Testing supersymmetric neutrino mass models at the LHC

Similar documents
Testing supersymmetric neutrino mass models at the LHC

Supersymmetric Seesaws

2 Induced LFV in the SUSY see-saw framework

University College London. Frank Deppisch. University College London

Neutrino Mixing from SUSY breaking

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

U(1) Gauge Extensions of the Standard Model

Physics beyond the Standard Model: Neutrinos & Dark matter

Models of New Physics for Dark Matter

Neutrino Masses in the Lepton Number Violating MSSM

Updating the Status of Neutrino Physics

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

SUSY at Accelerators (other than the LHC)

Yukawa and Gauge-Yukawa Unification

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

SUSY at Accelerators (other than the LHC)

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Leptogenesis and the Flavour Structure of the Seesaw

Right-handed SneutrinoCosmology and Hadron Collider Signature

Searches for Beyond SM Physics with ATLAS and CMS

Revisiting gravitino dark matter in thermal leptogenesis

Constrained SUSY seesaws with a 125 GeV Higgs

Split Supersymmetry A Model Building Approach

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Testing leptogenesis at the LHC

Beyond the SM: SUSY. Marina Cobal University of Udine

Searches for Lepton Flavor Violation. Update on BaBar Searches for Lepton Flavor Violation using Tau Decays

Lecture 18 - Beyond the Standard Model

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

SUSY GUTs, DM and the LHC

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Lepton flavour violation

arxiv: v1 [hep-ph] 16 Mar 2017

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Zero Textures of the Neutrino Mass Matrix from Cyclic Family Symmetry

BABAR results on Lepton Flavour Violating (LFV) searches for τ lepton + pseudoscalar mesons & Combination of BABAR and BELLE LFV limits

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Search for R-parity violating Supersymmetry. III Phys. Inst. A, RWTH Aachen

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

arxiv:hep-ph/ v1 5 Oct 2005

University College London. Frank Deppisch. University College London

Searches for Supersymmetry at ATLAS

arxiv: v1 [hep-ph] 29 Dec 2017 SUSY (ATLAS) André Sopczak on behalf of the ATLAS Collaboration

Stau Pair Production At The ILC Tohoku University Senior Presentation Tran Vuong Tung

BSM Higgs Searches at ATLAS

Dark matter, Neutrino masses in MSSM after sattelite experiments

Phenomenology of the Higgs Triplet Model at the LHC

RG evolution of neutrino parameters

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Higgs Mass Bounds in the Light of Neutrino Oscillation

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

LHC Phenomenology of SUSY multi-step GUTs

arxiv: v2 [hep-ph] 9 Jul 2013

Status of Supersymmetric Models

Oscillating neutrinos and µ e,γ

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

Lepton-flavor violation in tau-lepton decay and the related topics

Moritz McGarrie with S.Abel (IPPP, Durham)!

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry V. Hitoshi Murayama (Berkeley) PiTP 05, IAS

SUSY models of neutrino masses and mixings: the left-right connection

Upper Bound on the W R Mass in Automatically R-conserving SUSY Models

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Probing the Majorana nature in radiative seesaw models at collider experiments

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

LHC signals for SUSY discovery and measurements

J. C. Vasquez CCTVal & USM

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

On Minimal Models with Light Sterile Neutrinos

Searching supersymmetry at the LHCb with displaced vertices

Physics 662. Particle Physics Phenomenology. February 21, Physics 662, lecture 13 1

Higgs Bosons Phenomenology in the Higgs Triplet Model

arxiv:hep-ph/ v1 30 Jul 2003

Probing Seesaw and Leptonic CPV

arxiv:hep-ph/ v1 12 Apr 2000 K.S. Babu 1 and S.M. Barr 2

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Search for Supersymmetry at LHC

CLFV beyond minimal SUSY

Neutrino Masses in the MSSM

Theoretical Review on Lepton Universality and LFV

IPMU, the University of Tokyo, Kashiwa-no-Ha Kashiwa City, Chiba , JAPAN (Work Address)

Duality in left-right symmetric seesaw

Gauged Flavor Symmetries

Computer tools in particle physics

Lepton flavour violation: a phenomenological overview. Ana M. Teixeira

University College London. Frank Deppisch. University College London

Search for H ± and H ±± to other states than τ had ν in ATLAS

Probing the Connection Between Supersymmetry and Dark Matter

Theoretical Developments Beyond the Standard Model

Testing Origin of Neutrino Mass at the LHC

Search for Supersymmetry at CMS in all-hadronic final states

The doubly charged scalar:

