Supplementary information

Similar documents
Enantioselective Conjugate Addition of 3-Fluoro-Oxindoles to. Vinyl Sulfone: An Organocatalytic Access to Chiral. 3-Fluoro-3-Substituted Oxindoles

Supporting Information:

Supporting Information

Supporting Information

Supporting Information

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Supporting Information

Supporting Information

Synthesis of Aminophenanthrenes and Benzoquinolines via Hauser-Kraus Annulation of Sulfonyl Phthalide with Rauhut- Currier Adducts of Nitroalkenes

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Asymmetric Michael Addition of -Fluoro- -nitroalkanes to Nitroolefins: Facile Preparation of Fluorinated Amines and Tetrahydropyrimidines

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supplementary Figure 1. 1 H and 13 C NMR spectra for compound 1a

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

Supporting Information

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Amide Directed Cross-Coupling between Alkenes and Alkynes: A Regio- and Stereoselective Approach to Substituted (2Z,4Z)-Dienamides

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at C3 position

Supporting Information

Supporting Information:

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

hydroxyanthraquinones related to proisocrinins

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Enantioselective Organocatalytic Michael Addition of Malonate Esters to Nitro Olefins Using Bifunctional Cinchonine Derivatives

SUPPORTING INFORMATION. A simple asymmetric organocatalytic approach to optically active cyclohexenones

SUPPORTING INFORMATION

Supplementary information

Supplementary Materials for

Construction of Vicinal Quaternary Carbon Centers via Cobalt- Catalyzed Asymmetric Reverse Prenylation

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Supporting Information for

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Supporting Information

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Enantioselective Synthesis of Fused Heterocycles with Contiguous Stereogenic Centers by Chiral Phosphoric Acid-Catalyzed Symmetry Breaking

Fast and Flexible Synthesis of Pantothenic Acid and CJ-15,801.

Asymmetric Organocatalytic Strecker-Type Reactions of Aliphatic N,N- Dialkylhydrazones

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Supporting Information

Supporting Information

Copper-Catalyzed Oxidative Cyclization of Carboxylic Acids

Supporting Information

Supporting Information

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

Supplementary Material

Supporting Information

pyrazoles/isoxazoles library using ketene dithioacetals

Electronic Supplementary Information

Supporting Information

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

SYNTHESIS OF A 3-THIOMANNOSIDE

Synergistic Cu/Ir Catalysis. Table of Contents

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Electronic Supplementary Information for Catalytic Asymmetric Hydrophosphonylation of Ynones

Supporting Information

An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-keto esters

Singapore, #05 01, 28 Medical Drive, Singapore. PR China,

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Electronic Supplementary Material (ESI) for Medicinal Chemistry Communications This journal is The Royal Society of Chemistry 2012

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Divergent Synthesis of CF 3 -Substituted Polycyclic Skeletons Based on Control of Activation Site of Acid Catalysts

Poly(4-vinylimidazolium)s: A Highly Recyclable Organocatalyst Precursor for. Benzoin Condensation Reaction

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Supporting Information for

SUPPLEMENTARY INFORMATION

Supporting Information

Catalytic Conversion of Diazocarbonyl Compounds to Ketocarbonyl Compounds by 2,6-Dichloropyridine-N-oxide. China Corresponding Author

Organocatalytic enantioselective Michael addition of a kojic acid derivative to nitro olefins. Supporting Information

Supporting Information

guanidine bisurea bifunctional organocatalyst

SUPPLEMENTARY INFORMATION

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Scalable Synthesis of Fmoc-Protected GalNAc-Threonine Amino Acid and T N Antigen via Nickel Catalysis

Asymmetric Michael Addition Reactions of Nitroalkanes to 2-Furanones Catalyzed by Bifunctional Thiourea catalysts

A Catalytic Multicomponent Coupling Reaction for the Enantioselective Synthesis of Spiroacetals

Supporting Information. Identification and synthesis of impurities formed during sertindole

