Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer

Similar documents
물 - 에탄올공비증류공정의최적화 공주대학교화학공학부조정호

Optimization study on the azeotropic distillation process for isopropyl alcohol dehydration

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

Azeotropic distillation Example 1

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

WS Prediction of the carbon deposition in steam reforming unit (Equilibrium reaction calculation in Gibbs Reactor)

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Steady State Design for the Separation of Acetone-Chloroform Maximum Boiling Azeotrope Using Three Different Solvents

Phase Separation Degree of Freedom Analysis. Binary Vapor-Liquid Systems. Azeotropic Systems. - Gibbs phase rule F C P 2 -General analysis

LATEST TECHNOLOGY IN Safe handling & Recovery OF Solvents in Pharma Industry

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

Heterogeneous Azeotropic Distillation Operational Policies and Control

Separation Trains Azeotropes. S,S&L Chapter 9.5 Terry A. Ring Chemical Engineering University of Utah

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

Distillation is the most widely used separation

CHEMISTRY Topic #2: Thermochemistry and Electrochemistry What Makes Reactions Go? Fall 2018 Dr. Susan Findlay See Exercises in Topic 8

Dehydration of Aqueous Ethanol Mixtures by Extractive Distillation

DESIGN AND CONTROL OF BUTYL ACRYLATE REACTIVE DISTILLATION COLUMN SYSTEM. I-Lung Chien and Kai-Luen Zeng

SIMULATION OF ETHANOL EXTRACTIVE DISTILLATION WITH A GLYCOLS MIXTURE AS ENTRAINER

Revamp of Saturated Gas Concentration Unit (SGCU)

"Thermodynamic Analysis of Processes for Hydrogen Generation by Decomposition of Water"

Distillation Course MSO2015

Optimization of the Sulfolane Extraction Plant Based on Modeling and Simulation


ECH 4224L Unit Operations Lab I Thin Film Evaporator. Introduction. Objective

Separation of ternary heteroazeotropic mixtures in a closed multivessel batch distillation decanter hybrid

Experimental and Simulation Study on the Reactive Distillation Process for the Production of Ethyl Acetate

Energy and Energy Balances

Dividing wall columns for heterogeneous azeotropic distillation

Azeotropic Distillation Methods. Dr. Stathis Skouras, Gas Processing and LNG RDI Centre Trondheim, Statoil, Norway

Figure 4-1: Pretreatment schematic

Thermally Coupled Distillation Systems: Study of an Energy-efficient Reactive Case

"Multiple Steady States in Heterogeneous Azeotropic Distillation"

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist

All Rights Reserved. Armando B. Corripio, PhD, P.E., Multicomponent Distillation Column Specifications... 2

Modeling and Simulation of Distillation + Pervaporation Hybrid Unit: Study of IPA - Water Separation

Level 4: General structure of separation system

Group contribution methodsðideal tools for the synthesis and design of separation processes*

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

Distillation. This is often given as the definition of relative volatility, it can be calculated directly from vapor-liquid equilibrium data.

Improvement of separation process of synthesizing MIBK by the isopropanol one-step method

Distillation is a method of separating mixtures based

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Exam 3 Solutions. ClO g. At 200 K and a total pressure of 1.0 bar, the partial pressure ratio for the chlorine-containing compounds is p ClO2

Triple Column Pressure-Swing Distillation for Ternary Mixture of Methyl Ethyl Ketone /Isopropanol /Ethanol

Distillation. Presented by : Nabanita Deka

Chapter 2 Equilibria, Bubble Points, Dewpoints, Flash Calculations, and Activity Coefficients

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Fuel, Air, and Combustion Thermodynamics

IV Distillation Sequencing

A case study on separation of IPA-water mixture by extractive distillation using aspen plus

Hsiao-Ping Huang, Hao-Yeh Lee, and Tang-Kai GauI-Lung Chien

Solid-Liquid Extraction

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1

MODULE 5: DISTILLATION

Use the Equations given in your notes to solve the Colligative Property Questions. Freezing Boiling Point ( C)

Liquid liquid equilibria of aqueous mixtures containing selected dibasic esters and/or methanol

