Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates

Similar documents
Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

High Tc cuprates: Recent insights from X-ray scattering

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Phenomenology of High Tc Cuprates II. Pseudogap in Underdoped Cuprates

Electronic quasiparticles and competing orders in the cuprate superconductors

Commensurate 4a0- period Charge Density Modulations throughout the Bi2Sr2CaCu2O8+x Pseudogap Regime

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

A New look at the Pseudogap Phase in the Cuprates.

The Current Experimental Status of the High-Tc Problem. R. L. Greene

New insights into high-temperature superconductivity

A quantum dimer model for the pseudogap metal

Photo-enhanced antinodal conductivity in the pseudogap state of high T c cuprates

Low energy excitations in cuprates: an ARPES perspective. Inna Vishik Beyond (Landau) Quasiparticles: New Paradigms for Quantum Fluids Jan.

Emergent gauge fields and the high temperature superconductors

Emergent light and the high temperature superconductors

Perimeter Institute January 19, Subir Sachdev

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Inhomogeneous spin and charge densities in d-wave superconductors

Q=0 Magnetic order in the pseudogap state of cuprates superconductors

From the pseudogap to the strange metal

Quantum Melting of Stripes

How spin, charge and superconducting orders intertwine in the cuprates

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

F. Rullier-Albenque 1, H. Alloul 2 1

Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates

Intertwined Orders in High Temperature Superconductors

Impact of charge order on the electronic properties of underdoped cuprates Cyril PROUST

Direct observation of competition between superconductivity and charge density wave order in YBa 2 Cu 3 O y

STM Study of Unconventional Superconductivity

Material Science II. d Electron systems

The microscopic structure of charge density waves in under-doped YBa 2 Cu 3 O 6.54

Quantum dynamics in many body systems

Quantum disordering magnetic order in insulators, metals, and superconductors

The Hubbard model in cold atoms and in the high-tc cuprates

Visualizing the evolution from the Mott insulator to a charge. ordered insulator in lightly doped cuprates

Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates

Onset of nematicity in YBCO Interplay with charge order & superconductivity. Louis Taillefer

The cuprate phase diagram: insights from neutron scattering and electrical transport. Mun Chan University of Minnesota, Minneapolis

Electronic Liquid Crystal Phases in Strongly Correlated Systems

Let There Be Topological Superconductors

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

Quantum criticality of Fermi surfaces in two dimensions

High Tc superconductivity in doped Mott insulators

Visualizing the evolution from the Mott insulator to a charge-ordered insulator in lightly doped cuprates

CHARGE DENSITY WAVES AND ELECTRONIC NEMATICITY IN THE THREE BAND MODEL OF CUPRATE SUPERCONDUCTORS. Sinan Bulut. A thesis submitted to the

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

Mapping the electronic structure of each ingredient oxide layer of high T c cuprate superconductors

Probing e-ph Coupling via RIXS

Quantum phase transitions in Mott insulators and d-wave superconductors

Electronic Liquid Crystal Phases in Strongly Correlated Systems

The phase diagram of the cuprates and the quantum phase transitions of metals in two dimensions

Cuprate high-t c superconductivity: Insights from a model system 北京大学量子材料科学中心

arxiv: v2 [cond-mat.str-el] 15 Sep 2016

Can superconductivity emerge out of a non Fermi liquid.

arxiv: v2 [cond-mat.str-el] 11 Aug 2015

Superconductivity and spin excitations in orbitally ordered FeSe

Strong coupling problems in condensed matter and the AdS/CFT correspondence

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

High-temperature charge density wave correlations in La Ba CuO 4 without spin-charge locking

Intertwined Orders in High Temperature Superconductors

Cuprates supraconducteurs : où en est-on?

Nematic and Magnetic orders in Fe-based Superconductors

The two-component physics in cuprates in the real space and in the momentum representation

Visualization of atomic-scale phenomena in superconductors

High-T c superconductors

Theory of the competition between spin density waves and d-wave superconductivity in the underdoped cuprates

Vortices in the cuprate superconductors

SUPPLEMENTARY INFORMATION

The High T c Superconductors: BCS or Not BCS?

Orbital-Selective Pairing and Gap Structures of Iron-Based Superconductors

Conductor Insulator Quantum

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Quantum phase transitions of insulators, superconductors and metals in two dimensions

QS School Summary

Tuning order in cuprate superconductors

Which Spin Liquid Is It?

