Fermionic tensor networks

Similar documents
Fermionic tensor networks

Lecture 3: Tensor Product Ansatz

Simulation of fermionic lattice models in two dimensions with Projected Entangled-Pair States: Next-nearest neighbor Hamiltonians

arxiv: v2 [cond-mat.str-el] 28 Apr 2010

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

Quantum many-body systems and tensor networks: simulation methods and applications

Introduction to Tensor Networks: PEPS, Fermions, and More

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

The density matrix renormalization group and tensor network methods

Holographic Branching and Entanglement Renormalization

An introduction to tensornetwork

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

Tensor network renormalization

It from Qubit Summer School

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Matrix-Product states: Properties and Extensions

Tensor network renormalization

Time Evolving Block Decimation Algorithm

Time-dependent variational principle for quantum many-body systems

Rigorous free fermion entanglement renormalization from wavelets

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Scale invariance on the lattice

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Loop optimization for tensor network renormalization

Fermionic topological quantum states as tensor networks

Machine Learning with Quantum-Inspired Tensor Networks

Renormalization of Tensor- Network States Tao Xiang

Positive Tensor Network approach for simulating open quantum many-body systems

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz

arxiv: v2 [quant-ph] 31 Oct 2013

Renormalization of Tensor Network States

Spin liquid phases in strongly correlated lattice models

4 Matrix product states

Machine Learning with Tensor Networks

arxiv: v1 [cond-mat.str-el] 19 Jan 2012

Efficient description of many body systems with prjected entangled pair states

3 Symmetry Protected Topological Phase

Gapless Spin Liquids in Two Dimensions

arxiv: v1 [quant-ph] 6 Jun 2011

arxiv: v1 [quant-ph] 18 Jul 2017

Quantum Spin-Metals in Weak Mott Insulators

The Mott Metal-Insulator Transition

Simulation of Quantum Many-Body Systems

Excursion: MPS & DMRG

Quantum Convolutional Neural Networks

Holographic Geometries from Tensor Network States

Efficient time evolution of one-dimensional quantum systems

High-Temperature Criticality in Strongly Constrained Quantum Systems

News on tensor network algorithms

Quantum Hamiltonian Complexity. Itai Arad

Simulation of Quantum Many-Body Systems

The Density Matrix Renormalization Group: Introduction and Overview

Magnetism and Superconductivity in Decorated Lattices

Magnets, 1D quantum system, and quantum Phase transitions

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Advanced Computation for Complex Materials

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

2D Bose and Non-Fermi Liquid Metals

Matrix Product Operators: Algebras and Applications

MERA for Spin Chains with Critical Lines

Neural Network Representation of Tensor Network and Chiral States

arxiv: v1 [cond-mat.str-el] 1 Apr 2014

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Disentangling Topological Insulators by Tensor Networks

A quantum dynamical simulator Classical digital meets quantum analog

Quantum Information and Quantum Many-body Systems

Topological Kondo Insulators!

Many-Body physics meets Quantum Information

Simulations of Quantum Dimer Models

arxiv: v2 [cond-mat.str-el] 25 Aug 2011

Entanglement spectrum as a tool for onedimensional

Noise-resilient quantum circuits

Entanglement Renormalization and Wavelets

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

arxiv: v4 [quant-ph] 13 Mar 2013

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Entanglement spectrum and Matrix Product States

arxiv: v2 [quant-ph] 12 Aug 2008

Tensor Networks, Renormalization and Holography (overview)

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome

Critical Values for Electron Pairing in t U J V and t J V Models

Many Body Quantum Mechanics

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

From Path Integral to Tensor Networks for AdS/CFT

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Entanglement in Many-Body Fermion Systems

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Classical and quantum simulation of dissipative quantum many-body systems

Diffusion Monte Carlo

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Matrix Product States

Chiral spin liquids. Bela Bauer

Journal Club: Brief Introduction to Tensor Network

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Transcription:

Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank Verstraete ETH/EPFL: Bela Bauer, Matthias Troyer, Frederic Mila Acknowledgments: Luca Tagliacozzo, Robert Pfeifer P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, PRA 81, 010303(R) (2010) P. Corboz, G. Vidal, Phys. Rev. B 80, 165129 (2009) P. Corboz, R. Orus, B. Bauer, G. Vidal. PRB 81, 165104 (2010) P. Corboz, J. Jordan, G. Vidal, arxiv:1008:3937

Attack the sign problem sign problem cost exp( N k B T )

Overview: tensor networks in 1D and 2D 1D MPS Matrix-product state 1D MERA Multi-scale entanglement renormalization ansatz 1 2 3 4 5 6 7 8 Related to the famous densitymatrix renormalization group (DMRG) method i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 i 15 i 16 i 17 i 18 and more 1D tree tensor network... 2D (i)peps (infinite) projected pair-entangled state 2D MERA and more 2D tree tensor network String-bond states Entangledplaquette states...

