The Maxwell's demon of star clusters

Similar documents
The dynamics of neutron star and black hole binaries in young star clusters

Massive stellar black holes: formation and dynamics

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems:

The impact of metallicity on the demographics of ULXs

Dancing in the dark: spotting BHS & IMBH in GC

Forming Intermediate-Mass Black Holes in Dense Clusters Through Collisional Run-away

Stellar mass black holes in young massive and open clusters and their role in gravitational-wave generation

Jongsuk Hong (KIAA) MODEST /06/28. Collaborators: E. Vesperini, A. Askar, M. Giersz, M. Szkudlarek & T. Bulik

Massive star clusters

Pulsars as probes for the existence of IMBHs

Stellar-mass black holes in a globular cluster

Coalescing Binary Black Holes Originating from Globular Clusters

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Stellar-mass black holes in a globular cluster. Douglas Heggie. University of Edinburgh, UK

Black Hole Subsystems in Galactic Globular Clusters: Unravelling BH Populations in GCs using MOCCA Star Cluster Simulations

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Unravelling the progenitors of merging black hole binaries

Monte Carlo Modelling of Globular Clusters

Can black holes be formed in dynamic interactions in star clusters?

LECTURES on COLLISIONAL DYNAMICS: 4. HOT TOPICS on COLLISIONAL DYNAMICS

Monte Carlo Models of Dense Star Clusters

An empirical clock to measure the dynamical age of stellar systems

Stellar Black Hole Binary Mergers in Open ClusterS

Dynamical Models of the Globular Clusters M4 and NGC 6397

Modelling individual globular clusters An Update

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Massive Stellar Black Hole Binaries and Gravitational Waves

arxiv:astro-ph/ v2 15 Jan 2007

2 Ivanova, Fregeau, & Rasio

Formation Processes of IMBHs

The Worst-Case Scenario. The Final Parsec Problem. and. Milos Milosavljevic. California Institute of Technology. Collaborator: David Merritt

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

Formation of Binary Pulsars in Globular Clusters 3

The effect of primordial mass segregation on the size scale of the star clusters

arxiv:astro-ph/ v1 18 Dec 2003

The Many Possible Histories of Globular Cluster Cores. John Fregeau (KITP), with Harvey Richer (UBC), Fred Rasio (NU), Jarrod Hurley (Swinburne)

arxiv: v2 [astro-ph] 12 Mar 2008

Searching for intermediate-mass black holes in Galactic globular clusters

Clocks and Scales to understand the physics of BSS

The physical origin of stellar envelopes around globular clusters

HR Diagram, Star Clusters, and Stellar Evolution

New Scenario for IMBH Formation in Globular Clusters - Recent Developm. Observational Imprints

Open problems in compact object dynamics

Stellar collisions and their products

The origin of the two populations of blue stragglers in M30

arxiv: v1 [astro-ph.he] 3 Jan 2019

Blue Straggler Formation in Clusters

arxiv: v1 [astro-ph.ga] 28 Sep 2016

Direct N-body simulations of distant halo globular clusters

Super star cluster R136: puzzles outside and inside

arxiv:astro-ph/ v1 23 Jan 2003

arxiv: v1 [astro-ph.ga] 18 Aug 2017

Michela Mapelli. LECTURES on COLLISIONAL DYNAMICS: 1. RELEVANT TIMESCALES, FORMATION OF STAR CLUSTERS, EQUILIBRIUM MODELS

The evolution of binary fractions in globular clusters

FORMATION OF MASSIVE BLACK HOLES IN DENSE STAR CLUSTERS. I. MASS SEGREGATION AND CORE COLLAPSE

The Evolution of Binary Fractions in Globular Clusters

The Multiple Origin of Blue Stragglers. Hagai Perets Technion Israel Institute of Technology November 8, 2012

2 Frederic A. Rasio. 2. Summary of Recent Results

arxiv: v1 [astro-ph] 16 Oct 2007

MODEST-8. Introduction to MUSE. Steve McMillan

Blue straggler production in globular clusters

arxiv: v1 [astro-ph] 9 Oct 2007

The Effects of Stellar Collisions in Dense Environments

Searching for Intermediate Mass Black Holes mergers

Feedback, AGN and galaxy formation. Debora Sijacki

Investigating Ultraluminous X-ray Sources through multi-wavelength variability, broadband spectra, and theoretical modelling

INITIAL POPULATIONS OF BLACK HOLES IN STAR CLUSTERS

Blue Straggler Stars Formation Channels

arxiv:astro-ph/ v1 9 Jun 2003

On the mass radius relation of hot stellar systems

Is NGC 6752 Hosting a Single or a Binary Black Hole?