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Supporting Information

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline

Supplementary Materials. Table of contents

Indole Functionalization via Photoredox Gold Catalysis

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

A Total Synthesis of Paeoveitol

Transcription:

Supplementary information Construction of bispirooxindoles containing three quaternary stereocenters in a cascade using a single multifunctional organocatalyst Bin Tan 1, Nuno R. Candeias 1,2 & Carlos F. Barbas, III 1 * 1 The Skaggs Institute for Chemical Biology and Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037. 2 Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa. Fax: 858-784-2583; E-mail: carlos@scripps.edu Table of Contents General information...2 General procedure for preparation of 3-substituted oxindole (1a-h and 4)...3 General procedure for preparation of arylidenoxindoles (2a-h)....8 Typical Procedure for the construction of bispirocyclic oxindoles......12 Typical Procedure for the construction of bispirocyclic oxindoles with different esters 22 Changing protecting group.......27 Synthesis of the other enantiomer............28 Experimental procedure for the deprotection of product 3b. 29 Experimental procedure for synthesis of catalyst VIII.........30 Experimental procedure for synthesis of catalyst XI.........31 Proposed activation mode of catalyst and substrates...........32 Control experiment for the mechanism studies..........32 X-ray structures of 3e and 3p............34 NMR Spectra.......37 HPLC Chromatograms.......8-78 1 nature chemistry www.nature.com/naturechemistry 1

General information Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness) with QF 254 indicator. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Column chromatography was performed using EM Science 230-400-mesh silica gel. Columns were typically packed as slurry in hexane prior to use. Proton nuclear magnetic resonance spectra ( 1 H NMR) were recorded on Bruker AMX 500 spectrophotometer (CDCl 3 as solvent). Chemical shifts for 1 H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe 4 (δ 0.0) and relative to the signal of chloroform (δ 7.26, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nh. Coupling constants are reported as a J value in Hertz. Carbon nuclear magnetic resonance spectra ( 13 C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe 4 (δ 0.0) and relative to the signal of chloroform (δ 77.16, triplet). Enantioselectivities were determined by high performance liquid chromatography (HPLC) on Hatachi detectors ( = 254 nm) employing a Daicel Chiralpak AD-H. Absolute configuration of the products was determined by X-ray. High resolution mass spectrometry (HRMS) was performed by the Scripps Research Institute Mass Spectrometer Center. Racemic compounds were obtained by using 50 mol% DABCO as catalyst. 2 nature chemistry www.nature.com/naturechemistry 2

General procedure for preparation of arylideneoxindoles (1a-h and 4) 1. Jensen, T. & Madsen, R. J. Org. Chem. 2009, 74, 3990-3992. 2. Beccalli, E. M. & Marchesini, A. Tetrahedron, 1993, 49, 4741-4758. Method A: To a red suspension of benzyl protected intermediates (2.0 mmol) in MeOH (10 ml) was added 10% palladium on carbon catalyst (0.2 mmol). The insoluble mixture was stirred with a hydrogen balloon at room temperature for about 1 hour. After the red color disappeared, the mixture was diluted with DCM (20 ml), filtrated with celite and evaporated to give a residue, which was purified by column chromatography on silica gel to afford the desired product as a white solid. (Compound 1a, 1c, 1d, 1e, 1g) Method B: To a red suspension of benzyl protected intermediates (2.0 mmol) in CH 3 CN (10 ml) was added indium chloride (0.2 mmol) and sodium borohydride (4.0 mmol). After around 1 hour the color changed from red to pale yellow. The mixture was diluted with H 2 O (20 ml), extracted with ethyl acetate (1 x 20 ml) and DCM (1 x 20 ml), dried over Na 2 SO 4, filtered and evaporated to give a residue, which was purified by column chromatography on silica gel to afford the desired product as a white solid. (Compound 1b, 1f, 1h and 4) 1-Benzyl-3-(2-oxo-2-phenylethyl)indolin-2-one (1a) 1 H-NMR (500MHz, CDCl 3 ): 8.01-7.99 (m, 2H), 7.59-7.57 (m, 1H), 7.49-7.46 (m, 2H), 7.37-7.24 (m, 7H), 7.14 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 8.0 Hz, 3 nature chemistry www.nature.com/naturechemistry 3