Comparison of Conventional Extractive Distillation and Heat Integrated Extractive Distillation for Separating Tetrahydrofuran/Ethanol/Water

DETERMINATION OF OPTIMAL ENERGY EFFICIENT SEPARATION SCHEMES BASED ON DRIVING FORCES

Thermodynamics, Design, Simulation and Benchmarking of Biofuel Processes

DATA THAT YOU MAY USE UNITS Conventional Volume ml or cm 3 = cm 3 or 10-3 dm 3 Liter (L) = dm 3 Pressure atm = 760 torr = Pa CONSTANTS

CH 2: SOLUTIONS

Reactors. Reaction Classifications

Comprehend and execute the 10 elements of effective problem

Chapter Solutions. MockTime.com. (a) M urea (b) 0.01 M KNO3 (c) 0.01 M Na2 SO4 (d) M glucose Ans: (c)

Modified Raoult's Law and Excess Gibbs Free Energy

Subject : Chemistry Class : XII Chapter-2.Solutions Work Sheet ( WS 2. 1) Topic- 2.1 Henry s & Raoult s Laws

Solving mass transfer problems on the computer using Mathcad


Solution KEY CONCEPTS

A comparative study on the recovery of 1,2-dichloroethane and the removal of benzene contained in the byproducts of VCM process

VAPOR LIQUID EQUILIBRIUM AND RESIDUE CURVE MAP FOR ACETIC ACID-WATER-ETHYL ACETATE TERNARY SYSTEM

Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

ASIAN JOURNAL OF CHEMISTRY

Factors that Effect the Rate of Solvation

Status and results of group contribution methods

Synthesis of Azeotropic Separation Systems by Case-Based Reasoning

Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent

SOLUTION CONCENTRATIONS

SIMULATION OF THE TETRAHYDROFURAN DEHYDRATION PROCESS BY EXTRACTIVE DISTILLATION

Chapter 10. Vapor/Liquid Equilibrium: Introduction

Simulation of the Tetrahydrofuran Dehydration Process by Extractive Distillation in Aspen Plus

Process Intensification for Ethyl Lactate Production Using Reactive Distillation

ENTRAINER-ENHANCED REACTIVE DISTILLATION

EXPERIMENT 7 - Distillation Separation of a Mixture

Effect of the Temperature in the Decanter on Total Annual Cost of the Separation Process for Binary Heterogeneous Azeotropic Mixture

Extraction of Phenol from Industrial Water Using Different Solvents

SIMULATION ANALYSIS OF FULLY THERMALLY COUPLED DISTILLATION COLUMN

PRESSURE SWING BATCH DISTILLATION FOR HOMOGENOUS AZEOTROPIC SEPARATION

Separation Trains. Sieder et. al. Chapter 9 and 13. Terry A Ring Chemical Engineering University of Utah

Feasibility Study of Heterogeneous Batch Extractive Distillation

Stoichiometric Reactor Module

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

DETERMINATION AND PREDICTION OF THE ISOBARIC VAPOR- LIQUID-LIQUID EQUILIBRIUM DATA

FORMULA SHEET (tear off)

New Algorithm for the Determination of Product Sequences of Batch Azeotropic and Pressure Swing Distillation

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Transcription:

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer 2013 년 9 월 23 일 ( 월 ) 공주대학교화학공학부조정호 Limit of Distillation by Azeotrope 1.0 Ethanol / Water System Distillation range is restricted by the azeotropic point. r Mole Fraction of Ethanol Vapo 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Liquid Mole Fraction of Ethanol Binary azeotropic mixtures, such as ethanol/water and IPA/water, can be separated into their pure components by distillation by the addition of a third component, so called the entrainer, which forms a ternary azeotrope with a lower boiling point than any binary azeotrope Azeotropic Distillation 2

