Classical observations of stellar properties

Similar documents
Fundamental stellar parameters & the fine structure of the Low Main Sequence

Fundamental stellar parameters

Asteroseismology for Galactic Archaeology: bridging two fields

Asterseismology and Gaia

Chapter 7: From theory to observations

Measurement of the stellar irradiance

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

JINA Observations, Now and in the Near Future

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

arxiv:astro-ph/ v1 6 Nov 2005

arxiv: v3 [astro-ph.sr] 10 Jul 2013

From theory to observations

Lessons learnt from the Solar neighbourhood and the Kepler field

arxiv: v1 [astro-ph.sr] 8 Sep 2014

From theory to observations

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

PoS(NIC XI)301. Andreas Korn. IFA, Uppsala University. Heidelberg,

The effective temperature scale of giant stars (F0 K5)

THE EFFECTIVE TEMPERATURE SCALE OF FGK STARS. II. T eff : COLOR : [Fe/H] CALIBRATIONS

The Apache Point Observatory Galactic Evolution Experiment. Ricardo Schiavon

Characterization of Exoplanet-Host Stars Vardan Adibekyan Instituto de Astrofísica e Ciências do Espaço

arxiv: v1 [astro-ph.ga] 7 May 2016

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

ASTRONOMY AND ASTROPHYSICS. Synthetic photometry from ATLAS9 models in the UBV Johnson system. Fiorella Castelli

arxiv: v1 [astro-ph.sr] 5 Jun 2018

(Present and) Future Surveys for Metal-Poor Stars

Galaxy Evolution at High Resolution: The New View of the Milky Way's Disc. Jo Bovy (University of Toronto; Canada Research Chair)

Building the cosmic distance scale: from Hipparcos to Gaia

SDSS-IV MaStar: a Large, Comprehensive, and High Quality Empirical Stellar Library

arxiv: v1 [astro-ph.ga] 23 Mar 2009

Pre-observations and models

Asteroseismology with WFIRST

Radial Velocity Surveys. Matthias Steinmetz (AIP)

Modelling the Milky Way with TRILEGAL

Gaia Revue des Exigences préliminaires 1

arxiv: v1 [astro-ph.ga] 20 Jun 2013

Chapter 10: Unresolved Stellar Populations

On the relation between stars and their planets

l about Ralph Schönrich (MPA, Hubble Fellow, OSU)

Exploring the structure and evolu4on of the Milky Way disk

Zoccali et al. 2003, A&A, 399, 931. Overview of (old) Galactic components. bulge, thick disk, metal-weak halo. metallicity & age distribution

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Diameters and Temperatures of Main Sequence Stars

Properties of the Milky Way stellar disks in the direction of the Draco dsph galaxy.

The effective temperature scale of giant stars (F0 K5)

Kepler Stellar Properties Catalog Update for Q1-Q17 Transit Search

Evidence from the Motions of Old Stars that the Galaxy Collapsed

A comparison of stellar atmospheric parameters from the LAMOST and APOGEE datasets

Lecture Five: The Milky Way: Structure

Stellar Populations: Resolved vs. unresolved

Gaia ITNG2013 School, Tenerife. Ken Freeman, Lecture 2: the thin disk

Abundance distribution in the Galactic thick disk

Objectives & Significance

Objectives & Significance

489 THE METALLICITY DISTRIBUTION OF LATE-TYPE DWARFS AND THE HIPPARCOS HR DIAGRAM M. Haywood, J. Palasi, A. Gomez, L. Meillon DASGAL, URA 335 du CNRS

SkyMapper and EMP stars

SkyMapper and the Southern Sky Survey

arxiv: v2 [astro-ph.sr] 11 Sep 2014

Stars and Stellar Astrophysics. Kim Venn U. Victoria

The cosmic distance scale

Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0-K5)

Objectives & Significance

Asteroseismology and Gaia: Testing ccaling relations using 2200 Kepler stars with TGAS parallaxes

Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki

High resolution spectroscopic characterization of the FGK stars in the solar neighbourhood

Asteroseismology & Exoplanets: A Kepler Success Story

Star-planet connection:

arxiv: v1 [astro-ph.ga] 6 Mar 2018

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia

Supporting Online Material for

Where are we now and where are we going? Arlette Noels & Josefina Montalbán

arxiv:astro-ph/ v1 14 Dec 1998

The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range

arxiv: v1 [astro-ph.sr] 29 Jul 2010

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791

Stellar populations in the Milky Way halo

Bayesian distances and extinctions for giants observed by Kepler and APOGEE

Stellar Population Templates in the Near-Infrared. Crystal Brasseur B.Sc., University of Victoria, 2007

Interferometric Constraints on Fundamental Stellar Parameters

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Deriving stellar masses from SDSS

arxiv: v1 [astro-ph.ga] 11 Sep 2014

Galactic Projects at ESO Disk and halo. Birgitta Nordström Niels Bohr Institute Copenhagen University Denmark

The Gaia-ESO Spectroscopic Survey. Survey Co-PIs. Gerry Gilmore (IoA, Cambridge) & Sofia Randich (INAF/Arcetri) >300 CoIs

arxiv:astro-ph/ v1 18 Apr 2000

Milky Way star clusters

Comparison of metal-poor stars in the Milky Way halo and in the dwarf spheroidal galaxy Sculptor, with emphasis on Carbon Enhanced Metal-Poor stars

Stellar Formation and Evolution

Asteroseismology of Exoplanet Host Stars

Gaia-LSST Synergy. A. Vallenari. INAF, Padova

arxiv:astro-ph/ v2 23 Apr 1999

arxiv: v2 [astro-ph.ga] 15 Jan 2018

Chemo-dynamical disk modeling. Ivan Minchev Leibniz-Institut fur Astrophysik Potsdam (AIP)

Milky Way S&G Ch 2. Milky Way in near 1 IR H-W Rixhttp://online.kitp.ucsb.edu/online/galarcheo-c15/rix/

THE GALAXY. Spitzer Space Telescope Images & Spectra: 3µm - 170µm

Milky Way s Anisotropy Profile with LAMOST/SDSS and Gaia

arxiv: v1 [astro-ph.im] 9 May 2013

The Structure and Substructure of the Milky Way Galaxy Discs. Rosemary Wyse

Transcription:

Classical observations of stellar properties Luca Casagrande M. Bessell - J. Meléndez - I. Ramírez / M. Asplund R. Schönrich / V. Silva Aguirre

Spectroscopy F(l) : lots of info, but also model dependent Photometry F(l)T(l)dl : info is more degenerate, less model dependent Stellar population studies / Stellar modeling Galactic Chemical Evolution Ensemble asteroseismology Classical observations of stellar properties T eff [F e/h] log(g) L, R X, Y, Z M, R + ages

Photometry GCS stars (Casagrande et al. 2011) vs. MARCS synthetic colours Metallicity Effective Temperature

Effective Temperature Direct: interferometry (Hanbury Brown et al. 1974, van Belle & von Braun 2009) precise & accurate - nearby stars (limited range) - uniform disk Kervella et al. (2008) UD Allende Prieto et al. (2002) Bigot et al. (2006) Koesterke et al. (2008) LD Semi-Direct: InfraRed Flux Method Allende Prieto et al. (2002) precise ~ model-independent any star (photometry) - reddening - accuracy: absolute calibration τ = 2 3 Indirect: ionization/excitation, Balmer lines, line-depth ratio precise any stars (spectra) Gustafsson et al. (2008) Chiavassa, Collet, Casagrande & Asplund (2010) - model dependent (NLTE, inhomogeneity, e.g. Asplund 2005, Ludwig et al. 2009)

InfraRed Flux Method Blackwell et al. (1977,1978,1979), Alonso et al. (1996, 1999), Ramirez & Melendez (2005), Casagrande et al. (2006, 2010)