SUSY FCNC at the LHC

Discovery Physics at the Large Hadron Collider

arxiv: v2 [hep-ph] 28 Nov 2008

Transcription:

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. /28 Testing supersymmetric neutrino mass models at the LHC Werner Porod Universität Würzburg

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 2/28 Overview Lepton flavour violation Signals in models with Dirac neutrinos Majorana neutrinos Neutrino masses via R-parity violation Conclusions

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 3/28 Lepton flavour violation, experimental data Neutrinos: tiny masses m 2 atm 3 0 3 ev 2 m 2 sol 7 0 5 ev 2 3 H decay: m ν < 2 ev + large mixings tan θ atm 2 tan θ sol 2 0.4 U e3 2 < 0.05 strong bounds for charged leptons BR(µ eγ) <.2 0 BR(τ eγ) <. 0 7 BR(τ lll ) < O(0 8 ) (l, l = e, µ) BR(µ e e + e ) < 0 2 BR(τ µγ) < 6.8 0 8 d e < 0 27 e cm, d µ <.5 0 8 e cm, d τ <.5 0 6 e cm SUSY contributions to anomalous magnetic moments a e 0 2, 0 a µ 43 0 0, a τ 0.058

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 4/28 Dirac neutrinos analog to leptons or quarks Y ν H u ν L ν R Y ν v u ν L ν R = m ν ν L ν R requires Y ν Y e no impact for future collider experiments Exception: ν R is LSP and thus a candidate for dark matter long lived NLSP, e.g. t l + b ν R Remark: m νr hardly runs e.g. m νr m 0 in msugra m νr 0 in GMSB S. Gopalakrishna, A. de Gouvea and W. P., JHEP 06 (2006) 050

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 5/28 Majorana neutrinos: Seesaw mechanism Neutrino masses due to f Λ (H ul)(h u L) Seesaw I: postulates very heavy ν R : m ν (Y T ν v u)m R (Y νv u ) ˆm ν = U T m ν U expect: 0 7 GeV < M Ri < 0 4 GeV. much more parameters than observables in ν-sector P. Minkowski, Phys. Lett. B 67 (977) 42; T. Yanagida, KEK-report 79-8 (979); M. Gell-Mann, P. Ramond, R. Slansky, in Supergravity, North Holland (979), p. 35; R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 92 (980).

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 6/28 Seesaw I Superpotential W = Y ji e b L i b Hd b E c j + Y ji ν b L i b Hu b N c j + M i b N c i b N c i convenient parameterization : Y ν = 2 i q v u ˆM R R p ˆm ν U RGE running with msugra boundaries: ( M 2 L) ij = 8π 2 (3m2 0 + A 2 0)(Y ν LY ν ) ij U iα U jβ mα mβ R kα R kβm Rk log ( A l ) ij = 3 8π 2 A 0Y li (Y ν LY ν) ij ( M 2 Ẽ ) ij = 0 L kl = log MX M Rk δ kl M X M Rk! J. A. Casas and A. Ibarra, Nucl. Phys. B68, 7 (200), [hep-ph/003065].

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 7/28 Seesaw I ( M 2 L) ij and ( A l ) ij induce l j l i γ, l i l + k l r lj l i χ 0 s χ 0 s l i lk Neglecting L-R mixing: Br(l i l j γ) α 3 m 5 l i (δm 2 L ) ij 2 Br( τ 2 e + χ 0 ) Br( τ 2 µ + χ 0 ) em 8 ( M 2 L) 3 ( M 2 L) 23 2 tan 2 β Moreover, in most of the parameter space Br(l i 3l j ) Br(l i l j + γ) α 3π log( m2 l i m 2 ) l 4 j

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 8/28 Seesaw I take all parameters real U = U TBM = 0 B @ q 2 3 3 0 3 2 6 2 6 3 C A R = 0 0 0 B @ 0 0C A 0 0 Use 2-loop RGEs and -loop corrections including flavour effects