1H), 4.98 (s, 2H), 4.18 (dd, J = 9.0, 3.0 Hz, 1H), 3.90 (dd, J = 18.0, 3.0 Hz, 1H), 3.41 (dd, J = 18.5, 9.0 Hz, 1H). 13 C-NMR (125 MHz, CDCl 3 ): 196.80, 177.77, 143.40, 136.32, 135.88, 133.45, 129.04, 128.76, 128.71, 128.68, 128.15, 127.96, 127.57, 124.38, 122.50, 109.03, 43.94, 41.20, 40.05. HRMS (ESI) calcd for [M+H] C 23 H 20 NO 2, m/z: 342.1488, observed: 342.1491. 1-Benzyl-3-(2-(4-fluorophenyl)-2-oxoethyl)indolin-2-one (1b) 1 H-NMR (500MHz, CDCl 3 ): 8.04-8.01 (m, 2H), 7.37-7.23 (m, 6H), 7.17-7.13 (m, 3H), 6.96 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 7.5 Hz, 1H), 4.97 (s, 2H), 4.16 (dd, J = 8.5, 3.0 Hz, 1H), 3.87 (dd, J = 18.0, 3.0 Hz, 1H), 3.45 (dd, J = 19.0, 9.0 Hz, 1H). 13 C-NMR (125 MHz, CDCl 3 ): 195.63, 178.10, 143.85, 136.27, 133.22, 133.20, 131.29, 131.22, 129.33, 129.20, 128.46, 128.03, 127.33, 124.75, 122.95, 116.34, 116.17, 109.51, 44.39, 41.62, 40.35. HRMS (ESI) calcd for [M+H] C 23 H 19 FNO 2, m/z: 360.1394, observed: 360.1402. 1-Benzyl-3-(2-(3-methoxyphenyl)-2-oxoethyl)indolin-2-one (1c) 1 H-NMR (500MHz, CDCl 3 ): 7.58 (d, J = 8.0 Hz, 1H), 7.52 (s, 1H), 7.39-7.32 (m, 5H), 7.29-7.24 (m, 2H), 7.17-7.12 (m, 2H), 6.97-6.94 (m, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 4.96 (d, J = 15.5 Hz, 1H), 4.16 (d, J = 16.0 Hz, 1H), 3.90-3.85 (m, 1H), 3.85 (s, 4 nature chemistry www.nature.com/naturechemistry 4