Supernova events and neutron stars

How do black hole binaries form? Studying stellar evolution with gravitational wave observations

The Dynamical Evolution of Exoplanet Systems

MOdelling DEnse STellar systems. A personal survey

Red giant depletion in globular cluster cores

Accretion in Binaries

Michela Mapelli. N-body techniques for astrophysics: Lecture 1 General Introduction

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

The Evolution of Stellar Triples

Stellar-Mass Black Holes and Pulsars

Planets in Star Clusters. Sourav Chatterjee Eric B. Ford Frederic A. Rasio

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers)

arxiv: v1 [astro-ph.sr] 14 Oct 2009

Prospects for observing dynamically formed stellar mass black hole binaries with gravitational waves

INTERMEDIATE-MASS BLACK HOLE INDUCED QUENCHING OF MASS SEGREGATION IN STAR CLUSTERS

Gravitational Waves from Compact Object Binaries

Black Holes in Globular Clusters

Lecture 13: Binary evolution

Binary star formation

Searching for signs of IMBH astrometric microlensing in M 22

Optical studies of an ultraluminous X-ray source: NGC1313 X-2

Kinetic Theory. Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system

arxiv:astro-ph/ v1 15 Nov 2004

MASSIVE BLACK HOLES IN STAR CLUSTERS. II. REALISTIC CLUSTER MODELS

Astrophysics with LISA

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

arxiv:astro-ph/ v2 9 May 2003

Kozai-Lidov oscillations

Transcription:

Michela Mapelli INAF Osservatorio Astronomico di Padova 2012 FIRB fellow 2015 MERAC prize The Maxwell's demon of star clusters a.k.a. the impact of binaries on star clusters COLLABORATORS: Mario Spera, Nicola Giacobbo, Ugo N. Di Carlo, Alessandro A. Trani, Elisa Bortolas, Alessandro Ballone, Sandro Bressan, Giacomo Beccari, Germano Sacco, Rob Jeffries The IMPACT of BINARIES on STELLAR EVOLUTION, ESO Garching, July 3 7 2017

OUTLINE 1. Binaries as source of energy 2. Core collapse 3. Spitzer's instability 4. Stellar EXOTICA 5. Conclusions

1. Binaries as source of energy Most star clusters are collisional systems: Two body encounters drive their evolution Spitzer & Hart 1971 47Tuc by SALT Quintuplet by HST NGC290 by HST

1. Binaries as source of energy If two-body encounters are efficient, also 3-body encounters occur A binary is energy reservoir: 2 1 3 Internal energy can be exchanged with single stars: Binaries pump kinetic energy in the system changing its dynamical state

1. Binaries as source of energy If star extracts internal energy from binary, the binary shrinks Star and binary recoil 2 2 1 1 3 The star may also replace one of the members of the binary: EXCHANGE m3 > m2 1 1 2 3 3 2

1. Binaries as source of energy If star extracts internal energy from binary, the binary shrinks Star and binary recoil 2 2 1 1 3 The star may also replace one of the members of the binary: EXCHANGE m3 > m2 of 3-body encounters Douglas 1Heggie, Binary evolution in stellar dynamics, 2 3 1975, MNRAS, 173, 729 2 1 3

DYNAMICAL PROCESSES DRIVEN BY BINARIES Credits: A. Geller

2. Core collapse - two-body encounters are efficient leads to evaporation of the fastest stars from core HALO core Inspired from Spitzer 1988

2. Core collapse - leads to decrease of W and K - since fastest stars are lost, the decrease in K is stronger than in W core contracts because W no longer balanced by K W HALO K core Rc Inspired from Spitzer 1988

2. Core collapse - density increases and 2body encounter rate increases more fast stars evaporate, K decreases further, radius contracts more ***RUNAWAY MECHANISM : core collapse!!!*** HALO Rc evaporation core K Inspired from Spitzer 1988