Fermions in 2D & tensor networks Simulate fermions in 2D? Before April 2009: NO! Since April 2009: YES! P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, arxiv:0904:4151 C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, arxiv:0904.4667 C. Pineda, T. Barthel, J. Eisert, arxiv:0905.0669 P. Corboz, G. Vidal, Phys. Rev. B 80, 165129 (2009) T. Barthel, C. Pineda, J. Eisert, PRA 80, 042333 (2009) Q.-Qian Shi, S.-Hao Li, J-Hui Zhao, H-Qiang Zhou, arxiv:0907.5520 P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, 165104 (2010) S.-Hao Li, Q.-Qian Shi, H-Qiang Zhou, arxiv:1001:3343 I. Pizorn, F. Verstraete. arxiv:1003.2743 Z.-C. Gu, F. Verstraete, X.-G. Wen. arxiv:1004.2563...

Outline Short introduction to tensor networks Idea: efficient representation of quantum many-body states Examples: Tree Tensor Network, MERA, MPS, PEPS Fermionic systems in 2D & tensor networks Simple rules Computational cost compared to bosonic systems Results (ipeps) & comparison with other methods Free and interacting spinless fermions t-j model Summary: What s the status?

Tensor networks: Efficient representation of QMB states 6 site system Ψ = Tensor/multidimensional array Big tensor i 1 i 2 i 3 i 4 i 5 i 6 Ψ i1 i 2 i 3 i 4 i 5 i 6 i 1 i 2 i 3 i 4 i 5 i 6 D j1 j 2 j 3 j 1 j 2 j 3 possible?? B j 2 i 3 i 4 C j 3 A j 1 Ψ i1 i 2 i 3 i 4 i 5 i 6 i 5 i 6 i 1 i 2 i 3 i 4 i 5 i 6 Ψ i1 i 2 i 3 i 4 i 5 i 6 Ψ ~exp(n) many numbers vs i1 i 2 Ṽ i 1 i 2 i 3 i 4 i 5 i 6 Entanglement entropy General state S(L) L D Why is this (volume) Contraction: A j1 i1 i 2 B j 2 i 3 i 4 C j 3 j 1 j 2 j 3 Ψ Ψ poly( χ,n) numbers {, } dimension χ χ different states tensor network i 5 i 6 D j1 j 2 j 3 = Ψ i1 i 2 i 3 i 4 i 5 i Ground state (local Hamiltonian) 6 S(L) L D 1 Efficient (area law) representation! Note: Some (critical) ground states exhibit a logarithmic correction to the area law

Tree Tensor Network (1D) isometry L 2 τ coarsegrained lattice χ L 1 coarsegrained lattice L 0 microscopic lattice

The MERA (The Multi-scale Entanglement Renormalization Ansatz) G. Vidal, PRL 99, 220405 (2007), PRL 101, 110501 (2008) # relevant local states χ disentangler isometry L 2 τ coarsegrained lattice χ L 1 coarsegrained lattice χ 0 = d L 0 microscopic lattice KEY: Disentanglers reduce the amount of short-range entanglement Efficient ansatz for critical and non-critical systems in 1D

2D MERA (top view) Evenbly, Vidal. PRL 102, 180406 (2009) Original lattice Apply disentanglers Accounts for arealaw in 2D systems S(L) L χ τ = const Coarse-grained lattice Apply isometries

2D MERA represented as a 1D MERA Typical network ρ (lower half) 7 8 9 4 5 6 1 2 3 1 2... 9 w 1 w 2 w 3 w 4 u x u y u 3 4 1 2 1 2 3 4 1 2 3 4 1 2 2 1 1 2 1 2 3 4 1 2 3 4 1 2 H 1 2 3 4 3 4 1 2 1 2 3 4 1 2 3 4 ρ (upper half) Crossing lines play an important role for fermions!

MPS & PEPS 1D MPS 2D (i)peps Matrix-product state (Related to DMRG) D (infinite) projected pair-entangled state D 1 2 3 4 5 6 7 8 Physical indices (lattices sites) S. R. White, PRL 69, 2863 (1992) Fannes et al., CMP 144, 443 (1992) Östlund, Rommer, PRL 75, 3537 (1995) F. Verstraete, J. I. Cirac, cond-mat/0407066 Reproduces area-law in 1D S(L) =const Reproduces area-law in 2D S(L) L

Summary: Tensor network algorithms Structure (ansatz) Find the best (ground) state Ψ Compute observables Ψ O Ψ iterative optimization of individual tensors (energy minimization) imaginary time evolution Contraction of the tensor network exact / approximate

Bosons vs Fermions Ψ B (x 1,x 2 )=Ψ B (x 2,x 1 ) symmetric! Ψ F (x 1,x 2 )= Ψ F (x 2,x 1 ) antisymmetric! ˆbiˆbj = ˆb jˆbi operators commute ĉ i ĉ j = ĉ j ĉ i operators anticommute Crossings in a tensor network + ----=+ ignore crossings take care!