Separation of Azeotropic Mixture Shift the Azeotropic Point by Changing Pressure. Supercritical Fluid Extraction Using Supercritical CO 2 Solvent Pervaporation Method: Proposed by SKEC Vacuum Distillation Azeotrope between ethanol and water disappears at 11.5kPa. Add the Third Component. Azeotropic Distillation: Entrainer (Benzene, CHX, NC5) Extractive Distillation: Solvent (Ethylene Glycol) Azeotropic Distillation 3 Azeotropic vs. Extractive Distillation (1) Azeotropic distillation By forming a ternary heterogeneous azeotrope lower than any other binary azeotropic temperatures, nearly pure ethanol can be obtained as a bottom product in an azeotropic distillation column. Ethanol is obtained as a bottom product from an azeotropic distillation column using an entrainer such as benzene or normal pentane. Extractive distillation By adding a solvent which is exclusively familiar with a wanted component in a feed mixture, a desired component can be obtained in an extractive distillation column overhead. Ethanol is obtained as a top product from an extractive distillation with ethylene glycol solvent. Azeotropic Distillation 4

Azeotropic vs. Extractive Distillation (1) RECYCLE UPPER PHASE LOWER PHASE SOLVENT PURE ETHANOL FEED FEED PURE ETHANOL Azeotropic Distillation Extractive Distillation Azeotropic Distillation 5 Principles of Azeotropic Distillation Ethanol 1.0 P.9 A II F.8.7 A : 78.07 o C C : 69.31 o C B : 67.99 o C D : 63.88 o C.6.5 B.4.3.2 G V R I D W III.1 C 0.0 0.0.1.2.3.4.5.6.7.8.9 1.0 Benzene Only mixtures in region II will give the desired products of pure ethanol as a bottom product. Water Aqueous ethanol can be separated into their pure components by distillation by the addition of a third component, so called the entrainer, which forms a ternary heterogeneous azeotrope with a lower than any other binary azeotropes. Azeotropic Distillation 6

How to Select an Entrainer Ethanol P 1.0.9.8.7 B.6.5.4.3.2 II I R A G F III V D A : 78.07 o C B : 75.08 o C C : 73.44 o C D : 69.94 o C W.1 0.0 Ether C 0.0.1.2.3.4.5.6.7.8.9 1.0 Water In this case, pure ethanol cannot be obtained since G is in region III. Azeotropic Distillation 7 Homogeneous Azeotrope (1): Ethanol-Water 105 100 Temperature ( o C ) 95 90 85 80 75 0.0 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Ethanol Azeotropic Distillation 8

Homogeneous Azeotrope (2): Ethanol-Benzene 82 80 Temperature ( o C ) 78 76 74 72 70 68 66 0.0 0.2 0.4 0.6 0.8 1.0 Mole Fraction of Ethanol Azeotropic Distillation 9 Heterogeneous Azeotrope (3): Benzene-Water Azeotropic Distillation 10

Theory of Azeotropic Distillation (I) Ethanol / Benzene Benzene / Water Ethanol / Water Azeotropic Distillation 11 Theory of Azeotropic Distillation (II) Ethanol Water is concentrated on vapor side. Highly interaction Ethanol Benzene H 2 O Dew point temperature Benzene valley H 2 O Azeotropic Distillation 12

Theory of Extractive Distillation Ethanol Ethanol is concentrated on vapor side. Ethanol H2O EG Highly interaction EG H 2 O Azeotropic Distillation 13 Configuration of Azeotropic Distillation Recycle stream Decanter Feed Concentrated ethanol Upper phase Lower phase Concentrator Azeo Column Stripper Waste water Pure ethanol Waste water Azeotropic Distillation 14

Problem: Ethanol Dehydration Feedstock information Feed Composition 1) Ethanol : 10mole% 2) Water : 90mole% Feed Condition 1) Inlet Temperature : 25 o C 2) Inlet Pressure : 200 kpa Flow Rate 1) 100 Kg-mole/hr Entrainer: Cyclohexane Cooling Medium: Cooling water 1) In/Out Temperature : 32 o C/40 o C 2) Decanter Operating Temperature : 45 o C Azeotropic Distillation 15 Simulation Procedure Step 1: Selection of Proper Thermo Model & Construction of Binodal Curve Step 2: Finding Binary & Ternary Azeotropic Points Step 3: Construction of Binary & Ternary Residual Curves Step 4: Concentrator Simulation Step 5: Azeotropic Column Simulation Step 6: Azeo + Dryer(Stripper) Column Simulation Step 7: Simulation of Overall Azeotropic Distillation Unit Step 8: Optimization of Ethanol Dehydration Process Azeotropic Distillation 16