IRFM: Pros & Cons ~2/3% ~0.01 mag ~ 4% = 80 K But recently, towards 1% accuracy : HST absolute fluxes (Bohlin, 2007) Solar twins (Meléndez et al. 2009)

IRFM: Pros & Cons ~2/3% ~0.01 mag ~ 1% = 20 K Reliable absolute calibration absolute zero-point Teff scale

Color information Casagrande et al. (2010) E(V-J) = 2.2 E(B-V) E(V-H) = 2.5 E(B-V) E(V-K) = 2.7 E(B-V) E(J-K) = 0.5 E(B-V) see also VandenBerg, Casagrande & Stetson (2010), extensive testing of Teff scale and zero-points vs. cluster photometry; similarly An et al. (2009), Pinsonneault et al. (2011). Agreement within few tens K for most band, but shorter baselines (J-K) more uncertain at the hot end

InfraRed Flux Method Mostly empirical (80%) weak sensitivity of broad-band to logg and [Fe/H] (e.g. Bessell 2007) 20K Castelli & Kurucz (2004, ATLAS9-ODFNEW) log g Teff Rayleigh-Jeans tail Error budget (e.g. Alonso et al. 1996; Casagrande et al. 2006) [Fe/H] zero-point: 20 K photometry (Montecarlo): 30-50 K log(g): ± 0.5 dex ~30 K [Fe/H]: ± 0.1dex 20/30 K reddening systematics IRFM for some 700 Kepler stars at www.mpa-garching.mpg.de/~luca

InfraRed Flux Method SDSS ugriz BV(RI)C JHKS Casagrande et al. (2010) ugriz JHKS in prep. KIC ugriz

Tying SDSS ugriz to BV(RI)C Stripe 82 Star clusters Casagrande et al. (in prep.)

IRFM on SDSS-SEGUE SEGUE (Sloan Extension for Galactic Understanding and Exploration): low resolution (R~2000) spectra for several 10 5 stars. Stellar parameters derived via SSPP pipeline (Lee et al. 2008a,b; Allende Prieto et al. 2008). Casagrande et al. (in prep.)

IRFM on KIC (u)griz Pinsonneault et al. (2011) g r KIC (Kepler Input Catalogue): (u)griz Teff [Fe/H] logg E(B-V) much much more (Brown et al. 2011) i z based on stars in common between Sloan and KIC

IRFM on KIC Molenda-Zakowicz et al. (2010) KIC (Kepler Input Catalogue): (u)griz Teff [Fe/H] logg E(B-V) much much more (Brown et al. 2011) IRFM-KIC Teff from Silva Aguirre et al. (2011) Pinsonneault et al. (2011)

IRFM on KIC (e.g. Hekker et al. 2009, 2011, Stello et al. 2009) from Silva Aguirre et al. (2011)

F Bol = θ 2 2 σt 4 eff : a useful by-product! θ = 0.6 ± 1.7% T eff = 18 ± 50K

SCALING RELATIONS DISTANCES! work in progress, with V. Silva-Aguirre,W.J. Chaplin, A. Miglio Photometry (IRFM) T eff F Bol θ

?

Extinction F(λ) F(λ)10 0.4A λ AV=0 AV=0.3 AV=0.9 T eff = 4500K / log(g) = 2.5 / [Fe/H] = 0 Δm= Δm= 0.48 1.45 0.37 1.10 0.27 0.81 0.21 0.63 0.15 0.46 0.09 0.26 0.05 0.15 0.03 0.09 u g r i z J H K

Extinction AV=0 AV=0.3 AV=0.9 T eff = 4500K / log(g) = 2.5 / [Fe/H] = 0 Δm= Δm= 0.48 1.45 0.37 1.10 0.27 0.81 0.21 0.63 0.15 0.46 0.09 0.26 0.05 0.15 0.03 0.09 u g r i z J H K +100K systematic +300K systematic

Extinction AV=0 AV=0.3 E(B-V)= 0.01 ΔTeff= 50 K AV=0.9 T eff = 4500K / log(g) = 2.5 / [Fe/H] = 0 Δm= Δm= 0.48 1.45 0.37 1.10 0.27 0.81 0.21 0.63 0.15 0.46 0.09 0.26 0.05 0.15 0.03 0.09 u g r i z J H K -500K systematic! -1500K systematic!