3H), 3.48 (dd, J = 18.0, 9.0 Hz, 1H). 13 C-NMR (125 MHz, CDCl 3 ): 197.09, 178.20, 160.31, 143.85, 138.10, 136.31, 130.11, 129.44, 129.20, 128.41, 128.01, 127.73, 124.77, 122.94, 121.26, 120.55, 112.65, 109.47, 55.89, 44.39, 41.68, 40.55. HRMS (ESI) calcd for [M+H] C 24 H 22 NO 3, m/z: 372.1594, observed: 372.1598. 1-Benzyl-3-(2-(furan-2-yl)-2-oxoethyl)indolin-2-one (1d) 1 H-NMR (500MHz, CDCl 3 ): 7.58 (d, J = 0.5 Hz, 1H), 7.36-7.23 (m, 7H), 7.16-7.13 (m, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.54 (dd, J = 3.5, 1.5 Hz, 1H), 4.96 (s, 2H), 4.14 (dd, J = 9.0, 3.0 Hz, 1H), 3.75 (dd, J = 18.0, 3.5 Hz, 1H), 3.34 (dd, J = 18.0, 9.0 Hz, 1H). 13 C-NMR (125 MHz, CDCl 3 ): 186.41, 177.89, 152.70, 147.06, 143.82, 136.30, 129.20, 129.15, 128.47, 128.00, 127.72, 124.81, 122.95, 117.92, 112.83, 109.49, 44.36, 41.29, 39.97. HRMS (ESI) calcd for [M+H] C 21 H 18 NO 3, m/z: 332.1281, observed: 332.1284. 1-Benzyl-3-(2-oxo-2-(thiophen-2-yl)ethyl)indolin-2-one (1e) 1 H-NMR (500MHz, CDCl 3 ): 7.76 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 9.5 Hz, 1H), 7.35-7.26 (m, 7H), 7.17-7.13 (m, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.00 (d, J = 15.5 Hz, 1H), 4.94 (d, J = 15.5 Hz, 1H), 4.16 (dd, J = 9.0, 2.5 Hz, 1H), 3.84 (dd, J = 17.5, 3.0 Hz, 1H), 3.40 (dd, J = 17.5, 9.0 Hz, 1H). 5 nature chemistry www.nature.com/naturechemistry 5

13 C-NMR (125 MHz, CDCl 3 ): 190.13, 177.89, 143.82, 143.79, 136.27, 134.42, 132.74, 129.20, 128.63, 128.48, 128.01, 127.73, 124.91, 122.98, 109.48, 100.00, 44.40, 41.67, 40.84. HRMS (ESI) calcd for [M+H] C 21 H 18 NO 2 S, m/z: 348.1053, observed: 348.1050. 1-Benzyl-5-bromo-3-(2-oxo-2-phenylethyl)indolin-2-one (1f) 1 H-NMR (500MHz, CDCl 3 ): 8.00 (dd, J = 8.5, 1.0 Hz, 2H), 7.60-7.57 (m, 1H), 7.49-7.46 (m, 2H), 7.35-7.26 (m, 5H), 6.90-6.89 (m, 1H), 6.68-6.61 (m, 2H), 4.96 (s, 2H), 4.16-4.14 (m, 1H), 3.91-3.87 (m, 1H), 3.69 (s, 3H), 3.49-3.44 (m, 1H). 13 C-NMR (125 MHz, CDCl 3 ): 197.27, 177.86, 156.33, 137.31, 136.76, 136.38, 133.90, 130.84, 129.19, 129.12, 128.60, 127.98, 127.72, 112.71, 112.04, 109.76, 56.15, 44.46, 42.03, 40.56. HRMS (ESI) calcd for [M+H] C 24 H 22 NO 3, m/z: 372.1594, observed: 372.1593. 1-Benzyl-3-(2-oxopropyl)indolin-2-one (1h) To a red suspension of benzyl protected intermediate (2.0 mmol) in CH 3 CN (10 ml) was added indium chloride (0.2 mmol) and sodium borohydride (4.0 mmol). After around 30 minutes the color changed from red to pale yellow. The mixture was diluted with H 2 O (20 ml), extracted with ethyl acetate (1 x 20 ml) and DCM (1 x 20 ml), dried over Na 2 SO 4, filtered and evaporated to give a residue, which was purified by column chromatography on silica gel to afford the desired product 1h as a white solid with 55% yield. 6 nature chemistry www.nature.com/naturechemistry 6