Step 1a: Selection of Proper Thermo. Model NRTL. This model has up to 8 adjustable binary parameters that can be fitted to data. ln i j G k G ji G ij ki ji x ijj x k j a ijj j bij T ij k x G j G c T kj ij ij 2 ij x exp T k ij ij l k x G l G lj kj x k lj Azeotropic Distillation 17 Step 1b: Construction of Binodal Curve CHX 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 Binodal Curve Construction using NRTL 00 0.0 1.0 1) Water 0.9 2) Ethanol 0.8 3) Cyclohexane 0.7 Temperature = 45 o 0.6 C 0.5 Binary Interaction Parameters Ethanol 0.1 Plait point 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.4 0.3 0.2 0.1 Water Comp I Comp J A(I,J) A(J,I) (I,J) 1 2 721.10 437.83 0.4685 1 3 1,225.89 2,807.80 0.1600 2 3-60.00 660.00 0.3000 Azeotropic Distillation 18

Step 2a: Finding Azeotropes (Ethanol+Water) Step-2a.prz Ethanol=0.8839 mole fraction Azeotropic Distillation 19 Step 2a: Finding Azeotropes (Ethanol+Water) STREAM ID AZEO L V NAME PHASE LIQUID LIQUID VAPOR THERMO ID NRTL01 NRTL01 NRTL01 FLUID MOLAR FRACTIONS 1 ETHANOL 0.8839 0.8839 0.8839 2 H2O 0.1161 0.1161 0.1161 3 CH 0.0000 0.0000 0.0000 TOTAL RATE, KG-MOL/HR 1.0000 1.0000 1.0000 TEMPERATURE, C 78.1046 78.1047 78.1047 PRESSURE, KG/CM2 1.0330 1.0330 1.0330 ENTHALPY, M*KCAL/HR 2.1269E-03 2.1269E-03 0.01140114 MOLECULAR WEIGHT 42.8113 42.8113 42.8113 MOLE FRAC VAPOR 0.0000 0.0000 1.0000 MOLE FRAC LIQUID 1.0000 1.0000 0.0000 Azeotropic Distillation 20

Step 2b: Finding Azeotropes (Ethanol+CHX) Step-2b.prz Ethanol=0.4515 mole fraction Azeotropic Distillation 21 Step 2b: Finding Azeotropes (Ethanol+CHX) STREAM ID AZEO L V NAME PHASE LIQUID LIQUID VAPOR THERMO ID NRTL01 NRTL01 NRTL01 FLUID MOLAR FRACTIONS 1 ETHANOL 0.4515 0.4515 0.4515 2 H2O 0.0000 0.0000 0.0000 3 CH 0.5485 0.5485 0.5485 TOTAL RATE, KG-MOL/HR 1.0000 0.9999 1.0000 TEMPERATURE, C 64.7286 64.7286 64.7286 PRESSURE, KG/CM2 1.0330 1.0330 1.0330 ENTHALPY, M*KCAL/HR 2.1454E-03 2.1451E-03 0.01050105 MOLECULAR WEIGHT 66.9635 66.9635 66.9636 MOLE FRAC VAPOR 0.0000 0.0000 1.0000 MOLE FRAC LIQUID 1.0000 1.0000 0.0000 Azeotropic Distillation 22

Step 2c: Finding Azeotropes (Water+CHX) Step-2c.prz Cyclohexane=0.7017 mole fraction Azeotropic Distillation 23 Step 2c: Finding Azeotropes (Water+CHX) STREAM ID AZEO L V NAME PHASE LIQUID LIQUID VAPOR THERMO ID ALCO01 ALCO01 ALCO01 FLUID MOLAR FRACTIONS 1 ETHANOL 0.0000 0.0000 0.0000 2 H2O 0.2983 0.2983 0.2983 3 CH 0.7017 0.7017 0.7017 TOTAL RATE, KG-MOL/HR 1.0000 1.0000 1.0000 TEMPERATURE, C 69.2771 69.2771 69.2771 PRESSURE, KG/CM2 1.0330 1.0330 1.0330 ENTHALPY, M*KCAL/HR 2.2118E-032118 2.2118E-032118 0.01040104 MOLECULAR WEIGHT 64.4300 64.4300 64.4300 MOLE FRAC VAPOR 0.0000 0.0000 1.0000 MOLE FRAC TOTAL LIQUID 1.0000 1.0000 0.0000 MOLE FRAC LIQUID1 0.7025 0.7025 N/A MOLE FRAC LIQUID2 0.2975 0.2975 N/A Azeotropic Distillation 24