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 9/28 Seesaw I 3 l j ) Br(l l γ),br(l i j i 0 0 0 0 0 0 0 0 0 0 0 0 0-6 -7-8 -9-0 - -2-3 -4-5 -6-7 -8 m ν =0 ev 0 0 Br(τ µ γ) Br(µ e γ) Br(τ e γ) 2 0 4 0 Br(τ 3 µ ) Br(µ 3 e ) Br(τ 3 e ) 0 M (GeV) 6 χ) Br(τ e χ), Br(τ µ - 0-2 0-3 0-4 0-5 0 0-6 0 0 m ν =0 ev Br( τ e χ) Br( τ µ χ) 0 2 0 3 0 4 0 Excluded by Br(µ e γ ) 0 5 0 M (GeV) 6 degenerate ν R SPSa (M 0 = 70 GeV, M /2 = 250 GeV, A 0 = 300 GeV, tan β = 0, µ > 0) M. Hirsch et al. Phys. Rev. D 78 (2008) 03006

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 0/28 Seesaw I χ) Br(τ e χ), Br(τ µ - 0-2 0-3 0-4 0-5 0 m ν =0 ev Br( τ e χ) Br( τ µ χ) Excluded by Br(µ e γ ) χ) Br(τ e χ), Br(τ µ - 0-2 0-3 0-4 0-5 0 m ν =0 ev Br( τ e χ) Br( τ µ χ) Excluded by Br(µ e γ ) 0-6 0 0 0 2 0 3 0 4 0 0 5 0 M (GeV) 6 0-6 0 0 0 2 0 3 0 4 0 0 5 M 2 0 (GeV) 6 degenerate ν R hierarchical ν R (M = M 3 = 0 0 GeV) SPS3 (M 0 = 90 GeV, M /2 = 400 GeV, A 0 = 0 GeV, tan β = 0, µ > 0) M. Hirsch et al. Phys. Rev. D 78 (2008) 03006

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. /28 Seesaw I Texture models, hierarchical ν R real textures complexification of one texture SPSa (M 0 = 70 GeV, M /2 = 250 GeV, A 0 = 300 GeV, tan β = 0, µ > 0) F. Deppisch, F. Plentinger, W. P., R. Rückl, G. Seidl, in preparation

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 2/28 Seesaw II include SU(2) Triplet Higgs W = W MSSM + 2 Y ij T b L i b T b Lj + λ b Hd b T b Hd + λ 2 b Hu b T2 b Hu + M T b T b T2 m ν = v2 u 2 λ 2 M T Y T M T λ 2 0 5 GeV 0.05 ev m ν Gauge coupling unification use 5 5 = S + T + Z S (6,, 2 3 ), T (,3,), Z (3,2, 6 ) W + 2 (Y T LT L + Y S d c Sd c ) + Y Z d c ZL + Y d d c QH d + Y u u c QH u + Y e e c LH d 2 (λ H d T H d + λ 2 H u T 2 H u ) + M T T T 2 + M Z Z Z 2 + M S S S 2 + µh d H u

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 3/28 Seesaw II with 5-plets 0 (m2 Q m 2 Ẽ )/M2, 0 (m2 D m 2 L)/M 2 (m 2 L m 2 Ẽ )/M2, (m 2 Q m 2 Ũ )/M2 5 3 2.5 0 0 2 0 3 0 4 0 5 0 6 (b,b 2,b 3 ) MSSM = ( 33 5,, 3) (b,b 2,b 3 ) T +T 2 = ( 8 5,4,0) (b,b 2,b 3 ) 5+5 = (7,7,7) Seesaw I ( msugra) m 2 Q m2 E M 2 m 2 Q m2 U M 2 20, m2 D m2 L M 2.6, m2 D m2 L M 2 8.55 M 5 = M T [GeV] M. Hirsch, S. Kaneko, W. P., Phys. Rev. D 78 (2008) 093004.

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 4/28 Seesaw II with 5-plets 0 4 Br li lj Γ 0 6 0 8 0 0 0 2 0 4 0 6 Br Τ ΜΓ Br Μ eγ Br Τ eγ Br Τ 2 Χ e, Br Τ 2 Χ Μ 0 0 2 0 3 0 4 0 5 0 6 0 7 Br Τ 2 Χ e Br Τ 2 Χ Μ Excluded by Br Μ eγ 0 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV 0 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV λ = λ 2 = 0.5 SPS3 (M 0 = 90 GeV, M /2 = 400 GeV, A 0 = 0 GeV, tan β = 0, µ > 0) M. Hirsch, S. Kaneko, W. P., Phys. Rev. D 78 (2008) 093004.