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Recent new progress on variational approach for strongly correlated t-j model

A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O 8+δ

The intertwined order of underdoped cuprates. Jan Zaanen

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

Subir Sachdev Research Accomplishments

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

arxiv: v1 [cond-mat.str-el] 18 Sep 2014

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Superconductivity-insensitive order at q~1/4 in electron doped cuprates

Topological order in the pseudogap metal

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Time-Reversal Symmetry Breaking and Spontaneous Anomalous Hall Effect in Fermi Fluids

arxiv: v3 [cond-mat.supr-con] 9 May 2013

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

Neutron scattering from quantum materials

Unusual magnetic excitations in a cuprate high-t c superconductor

The Nernst effect in high-temperature superconductors

Impurity Resonances and the Origin of the Pseudo-Gap

Saturday, April 3, 2010

X-ray vision of High Temperature Superconductivity Giacomo Ghiringhelli

Transcription:

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim (Cornell)

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Q y Q x S y S x Eun-Ah Kim (Cornell)

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Eun-Ah Kim (Cornell)

Density Wave and Nema.c Order Tranquada et al, Nature (1995) Zimmermann et al, Europhys LeL (1998) Howald et al, PRB (2003) Abbamonte et al, Nature Phys (2005) Ghiringhelli et al, Science (2012) Blackburn et al PRL (2013) Comin et al, Science (2014) de Silva Neto et al, Science (2014) Fujita et al, PNAS (2014) Chang et al, arxiv1511.06092 Lawler et al, Nature (2010) Wu et al, Nat. Comm (2015) Hinkov et al, Science (2008) Achkar et al, Science (2016) Ando et al, PRL (2002) Daou et al, Nature (2010)

Density Wave and Nema.c Glassy Order Tranquada et al, Nature (1995) Zimmermann et al, Europhys LeL (1998) Howald et al, PRB (2003) Abbamonte et al, Nature Phys (2005) Ghiringhelli et al, Science (2012) Blackburn et al PRL (2013) Comin et al, Science (2014) de Silva Neto et al, Science (2014) Fujita et al, PNAS (2014) Chang et al, arxiv1511.06092 Lawler et al, Nature (2010) Wu et al, Nat. Comm (2015) Hinkov et al, Science (2008) Achkar et al, Science (2016) Ando et al, PRL (2002) Daou et al, Nature (2010) Comin et al. (2014)

Density Wave and Nema.c Glassy Order Tranquada et al, Nature (1995) Zimmermann et al, Europhys LeL (1998) Howald et al, PRB (2003) Abbamonte et al, Nature Phys (2005) Ghiringhelli et al, Science (2012) Blackburn et al PRL (2013) Comin et al, Science (2014) de Silva Neto et al, Science (2014) Fujita et al, PNAS (2014) Chang et al, arxiv1511.06092 Lawler et al, Nature (2010) Wu et al, Nat. Comm (2015) Hinkov et al, Science (2008) Achkar et al, Science (2016) Ando et al, PRL (2002) Daou et al, Nature (2010) Local Information! Fujita et al. (2014)

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Origin: r-space or k-space?

Universality of Commensurate 4a period Andrej Mesaros Cornell Michael Lawler Cornell/Binghamton Kazuhiro Fujita BNL Stephen Edkins St Andrews Mohammad Hamidian Harvard J.C. Seamus Davis Cornell/BNL Mesaros et al, H8.00001 2:30pm Tuesday (304)

Underdoped Cuprates 200 T [K] 150 100 50 0 Anti-ferromagnetic insulator Pseudogap Charge modulations d-wave superconductor Fermi liquid 0 0.05 0.10 0.15 0.20 0.25 Doping, p Keimer et al., Nature(2015); Comin et al., arxiv(2015)

Underdoped Cuprates r-space T [K] 200 150 100 50 0 Anti-ferromagnetic insulator Pseudogap Charge modulations d-wave superconductor Fermi liquid 0 0.05 0.10 0.15 0.20 0.25 Doping, p Keimer et al., Nature(2015); Comin et al., arxiv(2015)

Underdoped Cuprates 200 r-space T [K] 150 100 50 0 Anti-ferromagnetic insulator Pseudogap Charge modulations 2k F d-wave superconductor Fermi liquid 0 0.05 0.10 0.15 0.20 0.25 Doping, p k-space Keimer et al., Nature(2015); Comin et al., arxiv(2015)