2. Core collapse WE NEED A NEW SOURCE OF ENERGY TO BREAK THIS LOOP something able to pump NEW kinetic energy in the system without leading to the evaporation of the fastest stars HALO Rc evaporation core K Inspired from Spitzer 1988

2. Core collapse SOURCE OF ENERGY TO BREAK THIS LOOP = 3-body encounters energy extracted from binaries decreases W and increases K core collapse is reversed HALO core K+ Kext W Inspired from Spitzer 1988

3. Equipartition and Spitzer's Instability In GAS systems at thermal equilibrium, energy is shared EQUALLY by all particles (Boltzmann 1876) for analogy with gas, in a two-body relaxed star system mi vi2 ~ mj vj2 v(m) m 0.5 More massive stars transfer kinetic energy to light stars and slow down

3. Equipartition and Spitzer's Instability But theorists predict cases when equipartition CANNOT be reached Spitzer (1969): In an idealized system of 2 masses m1 and m2 ( m2>>m1, Mi = mi ), equipartition cannot be reached if M2 >0.16 M1 (m2/m1)3/2 MASSIVE STARS DYNAMICALLY DECOUPLE FROM LIGHT STARS: the velocity dispersion of massive stars grows (Spitzer's instability) MASSIVE STARS SINK TO THE CENTRE WHERE FORM BINARIES EJECTING EACH OTHER by 3-body (Bonnell & Davies 1998; Allison+ 2009; Portegies Zwart+ 2010)

3. Equipartition and Spitzer's Instability How common is Spitzer's instability? 5 pc N-body and Monte Carlo simulations needed! el Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016; Spera, MM & Jeffries 2016

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition - high mass stars sink to the centre where form binaries At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016 - high mass stars become hotter

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition - high mass stars sink to the centre where form binaries At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016 - high mass stars become hotter

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition - high mass stars sink to the centre where form binaries At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016 - high mass stars become hotter BEHAVIOUR EXPECTED FROM SPITZER INSTABILITY

3. Equipartition and Spitzer's Instability Number of binaries Total binding energy Spitzer's instability manifests with binary formation Figure from Spera, MM & Jeffries 2016 see also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016

4. Stellar EXOTICA * blue straggler stars * massive black hole binaries >20 Msun * intermediate-mass black holes (IMBHs) 100 10'000 Msun The LIGO and Virgo Collaborations, Physical Review Letters 116, 061102 (2016)

4.1 Blue straggler stars MASS TRANSFER in BINARIES THREE-BODY ENCOUNTERS CAN TRIGGER COLLISIONS See Francesco's talk yesterday McCrea 1964, MNRAS, 128, 147; Ferraro et al. 1993, AJ, 106, 2324; Sigurdsson et al. 1994, ApJ, 431, L115; Procter Sills et al. 1995, ApJ, 455, L163; Hurley et al. 2001, MNRAS, 323, 630; Davies et al. 2004, MNRAS, 349, 129; Piotto et al. 2004, ApJ, 604, L109; MM et al. 2004, ApJ, 605, L29; MM et al. 2006, MNRAS, 373, 361; Ferraro et al. 2006, ApJ, 638, 433; Leigh et al. 2007, ApJ, 661, 210; Ferraro et al. 2009, Nature, 462, 1028; Knigge et al. 2009, Nature, 457, 288 and many others

4.1 Blue straggler stars Blue straggler radial distribution interpreted as dynamical clock See Francesco's talk Ferraro et al. 2012, Nature, 492, 393

4.1 Blue straggler stars Blue straggler radial distribution interpreted as dynamical clock but Monte Carlo simulations suggest minimum is TRANSIENT 6.2 Gyr ~ 2 trlx 6.4 Gyr ~ 2 trlx 6.8 Gyr ~ 2.1 trlx Hypki & Giersz 2017, arxiv:1604.07054v1 r / rcore

4.2 Massive black hole binaries BEFORE AFTER BH BH star In a flyby, the star acquires kinetic energy from the binary the binary shrinks shorter coalescence time GWs

4.2 Massive black hole binaries BEFORE AFTER BH GWs star BH Exchanges bring BHs in binaries BHs are FAVOURED BY EXCHANGES BECAUSE THEY ARE MASSIVE! BH born from single star in the field never acquires a companion BH born from single star in a cluster likely acquires companion from dynamics