The swap tensor # Fermions even even odd even even odd odd odd Parity RULE: + + + -- Parity P of a state: { P = +1 P = 1 (even parity), even number of particles (odd parity), odd number of particles Replace crossing by swap tensor B i 1 i 2 j 2 j 1 B i 1i 2 j 2 j 1 = δ i1,j 1 δ i2,j 2 S(P (i 1 ),P(i 2 )) S(P (i 1 ),P(i 2 )) = 1 +1 if P (i 1 )=P (i 2 )= 1 otherwise Use parity preserving tensors: T i1 i 2...i M =0 if P (i 1 )P (i 2 )...P(i M ) = 1

Example Bosonic tensor network Fermionic tensor network EASY!!!

Fermionic operator networks State of 4 site system Ψ = i 1 i 2 i 3 i 4 Ψ i1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 { 0, 1} Bosons Tensor Ψ i1 i 2 i 3 i 4 j 1 j 2 A j 1 i1 i 2 D j1 j 2 B j 2 i 3 i 4 bosonic tensor network Contract i 1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 Fermions Tensor + fermionic ops ˆΨ i 1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 ˆD fermionic j 1 j 2 operator  ˆB network Contract + operator calculus  = A j 1 i1 i 2 i 1 i 2 j 1 = A j 1 i1 i 2 ĉ i 1 1 ĉ i 2 2 00 ĉj 1 1

Fermionic operator network Use anticommutation rules to evaluate fermionic operator network: Easy solution: Map it to a tensor network by replacing crossings by swap tensors

Cost of fermionic tensor networks?? ρ (lower half) w 1 w 2 w 3 w 4 u x u y u First thought: Many crossings many more tensors larger computational cost?? H NO! Same computational cost ρ (upper half)

The jump move = Jumps over tensors leave the tensor network invariant Follows form parity preserving tensors [ ˆT,ĉ k ]=0, if k/ sup[ ˆT ] Allows us to simplify the tensor network Final cost is the same as in a bosonic tensor network

Example of the jump move absorb now contract as usual! absorb

Message: Taking fermionic statistics into account is easy! Replace crossings by swap tensors & use parity preserving tensors Computational cost does not depend a priori on the particle statistics, but on the amount of entanglement in the system!

Computational cost Leading cost: O(D k ) MPS: k =3 PEPS: k 10...12 2D MERA: k = 16 polynomial scaling but large exponent! How large does have to be? D It depends on the amount of entanglement in the system! χ Bond dimension: D i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 i 15 i 16 i 17 i 18

Classification by entanglement Entanglement low high gapped systems gapless systems systems with 1D fermi surface S(L) L log L band insulators, valence-bond crystals, s-wave superconductors,... Heisenberg model, p-wave superconductors, Dirac Fermions,... free Fermions, Fermi-liquid type phases, bose-metals?

Overview: Results / benchmarks Free spinless fermions Finite systems (MERA, TTN) Finite systems (PEPS) Infinite systems (ipeps) Interacting spinless fermions Finite systems (MERA, TTN) Finite systems (PEPS) Phase diagram of t-v model (ipeps) t-j model Benchmark (ipeps) Phase diagram (ipeps) Corboz, Evenbly, Verstraete, Vidal, PRA 81, 010303(R) (2010), Corboz, Vidal, PRB 80, 165129 (2009) Pineda, Barthel, Eisert, arxiv:0905.0669 Kraus, Schuch, Verstraete, Cirac, arxiv:0904.4667 Pizorn, Verstraete. arxiv:1003.2743 Z.-C. Gu, F. Verstraete, X.-G. Wen. arxiv: 1004.2563 Corboz, Orus, Bauer, Vidal, PRB 81, 165104 (2010) Shi, Li, Zhao, Zhou, arxiv:0907.5520 Li, Shi, Zhou, arxiv:1001:3343

Non-interacting spinless fermions: infinite systems (ipeps) H free = rs [c rc s + c sc r γ(c rc s + c s c r )] 2λ r c rc r 4 3 10 2 γ 2 critical gapped Relative error of energy 10 3 10 4 10 5 10 6 10 7 γ=0 D=2 γ=0 D=4 γ=1 D=2 γ=1 D=4 γ=2 D=2 γ=2 D=4 D: bond dimension 1 1D Fermi surface 0 0 1 2 3 4 λ Li et al., PRB 74, 073103 (2006) 1 1.5 2 2.5 3 λ fast convergence with D in gapped phases slow convergence in phase with 1D Fermi surface