Step 2d: Finding Azeotropes (Ethanol+Water+CHX) Step-2d.prz Ethanol=0.3239, Water=0.1495 mole fraction Azeotropic Distillation 25 Step 2d: Finding Azeotropes (Ethanol+Water+CHX) STREAM ID AZEO L V NAME PHASE LIQUID LIQUID VAPOR THERMO ID ALCO01 ALCO01 ALCO01 FLUID MOLAR FRACTIONS 1 ETHANOL 0.3239 0.3239 0.3239 2 H2O 0.1495 0.1495 0.1495 3 CH 0.5266 0.5266 0.5266 TOTAL RATE, KG-MOL/HR 1.0000 1.0000 1.0000 TEMPERATURE, C 62.2956 62.2955 62.2955 PRESSURE, KG/CM2 1.0330 1.0330 1.0330 ENTHALPY, M*KCAL/HR 1.9549E-03 1.9549E-03 0.01050105 MOLECULAR WEIGHT 61.9354 61.9354 61.9354 MOLE FRAC VAPOR 0.0000 0.0000 1.0000 MOLE FRAC TOTAL LIQUID 1.0000 1.0000 0.0000 MOLE FRAC LIQUID1 0.5551 0.5551 N/A MOLE FRAC LIQUID2 0.4449 0.4449 N/A Azeotropic Distillation 26

Results for Step 2 0.2 Ethanol 0.1 A: 78.105 o C, B: 64.729 o C 0.0 1.0 C: 69.277 o C, D: 62.296 296 o C 0.9 A 0.8 0.3 0.7 0.7 B 0.6 0.5 0.4 D 0.6 0.5 0.4 03 0.3 Entrainer Selection Criteria 1 0.8 0.2 CHX 0.9 0.1 1.0 C 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 Water Azeotropic Distillation 27 Step 3: Construction of Residual Curves 0.3 0.2 Ethanol 0.1 II 0.0 1.0 0.9 A 0.8 0.7 Entrainer Selection Criteria 2 Only mixtures in region II will give the desired products of pure ethanol as a bottom product. 0.4 0.6 0.7 B 0.6 0.5 D 0.5 0.4 0.3 CHX 0.8 I III 0.9 0.1 1.0 C 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 Water 0.2 Azeotropic Distillation 28

Step 3: Construction of Residual Curves Ethanol 1.0 0.9 A 0.8 0.7 0.6 II 0.5 B 0.4 0.3 0.2 0.1 D C III 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Cyclohexane Azeotropic Distillation 29 I Water Step 3a: Feed having composition in region I Region 01.prz Feedstock Composition Mole % Water 10.00 Ethanol 20.00 CHX 70.00 Total Flow 100.00 Top Product Composition Mole % Water 16.06 Ethanol 33.47 CHX 50.46 Total Flow 59.75 Bottom Product Composition Mole % Water 1.00 Ethanol - CHX 99.00 Total Flow 40.25 Azeotropic Distillation 30