Strong Coupling Mechanism Frustra.on of AFM order upon doping

Strong Coupling Mechanism Frustra.on of AFM order upon doping Zaanen, Gunnarson, PRB (1989) Low, Emery, Fabricious, Kivelson (1994) Vojta, Sachdev(1999) White, Scalapino,PRL(1998) Capponi, Poilblanc (2002) Corboz, Rice, Troyer, PRL (2014) Fischer, EAK et al., NJP (2014) Commensurate Charge Modula.on, period 4a at p=1/8

Weak Coupling Mechnism Nes.ng driven Fermi surface instability Efitov et al, Nature Physics (2013) Pepin et al, PRB (2014) Wang, Chubukov, PRB (2014) Loder et al, PRL (2011) Comin et al., Science(2014) Incommensurate, Q decrease with p

(Conven.onal) Wavevector Q/Hole-density p YBCO XRS, XRD, NMR Blanco-Canosa et al., PRB(2014) Blackburn et al., PRL(2013) Chang et al., NatPhys(2012) Ghiringhelli et al., Science(2012) Le Tacon et al., NatPhys(2014) Wu et al., NatComm(2015) Hg-1201 RIXS,RXD Tabis et al., NatComm(2014) Bi-2212 REXS, RIXS, STS Da Silva Neto et al., Science(2014) Hashimoto et al., PRB(2014) Hamidian et al., NatPhys(2015) Bi-2201 STS+REXS Comin et al., Science(2014)

(Conven.onal) Wavevector Q/Hole-density p YBCO XRS, XRD, NMR Blanco-Canosa et al., PRB(2014) Blackburn et al., PRL(2013) Chang et al., NatPhys(2012) Ghiringhelli et al., Science(2012) Le Tacon et al., NatPhys(2014) Wu et al., NatComm(2015) Are these intrinsic Q's reflec.ng Hg-1201 RIXS,RXD the Tabis et al., NatComm(2014) origin of the modula.on? Bi-2212 REXS, RIXS, STS Da Silva Neto et al., Science(2014) Hashimoto et al., PRB(2014) Hamidian et al., NatPhys(2015) Bi-2201 STS+REXS Comin et al., Science(2014)

Conven.onal Amplitude Based approach

Conven.onal Amplitude Based approach Diffrac.on probe Ø Phase info lost Ø Fit a line cut of intensity (amplitude) Ø "Average Q"

Conven.onal Amplitude Based approach Diffrac.on probe Ø Phase info lost Ø Fit a line cut of intensity (amplitude) Ø "Average Q" STM Ø Phase sensi.ve Ø Fit a line cut of intensity (amplitude) Ø "Average Q"

Cuprates Challenge: Do we know Q? Fourier Amplitude of dff CDW

Use the Phase of the Density Wave

Phase of Long Range 1D CDW

Phase of Long Range 1D CDW

Phase of Glassy 1D CDW

Phase of Glassy 1D CDW

Phase of Glassy 1D CDW

Intrinsic Q Search Algorithm Cuprates

Intrinsic Q Search Algorithm Cuprates No.ce 1. Demodulate: 2. Optimize residue :

Intrinsic Q Search Algorithm Cuprates No.ce Agnos.c Search Algorithem: 1. Demodulate: Asses phase fitness of each "candidate" q 2. Optimize residue :

Intrinsic Q Search Algorithm Cuprates No.ce Agnos.c Search Algorithem: 1. Demodulate: Asses phase fitness of each "candidate" q 1. Demodulate by q 2. Optimize residue :

Intrinsic Q Search Algorithm Cuprates No.ce Agnos.c Search Algorithem: 1. Demodulate: Asses phase fitness of each "candidate" q 1. Demodulate by q 2. Optimize residue : 2. Evaluate "residue"

Intrinsic Q Search Algorithm Cuprates No.ce Agnos.c Search Algorithem: 1. Demodulate: Asses phase fitness of each "candidate" q 1. Demodulate by q 2. Optimize residue : 2. Evaluate "residue" 3. Vanishing residue selects intrinsic Q

Min Residue v.s. Max Amplitude Cupratesv

Min Residue v.s. Max Amplitude Cupratesv Long range ordered CDM

Min Residue v.s. Max Amplitude Cupratesv Glassy CDM

Min Residue v.s. Max Amplitude Cupratesv Glassy CDM

Doping Dependence of Cuprate CDW Q from R q p=0.06, Q y A. Mesaros & EAK et al (2016)