Correlators C(r) 0 0.05 0.1 γ=1, λ=1 (critical) exact D=2 D=4 D=6 5 0 5 x 10 3 γ=1, λ=3 (gapped) C(r) C(r,D) C ex (r) 0 2 4 6 8 10 10 0 10 1 10 2 10 3 10 4 10 5 10 2 10 3 10 4 0 2 4 6 8 10 0 2 4 6 8 10 r 10 0 10 2 10 4 10 6 10 8 10 10 10 3 10 4 10 5 10 6 10 7 10 8 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 r

Phase diagram of interacting spinless fermions (ipeps) Ĥ = t i,j ĉ i ĉj + H.c. µ i ĉ i ĉi + V i,j ĉ i ĉiĉ jĉj Restricted Hartree-Fock (HF) results: Woul&Langmann. J. Stat Phys. 139, 1033 (2010) metal (gapless) charge-density-wave (CDW, gapped) metal (gapless) 1st order PT 1st order PT metal (gapless) phase separation CDW phase separation metal (gapless) 0 0.5 1 n (filling)

ipeps vs Hartree-Fock Woul, Langmann. J. Stat Phys. 139, 1033 (2010) Corboz, Orus, Bauer, Vidal. PRB 81, 165104 (2010) 3 unstable phase separation region unstable phase separation region HF D=4 D=6 V 2 CDW line 1 metal metal 0 0 0.2 0.4 0.6 0.8 1 n qualitative agreement Phase boundary moves away from HF result with increasing D

ipeps vs Hartree-Fock Woul, Langmann. J. Stat Phys. 139, 1033 (2010) Corboz, Orus, Bauer, Vidal. PRB 81, 165104 (2010) 0.4 0.6 V =2 crossing of the energy of the two phases E s 0.8 1 1.2 HF metal HF CDW D=4 metal D=4 CDW D=6 metal D=6 CDW 1.4 0 0.5 1 1.5 2 µ D=4 result ~ HF result D=6: lower (better) energies in the metal phase

Adding a next-nearest neighbor hopping Ĥ = t i,j ĉ i ĉj + H.c. µ i ĉ i ĉi + V i,j ĉ i ĉiĉ jĉj Corboz, Jordan, Vidal, arxiv:1008:3937 t i,j ĉ iσĉjσ + H.c. Hartree-Fock phase diagram: Woul, Langmann. J. Stat Phys. 139, 1033 (2010) V =2 a) t = 0.4 metal PS CDW 0 0.274(1) 0.368(1) 0.5 n metal PS CDW Is b) there a stable doped CDW phase beyond Hartree-Fock? n 0 0.308 0.343 0.350 0.5 D=4 D=6 D=8 NO... (at least not for these parameters)

0.5 Adding a next-nearest neighbor hopping E s <n> S 2 2 0.4 0.2 0.3 0.4 3 0.6 2 0.8 1 HF metal HF CDW D=4 metal D=4 CDW D=6 metal D=6 CDW D=8 metal D=8 CDW Corboz, Jordan, Vidal, arxiv:1008:3937 n * =0.350(3) n * =0.343(3) doped CDW region n * =0.307(3) 0.5 0 0.5 1 µ

t-t -J model H t-j = t ijσ c iσ c jσ t ijσ c iσ c jσ + J ij(s i S j 1 4 n in j ) µ i n i Comparison with: L. Spanu, M. Lugas, F. Becca, S. Sorella. PRB 77, 024510 (2008). variational Monte Carlo (VMC) (Gutzwiller projected ansatz wf) state-of-the-art fixed node Monte Carlo (FNMC) 1 1.2 J/t =0.4, t /t = 0.2 1.4 E s 1.6 1.8 2 2.2 How about striped phases?? need larger unit cell!! D=2 D=4 D=6 D=8 VMC N=98 VMC N=162 FNMC N=98 FNMC N=162 D=8 results in between VMC and FNMC 0.9 0.92 0.94 0.96 0.98 1 n Corboz, Jordan, Vidal, arxiv:1008:3937

Summary: status This is useless! D 12 scaling is as bad as exponential! YES, we have the holy grail! We can now solve everything!

Summary: status Variational ansatz with no (little) bias & controllable accuracy. Accuracy depends on the amount of entanglement in the system Accurate results for gapped systems Competitive compared to other variational wave functions Systematic improvement upon mean-field solution - For which bond dimension is it converged? - Limited accuracy for gapless systems - no L log L scaling - High computational cost Combine with Monte Carlo sampling (Schuch et al, Sandvik&Vidal, Wang et al.) Exploit symmetries of a model (Singh et al, Bauer et al.) Improve optimization/contraction schemes