~q ~ 0 2 LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 5/28 Masses at LHC G. Polesello 500 q l near l far Events/ GeV/00 fb - 000 500 ~ l R ~ 0 0 0 20 40 60 80 00 m(ll) (GeV) 5 kinematical observables depending on 4 SUSY masses e.g.: m(ll) = 77.02 ± 0.05 ± 0.08 mass determination within 2-5% For background suppression N(e + e ) + N(µ + µ ) N(e + µ ) N(µ + e )

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 6/28 Seesaw I + II, signal at LHC σ(χ 2 0 ) BR [fb] 0 0 0 0-0 -2 0-3 0-4 0-5 m 0 =00 GeV m 0 =200 GeV m 0 =300 GeV m 0 =500 GeV 200 400 600 800 M /2 [GeV] σ(χ 2 0 ) BR [fb] 0 0 0 0-0 -2 0-3 0-4 m 0 =00 GeV m 0 =200 GeV m 0 =300 GeV m 0 =500 GeV 400 600 800 M /2 [GeV] σ(pp χ 0 2 ) BR(χ0 2 P i,j l i l j µ ± τ χ 0 ) A 0 = 0, tan β = 0, µ > 0 (Seesaw II: λ = 0.02, λ 2 = 0.5) J.N. Esteves et al., arxiv:0903.408

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 7/28 arbitrary M 2 E,ij, M2 L,ij, A l,ij: χ 0 2 l i l j l k l j χ 0 BR( χ 0 2 χ0 e± τ ) BR( χ 0 2 χ0 µ± τ ) 0. 0. 0.0 0.0 0.00 0.00 0.000 0.000. 0-2. 0-0. 0-8 BR(τ eγ). 0-2. 0-0. 0-8 BR(τ µγ) Variations around SPSa (M 0 = 00 GeV, M /2 = 250 GeV, A 0 = 00 GeV, tan β = 0)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 8/28 Flavour mixing and edge variables 00 d Γ( χ 0 2 l± i l j χ0 ) Γ tot d m(l ± i l j ) 0.08 e ± τ 00 d Γ( χ 0 2 l+ l χ 0 ) Γ tot d m(l + l ) 0.05 e + e (= µ + µ ) [LFC] 0.06 0.04 0.02 0 µ ± τ e ± µ 0 20 40 60 80 0.04 0.03 0.02 0.0 0 µ + µ e + e 0 20 40 60 80 m(l i ± l j ) [GeV] m(l + l ) [GeV] A. Bartl et al., Eur. Phys. J. C 46 (2006) 783

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 9/28 bilinear R-parity violation R-parity: ( ) 3(B L)+2S bilinear R-parity violation: W = W MSSM + ǫ i Li Ĥ u mixings between SM and SUSY particles Gravitino as dark matter generic prediction of GMSB : light Gravitino LSP NLSP: χ 0 oder l R (l = e,µ,τ) S. Borgani, A. Masiero, M. Yamaguchi, PLB386 (996) 89 F. Takayama and M. Yamaguchi, PLB 485 (2000) 388 M. Hirsch, W. P., D. Restrepo, JHEP 0503, 062 (2005)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 20/28 bilinear R-parity violation Neutrino physics : neutrino masses via ν- χ 0 i mixing neutrino mixing angles in terms of R-parity violating couplings Neutralino decays: dominant R-parity violating decays: χ 0 W ± l i, χ0 Zν i, χ 0 ντ+ l i m χ R-parity conserving decay: Γ( χ 0 0 5 2 Gγ) 00 ev 00 GeV m 3/2 Γ( χ 0 ) (0 4 0 2 ) ev decay length of O(0 µm) O( mm) Gravitino: G eventually decays into νγ but: τ( G) O(0 30 ) life time of the universe M. Hirsch, et al. Phys. Rev. D 62, 3008 (2000)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 2/28 bilinear R-parity violation BR( χ 0 Wµ) / BR( χ0 Wτ) 0 5 Correlations BR( χ 0 νeτ) /BR( χ0 νµτ) 0 5 2 0.5 0.2 0. 0. 0.2 0.5 2 5 0 tan 2 (θ atm ) 2 0.5 0.2 0. 0. 0.2 0.5 2 5 0 tan 2 (θ sol ) W. P. et al., Phys. Rev. D 63, 5004 (200)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 22/28 bilinear R-parity violation BR( χ 0 P i Wl i) 0.2 0.75 0.5 0.25 0. 0.075 0.05 00 200 300 400 500 m χ 0 [GeV] BR( χ 0 P ij ν iτl j ) 0.9 0.8 0.7 0.6 00 200 300 400 500 m χ 0 [GeV] BR( χ 0 Gγ) 0-5 0-2 2 0-2 0-2 5 0-3 2 0-3 0-3 00 200 300 400 500 m χ 0 [GeV] tan β = 0, µ > 0, - - tan β = 0, µ < 0, tan β = 35, µ > 0, - - tan β = 35, µ < 0 m 3/2 = 00 ev, n 5 = M. Hirsch, W. P. und D. Restrepo, JHEP 0503, 062 (2005)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 23/28 bilinear R-parity violation, reach in msugra 3-lepton channel multi-lepton channel displaced vertex m /2 (GeV) m /2 (GeV) m /2 (GeV) m 0 (GeV) m 0 (GeV) m 0 (GeV) L = 00 fb, A 0 = 00 GeV, tan β = 0, µ > 0 F. de Campos et al., JHEP 0805, 048 (2008)