4.2 Massive black hole binaries BEFORE AFTER BH GWs star BH >90% BH-BH binaries in young star clusters form by exchange (Ziosi, MM+ 2014, MNRAS, 441, 3703) EXCHANGES FAVOUR THE FORMATION of BH-BH BINARIES WITH * THE MOST MASSIVE BHs * HIGH ECCENTRICITY * MISALIGNED BH SPINS

4.2 Massive black hole binaries Hurley+ 2016, PASA, 33, 36 Hills 1992, AJ, 103, 1955; Sigurdsson & Hernquist 1993, Nature, 364, 423; Portegies Zwart & McMillan 2000, ApJ, 528, L17; Aarseth 2012, MNRAS, 422, 841; Breen & Heggie 2013, MNRAS, 432, 2779; MM+ 2013, MNRAS, 429, 2298; Ziosi+ 2014, MNRAS, 441, 3703; Rodriguez+ 2015, PhRvL, 115, 1101; Rodriguez+ 2016, PhRvD, 93, 4029; MM 2016, MNRAS, 459, 3432; Banerjee 2017, MNRAS, 467, 524 and many others

4.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) 1. RUNAWAY COLLISIONS Mass segregation is fast in young star clusters: Massive stars segregate to the centre where form binaries and collide? Massive super-star forms and possibly collapses to IMBH What is the final mass of the collision product? DEPENDENCE ON METALLICITY and SN!!! Colgate 1967; Sanders 1970; Portegies Zwart+ 1999, 2002, 2004; Gurkan+ 2004; Freitag+ 2006; Giersz+ 2015; MM 2016

4.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) 2. REPEATED MERGERs (Formalism by Miller & Hamilton 2002) In a old cluster stellar BHs can grow in mass because of repeated mergers with the companion triggered by 3-body encounters BINARY SHRINKS due to repeated encounters when the binary is sufficiently close, orbital decay by GW emission brings it to COALESCENCE The merger remnant can become member of a new binary by EXCHANGE and the process starts again

4.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) runaway repeated mergers Giersz +2015, MNRAS, 454, 3150

4.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) N-body simulations of massive clusters + stellar evolution Collision products are efficient in acquiring companions dynamically 8 collision products out of 30 form stable binaries with other BHs: 4 BH-BH at Z = 0.01 Zsun 2 BH-BH at Z = 0.1 Zsun 2 BH-BH at Z = 1 Zsun + 1 BH-NS at Z = 0.01 Zsun PERIOD from few hours to few years Possibly PossiblyJOINT JOINTSOURCES SOURCES for forlisa LISAand andfor forligo-virgo LIGO-Virgo MM 2016, MNRAS, 459, 3432

5. Conclusions Binaries are main energy reservoir of N-body systems, through 3- or multi-body encounters (Heggie 1975) Core collapse reversal is most popular effect of binaries, but not the only one (Spitzer 1988 and many others) Binaries play major role when Spitzer's instability develops (Trenti & van der Marel 2013; Bianchini+ 2016; Parker+ 2016; Spera, MM & Jeffries 2016) Binaries power formation of STELLAR EXOTICA: Blue straggler stars (e.g. Ferraro+ 2012; Hipky & Giersz 2017) Massive black hole binaries (e.g. Ziosi+ 2014; Rodriguez+ 2016; Hurley+ 2016; Banerjee 2017; Zevin+ 2017) Intermediate mass black holes (e.g. Portegies Zwart+ 2004; Giersz+ 2015; MM 2016) Thank You!

4.2 Massive black hole binaries + 4.3 Intermediate-mass black holes

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition - high mass stars sink to the centre where form binaries At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016 - high mass stars become hotter

3. Equipartition and Spitzer's Instability Star clusters try to reach equipartition but never attain it in steady state: - initially flat sigma profile - high mass stars tend to equipartition - high mass stars sink to the centre where form binaries At half-mass radius Figure from Spera, MM & Jeffries 2016 See also Trenti & van der Marel 2013; Bianchini et al. 2016; Parker et al. 2016 - high mass stars become hotter BEHAVIOUR EXPECTED FROM SPITZER INSTABILITY

2. State-of-the-art simulations How do we study impact of binaries on N-body dynamics? DIRECT-SUMMATION N-BODY SIMULATIONS (resolve star-binary interactions) solve Newton's equation directly computationally expensive (scale with N2) GPUs saved us (since ~2007) Portegies Zwart+ 2007, NewA, 12, 641 better if coupled with regularization Mikkola & Aarseth 1993, CeMDA, 57, 439