1 H NMR (500 MHz, CDCl 3 ) 7.37-7.10 (m, 7H), 6.97 (dd, J = 10.9, 4.1 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 5.03-4.86 (m, 2H), 3.94 (dd, J = 8.5, 3.3 Hz, 1H), 3.31 (dd, J = 18.3, 3.5 Hz, 1H), 2.91 (dd, J = 18.3, 8.6 Hz, 1H), 2.22 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) 205.16, 177.42, 143.32, 135.79, 128.79, 128.70, 127.94, 127.52, 127.22, 124.06, 122.45, 109.01, 44.36, 43.83, 41.01, 29.89. HRMS (ESI) calcd for [M+H] C18H17NO2, m/z: 280.1332, observed: 280.1343. 1-(4-Bromobenzyl)-3-(2-oxo-2-phenylethyl)indolin-2-one (4) To a red suspension of 4-Br-benzyl protected intermediate (2.0 mmol) in CH 3 CN (10 ml) was added indium chloride (0.2 mmol) and sodium borohydride (4.0 mmol). After around 1 hour the color changed from red to pale yellow. The mixture was diluted with H 2 O (20 ml), extracted with ethyl acetate (1 x 20 ml) and DCM (1 x 20 ml), dried over Na 2 SO 4, filtered and evaporated to give a residue, which was purified by column chromatography on silica gel to afford the desired product 4 as a white solid with 65% yield. 1 H NMR (500 MHz, CDCl 3 ) 8.10-.88 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.49-7.46 (m, 4H), 7.27-7.24 (t, J = 8.5 Hz, 3H), 7.16 (t, J = 7.7 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.70 (d, J = 7.8 Hz, 1H), 4.93 (q, J = 15.8 Hz, 2H), 4.13 (dd, J = 8.3, 2.7 Hz, 1H), 3.89 (dd, J = 18.2, 3.1 Hz, 1H), 3.52 (dd, J = 18.2, 8.5 Hz, 1H). 13 C NMR (125 MHz, CDCl 3 ) 196.60, 177.73, 143.14, 136.27, 134.96, 133.47, 131.89, 129.07, 128.93, 128.68, 128.13, 127.98, 124.30, 122.64, 121.51, 108.83, 43.35, 41.20, 39.79. HRMS (ESI) calcd for [M+H] C23H19BrNO2, m/z: 420.0594, observed: 420.0610. 7 nature chemistry www.nature.com/naturechemistry 7

General procedure for preparation of arylidenoxindoles (2a-h) 3. Amit, N. & Rahul, J. Indian J. Chem. 2008, 47B, 117-128. Wittig reagent (2 mmol, 1 equiv) was added to a solution of the acetyl isatin or acetyl substituted isatin (2.4 mmol, 1.2 equiv) in CHCl 3 or DCM (5 ml) in a 25 ml round bottom flask. The solution was stirred at rt for 30 min. The mixture was purified by flash chromatography to afford the desired products around 60% yields. (E)-Methyl 2-(1-acetyl-2-oxoindolin-3-ylidene)acetate (2a) 1 H-NMR (500MHz, CDCl 3 ): 8.68 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.5, 1H), 7.26-7.23 (m, 1H), 6.94 (s, 1H), 3.91 (s, 3H), 2.71 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 170.27, 167.85, 165.58, 142.15, 136.50, 132.98, 128.14, 125.36, 122.80, 120.33, 116.42, 52.33, 26.82. HRMS (ESI) calcd for [M+H] C 13 H 12 NO 4, m/z: 246.0761, observed: 246.0767. (E)-1-Acetyl-3-(2-oxo-2-phenylethylidene)indolin-2-one (2b) 8 nature chemistry www.nature.com/naturechemistry 8

