136664 1.080091 1.520299 H -1.139465 1.516849 1.520879 H -0.114934 0.254754 2.235001 H 0.582721 1.848021 1.824201 Table S56. Optimized Cartesian coordinates (Å) of dimethylmalonic anhydride (2c) at the B3LYP/cc-pVTZ level. C 0.000492-0.559084 1.005492 O 0.000492-0.731134 2.173792 O -0.000168 0.595147 0.000000 O 1.271572 1.440751 0.000000 C 1.291748 2.076730-0.884663 C 1.291748 2.076730 0.884663 C 2.170839 0.825571 0.000000 H 0.000492-0.731134-2.173792 H 0.000492-0.559084-1.005492 H 0.001358-1.547801 0.000000 C -1.273993 1.437793 0.000000 H -1.295761 2.073871 0.884606

S20 H -1.295761 2.073871-0.884606 H -2.171908 0.820634 0.000000 Table S57. Optimized Cartesian coordinates (Å) of dimethylketene (5c) at the B3LYP/cc-pVTZ level. C 0.000000 0.000000 0.974735 O 0.000000 0.000000 2.142309 C 0.000000 0.000000-0.334150 C 0.000000 1.303984-1.096517 H 0.882008 1.375248-1.739103 H -0.882008 1.375248-1.739103 H 0.000000 2.167860-0.433683 C 0.000000-1.303984-1.096517 H 0.000000-2.167860-0.433683 H -0.882008-1.375248-1.739103 H 0.882008-1.375248-1.739103 Table S58. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of dimethylmalonic anhydride (2c) at the B3LYP/cc-pVTZ level. C 1.241061-0.308992-0.037571 O 2.189559-0.866855-0.319172 O 0.147918 0.574228 0.077141 O 0.144368 1.668227-0.988961 C 0.484154 1.303275-1.956806 C 0.743265 2.532068-0.700214 C -0.898226 1.970223-1.097519 H -0.430437-1.710255 0.318435 H -0.993391-0.684959-0.110845 H -2.064391-0.362961-0.555071 C -0.099289 1.091712 1.505304 H -1.087640 1.548234 1.516696 H 0.639124 1.843945 1.783649 H -0.082527 0.281524 2.230260

S21 Table S59. Optimized Cartesian coordinates (Å) of dimethylmalonic anhydride (2c) at the G3 level. C -0.000019 0.596097 0.000000 O 0.000050-1.552150 0.000000 O 0.000011-0.733702 2.183547 O 0.000011-0.733702-2.183547 C 0.000011-0.561484-1.006885 C 0.000011-0.561484 1.006885 C 1.276741 1.444528 0.000000 H 1.297564 2.083083-0.888956 H 1.297564 2.083083 0.888956 H 2.179721 0.825733 0.000000 C -1.276802 1.444478 0.000000 H -1.297650 2.083036 0.888955 H -1.297650 2.083036-0.888955 H -2.179764 0.825656 0.000000 Table S60. Optimized Cartesian coordinates (Å) of dimethylketene (5c) at the G3 level. C 0.000000 0.000000 0.977231 O 0.000000 0.000000 2.162828 C 0.000000 0.000000-0.342743 C 0.000000 1.300376-1.104051 H 0.885059 1.368815-1.746501 H -0.885059 1.368815-1.746501 H 0.000000 2.166618-0.437467 C 0.000000-1.300376-1.104051 H 0.000000-2.166618-0.437467 H -0.885059-1.368815-1.746501 H 0.885059-1.368815-1.746501 Table S61. Optimized Cartesian coordinates (Å) of dimethylmalonic anhydride (2c) at the B3LYP/6-311+G(3df,2p) level.

S22 C 0.000013-0.558883 1.005602 O 0.000013-0.733245 2.172280 O -0.000019 0.595333 0.000000 O 1.273485 1.440033 0.000000 C 1.293520 2.075967-0.884702 C 1.293520 2.075967 0.884702 C 2.172611 0.824479 0.000000 H 0.000013-0.733245-2.172280 H 0.000013-0.558883-1.005602 H 0.000055-1.545776 0.000000 C -1.273562 1.439984 0.000000 H -1.293619 2.075911 0.884705 H -1.293619 2.075911-0.884705 H -2.172655 0.824382 0.000000 Table S62. Optimized Cartesian coordinates (Å) of dimethylketene (5c) at the B3LYP/6-311+G(3df,2p) level. C 0.000000 0.000000 0.975121 O 0.000000 0.000000 2.141679 C 0.000000 0.000000-0.333635 C 0.000000 1.304217-1.096524 H 0.882102 1.375058-1.738696 H -0.882102 1.375058-1.738696 H 0.000000 2.168865-0.434638 C 0.000000-1.304217-1.096524 H 0.000000-2.168865-0.434638 H -0.882102-1.375058-1.738696 H 0.882102-1.375058-1.738696 Table S63. Optimized Cartesian coordinates (Å) of transition-state structure for decomposition of dimethylmalonic anhydride (2c) at the B3LYP/6-311+G(3df,2p) level. C 0.143157 0.565937 0.072395

S23 O 2.199065-0.860204-0.315185 O -2.076436-0.353032-0.521672 O -0.436996-1.718296 0.300293 C 1.247869-0.305365-0.047829 C -0.996886-0.681772-0.102725 C 0.127062 1.656826-0.999211 H 0.423002 1.279298-1.976559 H -0.910935 1.983186-1.071582 H 0.756606 2.506608-0.735267 C -0.074205 1.095651 1.502847 H -1.058309 1.560612 1.526149 H -0.052417 0.291234 2.234181 H 0.674999 1.843664 1.762725