2. State-of-the-art simulations How do we study impact of binaries on N-body dynamics? DIRECT-SUMMATION N-BODY SIMULATIONS (resolve star-binary interactions) + POPULATION SYNTHESIS RECIPES (evolve single stars and binaries) - single stellar evolution - wind mass transfer - Roche lobe mass transfer - common envelope - tidal evolution - magnetic braking - orbital evolution - recipes for supernova explosion - recipes for remnant formation

2. State-of-the-art simulations How do we study impact of binaries on N-body dynamics? DIRECT-SUMMATION N-BODY SIMULATIONS (resolve star-binary interactions) + POPULATION SYNTHESIS RECIPES (evolve single stars and binaries) - single stellar evolution - wind mass transfer - Roche lobe mass transfer - common envelope - tidal evolution - magnetic braking - orbital evolution - recipes for supernova explosion - recipes for remnant formation

2. State-of-the-art simulations How do we study impact of binaries on N-body dynamics? MONTE CARLO CODES for the smooth evolution of the cluster (Hénon 1971) + DIRECT N-body CODES (only for close encounters with binaries) + POPULATION SYNTHESIS RECIPES (evolve single stars and binaries) - single stellar evolution - wind mass transfer - Roche lobe mass transfer - common envelope - tidal evolution - magnetic braking - orbital evolution - recipes for supernova explosion - recipes for remnant formation

2. State-of-the-art simulations: the open source community DIRECT-SUMMATION N-BODY CODES: N-body6: https://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm HiGPUs: http://astrowww.phys.uniroma1.it/dolcetta/hpccodes/higpus.html Starlab: https://www.sns.ias.edu/~starlab/ MONTE CARLO CODES: MOCCA: https://moccacode.net/ POPULATION SYNTHESIS CODES: BSE: http://astronomy.swin.edu.au/~jhurley/ SeBa: https://www.sns.ias.edu/~starlab/seba/ SEVN: https://gitlab.com/mario.spera/sevn MESA (a stellar evolution code): http://mesa.sourceforge.net/

2. State-of-the-art simulations: the open source community DIRECT-SUMMATION N-BODY CODES: N-body6: https://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm HiGPUs: http://astrowww.phys.uniroma1.it/dolcetta/hpccodes/higpus.html Starlab: https://www.sns.ias.edu/~starlab/ AMUSE software environment AMUSE software environment to to interface interface them them https://github.com/amusecode/amuse MONTE CARLO CODES: https://github.com/amusecode/amuse MOCCA: https://moccacode.net/ POPULATION SYNTHESIS CODES: BSE: http://astronomy.swin.edu.au/~jhurley/ SeBa: https://www.sns.ias.edu/~starlab/seba/ SEVN: https://gitlab.com/mario.spera/sevn MESA (a stellar evolution code): http://mesa.sourceforge.net/

5.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) Massive stars (>30 Msun) might lose >50% mass by winds (Vink+ 2001, 2005, 2016; Bressan+ 2012; Tang, Bressan+ 2014; Chen, Bressan+ 2015) Mass loss affects: 1 - the probability that the merger product undergoes more collisions and grows in mass less collisions if the merger product loses mass: important to include winds in the N-body simulation 2 - the possibility that the remnant is massive BH mass depends on the pre-supernova (SN) mass

5.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) Mass of runaway collision product accounting for metallicity: * maximum mass up to 500 Msun * 1/10 BH in the IMBH regime (>100 Msun) at Z = 0.01 0.1 Zsun NO IMBHs from runaway collisions at SOLAR METALLICITY! * CAVEAT 1: uncertainties in the evolution of very massive stars * CAVEAT 2: uncertainties in mass-loss during/after collisions MM 2016

5.3 Intermediate-mass black holes (IMBHs, 100 10'000 Msun) RUNAWAY COLLISION SCENARIO VS OBSERVATIONS: 1. VERY MASSIVE STARS (>100 Msun) ONLY IN DENSE STAR CLUSTER even at solar metallicity Crowther+ 2010, 2016; Vink+ 2015 2. IMBHs AT LOW METALLICITY????? PREDICTION TO BE CHECKED WITH LIGO VIRGO AND LISA