Step 3a: Stream Summary STREAM ID Composition Mole fraction 1 2 3 NAME Water 0.1495 PHASE Ethanol 0.3239 LIQUID LIQUID LIQUID THERMO ID NRTL01 NRTL01 NRTL01 CHX 0.5266 FLUID MOLAR FRACTIONS 1 WATER 0.1000 0.1606 1.0000E-02 2 ETHANOL 0.2000 0.3347 0.0000 3 CH 0.7000 0.5046 0.9900 TOTAL RATE, KG-MOL/HR 100.0001 59.7473 40.2528 TEMPERATURE, C 25.0000 44.0000 82.4224 PRESSURE, BAR 2.5000 1.0340 1.5890 ENTHALPY, M*KJ/HR 0.3362 0.3340 0.5312 MOLECULAR WEIGHT 69.9282 60.7848 83.4998 MOLE FRAC VAPOR 0.0000 0.0000 0.0000 MOLE FRAC TOTAL LIQUID 1.0000 1.0000 1.0000 MOLE FRAC LIQUID1 0.7323 0.5207 0.9913 MOLE FRAC LIQUID2 0.2677 0.4793 8.7310E-03 Azeotropic Distillation 31 Step 3b: Feed having composition in region III Region 03.prz Feedstock Composition Mole % Water 50.00 Ethanol 20.00 CHX 30.00 Total Flow 100.00 Top Product Composition Mole % Water 16.00 Ethanol 33.55 CHX 50.45 Total Flow 59.04 Bottom Product Composition Mole % Water 99.00 Ethanol 0.33 CHX 0.67 Total Flow 40.96 Azeotropic Distillation 32

Step 3b: Stream Summary STREAM ID Composition Mole fraction 1 2 3 NAME Water 0.1495 PHASE Ethanol 0.3239 LIQUID LIQUID LIQUID THERMO ID NRTL01 NRTL01 NRTL01 CHX 0.5266 FLUID MOLAR FRACTIONS 1 WATER 0.5000 0.1600 0.9900 2 ETHANOL 0.2000 0.3355 4.7329E-03 3 CH 0.3000 0.5045 5.2671E-03 TOTAL RATE, KG-MOL/HR 100.0001 59.0365 40.9636 TEMPERATURE, C 25.0000 44.0000 81.9645 PRESSURE, BAR 2.5000 1.0340 1.5890 ENTHALPY, M*KJ/HR 0.2614 0.3301 0.2556 MOLECULAR WEIGHT 43.4698 60.7981 18.4965 MOLE FRAC VAPOR 0.0000 0.0000 0.0000 MOLE FRAC TOTAL LIQUID 1.0000 1.0000 1.0000 MOLE FRAC LIQUID1 0.3095 0.5204 5.2241E-03 MOLE FRAC LIQUID2 0.6905 0.4796 0.9948 Azeotropic Distillation 33 Step 3c: Feed having composition in region II Region 02.prz Feedstock Composition Mole % Water 5.00 Ethanol 70.00 CHX 25.00 Total Flow 100.00 Top Product Composition Mole % Water 24.74 Ethanol 27.23 CHX 48.03 Total Flow 40.41 Bottom Product Composition Mole % Water 0.00 Ethanol 99.00 CHX 1.00 Total Flow 59.59 Azeotropic Distillation 34

Step 3c: Stream Summary STREAM ID Composition Mole fraction 1 2 3 NAME Water 0.1495 PHASE Ethanol 0.3239 LIQUID LIQUID LIQUID THERMO ID NRTL01 NRTL01 NRTL01 CHX 0.5266 FLUID MOLAR FRACTIONS 1 WATER 0.1000 0.1606 0.0100 2 ETHANOL 0.6000 0.3373 0.9900 3 CH 0.3000 0.5021 9.3357E-11 TOTAL RATE, KG-MOL/HR 100.0001 59.7492 40.2509 TEMPERATURE, C 25.0000 59.1697 90.1506 PRESSURE, BAR 2.5000 1.0340 1.5890 ENTHALPY, M*KJ/HR 0.2936 0.4575 0.4415 MOLECULAR WEIGHT 54.6913 60.6889 45.7885 MOLE FRAC VAPOR 0.0000 0.0000 0.0000 MOLE FRAC LIQUID 1.0000 1.0000 1.0000 Azeotropic Distillation 35 Step 4: Concentrator Simulation Basis: Feed = 100 Kg-mole/hr x F = 0.10 Feed Concentrated ethanol Ethanol Mole Balance F x F = D x D (Nearly Pure Water at Column Bottom) Concentrator Waste water F xf F x D x D x azeo F 1000.1 0.88 11.36 Azeotropic Distillation 36

Initial Estimates for Concentrator Azeotropic Distillation 37 Product Specifications & Variables Azeotropic Distillation 38