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 24/28 Conclusions Dirac neutrinos: displaced vertices if ν R LSP, e.g. t lb ν R (but NMSSM: t lbν χ 0 ) Seesaw models: most promosing: τ 2 decays very difficult to test at LHC, signals of O(0 fb) or below in case of Seesaw II: different mass ratios R-parity violation interesting correlations between ν-physics and LSP decays, testable at LHC displaced vertices Can the model be pinned down?

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 25/28 SUSY masses at LHC talk by I. Borjanovic at Flavour in the era of LHC, Nov. 05, CERN L=00 fb - Fit results Mass reconstruction 5 endpoints measurements, 4 unknown masses m( 0 ) = 96 GeV m(l R ) = 43 GeV m( 20 ) = 77 GeV m(q L ) = 540 GeV m( 0 )= 4.8 GeV, m( 20 )= 4.7 GeV, m(l R ) = 4.8 GeV, m(q L )= 8.7 GeV Gjelsten, Lytken, Miller, Osland, Polesello, ATL-PHYS-2004-007

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 26/28 Seesaw II with 5-plets 0 4 Br li lj Γ 0 6 0 8 0 0 0 2 0 4 0 6 Br Τ ΜΓ Br Μ eγ Br Τ eγ Br Τ 2 Χ e, Br Τ 2 Χ Μ 0 0 2 0 3 0 4 0 5 0 6 0 7 Br Τ 2 Χ e Br Τ 2 Χ Μ Excluded by Br Μ eγ 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV λ = λ 2 = 0.5 SPSa (M 0 = 70 GeV, M /2 = 250 GeV, A 0 = 300 GeV, tan β = 0), µ > 0 M. Hirsch, S. Kaneko, W. P., Phys. Rev. D 78 (2008) 093004.

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 27/28 Seesaw II with 5-plets 0 4 Br li lj Γ 0 6 0 8 0 0 0 2 0 4 0 6 Br Τ ΜΓ Br Μ eγ Br Τ eγ Br Τ 2 Χ e, Br Τ 2 Χ Μ 0 0 2 0 3 0 4 0 5 0 6 0 7 Br Τ 2 Χ e Br Τ 2 Χ Μ Excluded by Br Μ eγ 0 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV 0 0 2 0 3 0 4 0 5 0 6 M 5 M T GeV λ = λ 2 = 0.05 SPS3 (M 0 = 90 GeV, M /2 = 400 GeV, A 0 = 0 GeV, tan β = 0), µ > 0 M. Hirsch, S. Kaneko, W. P., Phys. Rev. D 78 (2008) 093004.

LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. 28/28 Seesaw I + II, signal at LHC σ(χ 2 0 ) BR [fb] 0 0 0 0-0 -2 0-3 λ 2 =0.5 λ 2 =0. λ 2 =0.9 400 600 800 M /2 [GeV] σ(pp χ 0 2 ) BR(χ0 2 P i,j l i l j µ ± τ χ 0 ) m 0 = 00 GeV A 0 = 0, tan β = 0, µ > 0, λ = 0.02 J.N. Esteves et al., arxiv:0903.408