Doping Dependence of Cuprate CDW Q from R q p=0.08, Q y A. Mesaros & EAK et al (2016)

Doping Dependence of Cuprate CDW Q from R q p=0.10, Q y A. Mesaros & EAK et al (2016)

Doping Dependence of Cuprate CDW Q from R q p=0.14, Q y A. Mesaros & EAK et al (2016)

Doping Dependence of Cuprate CDW Q from R q p=0.17, Q y A. Mesaros & EAK et al (2016)

Doping Dependence of Cuprate CDW Q from R q Universality of Commensurate 4a 0 CDW in BSCCO-2212

Origin and Implica.ons of Glassy Charge Order in Underdoped Cuprates Implica.ons: "Anomalous" spectral features?

Cold-spots and glassy nema.city in underdoped cuprates Kyungmin Lee Cornell Steve Kivelson Stanford arxiv: 1603.03104 X25.00002 8:12am (Friday)

Anomalous spectra in underdoped SC ARPES STM σ(ω) He et al. (2011) McElroy et al. (2005) Mirzaei et al. (2013) Nodal antinodal dichotomy Energy-dependent heterogeneity two-peak

Model Nema.c Glass Superconductor Self-consistent Bogoliubov-de Gennes

Model Nema.c Glass Superconductor Glassy Nematicity: d-form factor Self-consistent Bogoliubov-de Gennes

Model Nema.c Glass Superconductor Glassy Nematicity: d-form factor Self-consistent Bogoliubov-de Gennes

Model Nema.c Glass Superconductor Self-consistently determined d-wave Gap Self-consistent Bogoliubov-de Gennes

Spectroscopic "Measurements"

Anomalous spectra in underdoped SC ARPES STM σ(ω) He et al. (2011) McElroy et al. (2005) Mirzaei et al. (2013) Nodal antinodal dichotomy Energy-dependent heterogeneity two-peak

ARPES: Nodal-an.nodal dichotomy He et al. (2011)

ARPES: Nodal-an.nodal dichotomy He et al. (2011) Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

Glassy Nema.c and Cold Spots Uniform Nematic

Glassy Nema.c and Cold Spots Uniform Nematic Glassy Nematic Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

Glassy Nema.c and Cold Spots Uniform Nematic Glassy Nematic Scattering Rate Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104 d-form factor <-> Cold spot at the zone diagonal

Anomalous spectra in underdoped SC ARPES STM σ(ω) He et al. (2011) McElroy et al. (2005) Mirzaei et al. (2013) Nodal antinodal dichotomy Energy-dependent heterogeneity two-peak

STM: Homogeneous at low ω McElroy et al. (2005) Energy dependent heterogeneity Low energy : homogeneous High energy : heterogeneous

STM: Homogeneous at low ω McElroy et al. (2005) Energy dependent heterogeneity Low energy : homogeneous High energy : heterogeneous Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

STM: Homogeneous at low ω McElroy et al. (2005) Energy dependent heterogeneity Low energy : homogeneous High energy : heterogeneous Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

Anomalous spectra in underdoped SC ARPES STM σ(ω) He et al. (2011) McElroy et al. (2005) Mirzaei et al. (2013) Nodal antinodal dichotomy Energy-dependent heterogeneity two-peak

σ(ω): Two-peak structure at "low" T Mirzaei et al. (2013)

σ(ω): Two-peak structure at "low" T Mirzaei et al. (2013) Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

σ(ω): Two-peak structure at "low" T Mirzaei et al. (2013) onset T ~ T * Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104 onset T ~ T c

σ(ω): Two-peak structure at "low" T Experiments Nematic glass Other scatters Mirzaei et al. (2013) Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104

σ(ω): Two-peak structure at "low" T Experiments Nematic glass Other scatters Mirzaei et al. (2013) Requirements: Dirac nodes (vanishing DOS) Gap the rest (d-sc) + Protect the node (dff scatter)

"Anomalous Spectra": Another Face of Nema.c Glass Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104 Consonance of d-sc node & the nema.c glass cold-spot

"Anomalous Spectra": Another Face of Nema.c Glass Kyungmin Lee, S. Kivelson, EAK arxiv: 1603.03104 Consonance of d-sc node & the nema.c glass cold-spot