1 H-NMR (500MHz, CDCl 3 ): 8.31 (t, J = 8.0 Hz, 2H), 8.29 (d, J = 8.0 Hz, 2H), 7.87 (d, J = 2.0 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 7.56-7.53 (m, 2H), 7.45-7.42 (m, 1H), 7.20-7.17 (m, 1H), 2.76 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 190.92, 170.33, 168.26, 142.02, 137.20, 134.69, 134.10, 132.93, 128.99, 128.79, 127.72, 126.79, 125.28, 126.60, 116.54, 26.84. HRMS (ESI) calcd for [M+H] C 18 H 14 NO 3, m/z: 292.0968, observed:292.0977. (E)-1-Acetyl-3-(2-(4-chlorophenyl)-2-oxoethylidene)indolin-2-one (2c) 1 H-NMR (500MHz, CDCl 3 ): 8.34 (d, J = 8.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.03-8.02 (m, 2H), 7.81 (s, 1H), 7.51-7.50 (m, 2H), 7.47-7.43 (m, 1H), 7.21-7.18 (m, 1H), 2.75 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 189.97, 170.71, 168.64, 142.61, 141.13, 136.05, 135.68, 133.66, 130.58, 129.77, 127.39, 127.13, 125/76, 120.94, 117.02, 27.23. HRMS (ESI) calcd for [M+H] C 18 H 13 ClNO 3, m/z 326.0578, observed: 326.0573. (E)-1-Acetyl-5-bromo-3-(2-oxo-2-phenylethylidene)indolin-2-one (2d) 1 H-NMR (500MHz, CDCl 3 ): 8.56 (s, 1H), 8.20 (d, J = 8.5 Hz, 1H), 8.09 (d, J = 8.0 Hz, 2H), 7.93 (s, 1H), 7.68-7.65 (m, 1H), 7.57-7.54 (m, 3H), 2.75 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 190.76, 170.45, 168.02, 141.34, 137.57, 136.02, 134.71. 130.10, 129.48, 129.28, 129.26, 122.73, 178.90, 118.43, 27.19. 9 nature chemistry www.nature.com/naturechemistry 9

HRMS (ESI) calcd for [M+H] C 18 H 13 BrNO 3, m/z: 370.0073, observed: 370.0057. (E)-1-Acetyl-5-fluoro-3-(2-oxo-2-phenylethylidene)indolin-2-one (2e) 1 H-NMR (500MHz, CDCl 3 ): 8.33-8.30 (m, 1H), 8.15 (dd, J = 9.0, 3.0 Hz, 1H), 8.10-8.08 (m, 2H), 7.95 (s, 1H), 7.68-7.65(m, 1H), 7.57-7.54 (m, 2H), 7.18-7.13 (m, 1H), 2.76 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 190.46, 170.11, 167.95, 160.70, 158.76, 138.27, 137.10, 134.39, 134.31, 129.07, 128.83, 128.80, 121.93, 119.59, 119.41, 117.87, 117.81, 114.08, 113.87, 26.73. HRMS (ESI) calcd for [M+H] C 18 H 13 FNO 3, m/z: 310.0874, observed: 310.0864. (E)-Methyl 2-(1-acetyl-6-chloro-2-oxoindolin-3-ylidene)acetate (2f) 1 H-NMR (500MHz, CDCl 3 ): 8.64 (d, J = 8.5 Hz, 1H), 8.32 (s, 1H), 7.20-7.18 (m, 1H), 6.88 (s, 1H), 2.70 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 170.05, 167.45, 165.43, 142.72, 138.91, 135.56, 129.11, 125.51, 123.09, 118.71, 116.96, 52.41, 26.68. HRMS (ESI) calcd for [M+H] C 13 H 11 ClNO 4, m/z: 280.0371, observed: 280.0378. (E)-Ethyl 2-(1-acetyl-2-oxoindolin-3-ylidene)acetate (2g) 10 nature chemistry www.nature.com/naturechemistry 10