E(B-V) Schlegel map KIC Schlegel-KIC D sin b 1 e h

Intermediate band photometry: Strömgren system (b y) m 1 =(v b) (b y) c 1 =(u v) (v b) β = β w β n Onehag et al. (2009) continuum slope blanketing at 4100 A Balmer discontinuity H β line Teff [Fe/H] log(g) E(B-V) e.g. Bessell (2005) Intrinsic colour-calibration to cope with reddening (e.g. Olsen 1984; Schuster & Nissen 1989; Karatas & Schuster 2010)

Strömgren [Fe/H] photometric [Fe/H] vs. HARPS high-res spectra (Sousa et al. 2011) Casagrande et al. (2011)

[α/fe]? αfe spectroscopic sample

Broad-band [Fe/H]? Historically, yes (UV excess δ(u-b), e.g. Sandage & Ellen 1959, Wallerstein 1962; Eggen et al. 1962) Arnadottir et al. (2010) ugriz system originally devised for extragalactic purposes (i.e. as much flux as you can) not optimal for metallicities good u band data are needed See also Arnadottir et al. (2010) for a discussion of logg (g) sensitivity. Bottom line: rough log(g) estimates are possible

Bridging Stellar and Galactic astronomy Broad-band photometry: Teff FBol θ Metallicity distribution function Intermediate-band photometry [Fe/H] E(B-V) ~log(g) Age-metallicity relation Asteroseismology M R L ages (differential) distances Metallicity gradients Metallicity gradient(time) Radial velocities from APOGEE ORBITS

Bridging Stellar and Galactic astronomy Geneva-Copenhagen Survey: Solar Neighbourhood (40pc) ~14000FGK dwarf Nördstrom et al. (2004), Holmberg et al. (2007,2009), Casagrande et al. (2011) kinematic (U,V,W) Hipparcos (distances) Broad-band photometry: T eff, F Bol Strömgren colours: [Fe/H], E(B-V)

Age-Metallicity Distribution Function from isochrones (Solar Neighbourhood) how typical is the Sun? gas infall rate (e.g. Lynden-Bell 1975; Chiappini et al. 1997) Casagrande et al. (2011) stellar radial migration in the disc (Roskar et al. 2008, Schönrich & Binney 2009)

age-[fe/h]-αfe from isochrones Schönrich & Binney (2009) Thick disc: old, alpha-enhanced, up to super solar! Constraining thin/thick disc formation mechanism (e.g. migration, merging, accretion?) GCS revision, Casagrande et al. (2011) Loebman et al. (2010)

Gradient(s)

Bridging Stellar and Galactic astronomy Geneva-Copenhagen Survey: Solar Neighbourhood (40pc) ~14000FGK dwarf Nördstrom et al. (2004), Holmberg et al. (2007,2009), Casagrande et al. (2011) kinematic (U,V,W) Same (or better!) constraints from fields in the Hipparcos (distances) Galaxy other than the Solar Neighbourhood! Broad-band photometry: T eff, F Bol Strömgren colours: [Fe/H], E(B-V)) Credit: Carter Roberts

Epilogue Photometry a wealth of information reliable stellar parameters (IRFM: Teff, FBol, θ) Teff in KIC are too cool complementary to asteroseismic parameters (distances) (www.mpa-garching.mpg.de/~luca) Reddening and other stories intermediate band photometry: reddening, metallicity (surface gravities) From stars to the Galaxy from fundamental properties of stars to fundamental properties of the Galaxy (gradients, age-metallicity, agechemistry-kinematic interplay, etc..)