Stream Summary Around Concentrator STREAM ID 1 2 3 NAME PHASE LIQUID LIQUID LIQUID THERMO ID NRTL01 NRTL01 NRTL01 FLUID MOLAR PERCENTS 1 ETHANOL 10.0000 80.7992 0.1000 2 WATER 90.0000 19.2008 99.9000 TOTAL RATE, KG-MOL/HR 100.0001 12.2678 87.7323 TEMPERATURE, C 25.0000 45.0000 112.2049 PRESSURE, KG/CM2 2.5000 1.0330 1.5890 ENTHALPY, M*KCAL/HR 0.0470 0.0139 0.1777 MOLECULAR WEIGHT 20.8205 40.6832 18.0431 MOLE FRAC VAPOR 0.0000 0.0000 0.0000 MOLE FRAC LIQUID 1.0000 1.0000 1.0000 Azeotropic Distillation 39 Step 5a: Azeotropic Column Simulation V F 2 F Composition of Stream F Component Mole % Ethanol 80.7992 Water 19.2008 Flow Rate 72.2608 K-mol/hr R Azeo Column W P Azeotropic Distillation 40

Step 5b: Decanter Simulation V R W Assume OVHD Vapor Composition, V around ternary azeotrope Mole % CHX 53.00 Ethanol 31.00 Water 16.00 Azeotropic Distillation 41 Step 5b: Decanter Simulation (Continued) TITLE PROJ=AZEOTROPE, PROB=FLASH,USER=J.H.CHO PRINT INPUT=ALL, RATE=M, FRACTION=M, PERCENT=M DIMENSION METRIC COMPONENT DATA LIBID 1,CH/2,ETHANOL/3,WATER THERMODYNAMIC DATA METHOD SYSTEM(VLLE)=NRTL, SET=NRTL01 STREAM DATA PROP STRM=V, TEMP=45, PRES=1.033, RATE(M)=100, & COMPOSITION(M)=1,53/2,31/3,16 UNIT OPERATIONS FLASH UID=COND, NAME=Condenser, KPRINT FEED V PRODUCT L=R, W=W ISO TEMPERATURE=45, PRESSURE=1.033 END V (Mole %) R (Mole %) W (Mole %) CHX 53.00 92.5560 4.2709 Ethanol 31.00 7.2189 60.2960 Water 16.00 0.2251 35.4331 Flow Rate 100 % 55.20 % 44.80 % Azeotropic Distillation 42

Step 5c: Component Mass Balance Around Azeo Column Water balance around Azeotropic Column 1 0.808 F 1 0.808 Azeo _ feed 12.2678 2 2.35542 0.192 F W V 2 0.48800.354331 F 2 F V R W 0. 15874V Azeo Column 0.15874V 2.35542 0.192 F -(1) 2 P Azeotropic Distillation 43 Step 5c: Component Mass Balance Around Azeo Column Ethanol balance around Azeotropic Column V 0.44800.60296 0.808 F2 V 0.27013V 0.808F F2 0. 33432V -(2) 2 F 2 F R W Combining Eq. (1) & (2): V 25.15131 K-mol/hr, F 2 8. 40859 K-mol/hr Azeo Column P 에탄올에대해서는 Aqueous phase 로나간모든에탄올이 Stripper 에서회수되어 F 2 로돌아온다고가정한다. Azeotropic Distillation 44

Step 5c: Component Mass Balance Around Azeo Column CHX flow from the decanter 25.15131 0.44800.042709 0. 48806 V K-mol/hr F 2 R F W Azeo Column P Azeotropic Distillation 45 Step 5: Azeotropic Distillation Column Simulation V F F 2 R W Bz Controller P Azeotropic Distillation 46

Step 7: Simulation of an Overall Azeotropic Unit Overall Process.prz Azeotropic Distillation 47 Future Works Minimization of overall reboiler heat duties by varying the top concentration of ethanol at concentrator top for threecolumns configuration Comparison of three-columns and two-columns configuration in ethanol dehydration using several entrainers Application of an environmentally-friendly entrainer, NC5 to obtain an absolute ethanol in azeotropic distillation Experimental works for ternary LLE rather than each binary VLE s & LLE Comparison of an extractive distillation process using solvent with an azeotropic distillation process using entrainer Azeotropic Distillation 48

The End. Azeotropic Distillation 49