1 H-NMR (500MHz, CDCl 3 ): 8.68 (d, J = 8.0 Hz, 1H), 8.29 (dd, J = 8.0, 0.5 Hz, 1H), 7.46-7.43 (m, 1H), 7.26-7.22 (m, 1H), 6.91 (s, 1H), 4.34 (q, J = 7.0 Hz, 2H), 2.72 (s, 3H), 1.39 (t, J = 7.0, 3H). 13 C-NMR (125 MHz, CDCl 3 ): 170.28, 167.89, 165.14, 142.08, 136.20, 132.85, 128.12, 125.31, 123.43, 120.38, 116.38, 61.43, 26.81, 14.13. HRMS (ESI) calcd for [M+H] C 14 H 14 NO 4, m/z: 260.0917, observed: 260.0926. (E)-1-acetyl-3-(2-oxo-2-(o-tolyl)ethylidene)indolin-2-one (2h) 1 H NMR (500 MHz, CDCl 3 ) 8.30 (dd, J = 11.9, 7.9 Hz, 2H), 7.77 (d, J = 7.7 Hz, 1H), 7.68 (s, 1H), 7.54-7.42 (m, 2H), 7.32 (m, 2H), 7.19 (t, J = 7.7 Hz, 1H), 2.75 (s, 3H), 2.65 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) 194.05, 170.36, 168.35, 141.95, 139.32, 137.03, 133.79, 132.82, 132.63, 132.29, 130.57, 130.12, 126.60, 126.03, 125.28, 120.64, 116.56, 26.81, 21.37. HRMS (ESI) calcd for [M+H] C 19 H 16 NO 3, m/z: 306.1125, observed: 306.1135. 11 nature chemistry www.nature.com/naturechemistry 11

Typical Procedure for the construction of bispirocyclic oxindoles via organocatalytic domino Michael-aldol reactions (Table 2): The multifunctional catalyst VIII (0.0075 mmol, 0.15 equiv) was added to a solution of 3- substituted oxindole 1 (0.05 mmol, 1.0 equiv) and methyleneindolinone 2 (0.075 mmol, 1.5 equiv) in DCM (0.2-0.4 ml) at room temperature (23 C). After 24 hours, the product was afforded by silica gel flash column chromatography using gradient elution (EtOAc/Hexane = 1:10 to 1:8). Product 3b (Table 2, entry 1) 1 H-NMR (500 MHz, CDCl 3 ) 8.07 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.37-7.23 (m, 8H), 7.19-7.09 (m, 5H), 7.04-6.95 (m, 7H), 6.36 (d, J = 8.0 Hz, 1H), 5.32 (s, 1H), 5.22 (d, J = 15.5 Hz, 1H), 4.37 (d, J = 15.5 Hz, 1H), 4.32 (d, J = 14.0 Hz, 1H), 2.59 (d, J = 14.0 Hz, 1H), 2.48 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.55, 184.10, 178.53, 171.03, 142.13, 141.37, 137.59, 135.20, 132.98, 130.50, 129.49, 129.44, 128.99, 128.60, 128.56, 128.32, 128.22, 127.97, 127.48, 126.68, 126.32, 126.05, 125.68, 124.88, 124.62, 116.31, 109.18, 85.33, 67.71, 66.32, 54.62, 46.97, 45.06, 26.87. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 9.6 min, t R (major) = 18.8 min; 97:3 er. 12 nature chemistry www.nature.com/naturechemistry 12

[ ] D 25 = +96.9 (c = 0.9, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3329.6, 3027.0, 2969.3, 2361.3, 1744.3, 1716.1, 181.8, 1610.8, 1466.5, 1371.5, 1279.1, 1207.6, 1016.5, 760.0, 695.6 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 33 N 2 O 5, m/z: 633.2384, observed: 633.2378. Product 3c (Table 2, entry 2) 1 H-NMR (500 MHz, CDCl 3 ) 8.06 (dd, J = 9.0, 5.0 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.37-7.31 (m, 5H), 7.26-7.23 (m, 1H), 7.20-7.17 (m, 1H), 7.14-7.11 (m, 4H), 7.07-7.00 (m, 5H), 6.99-6.94 (m, 3H), 6.37 (d, J = 7.5 Hz, 1H), 5.24 (s, 1H), 5.20 (d, J = 15.0 Hz, 1H), 4.38 (d, J = 15.5 Hz, 1H), 4.30 (d, J = 14.0 Hz, 1H), 2.58 (d, J = 14.5 Hz, 1H), 2.47 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.47, 183.98, 178.14, 170.78, 161.11, 159.18, 142.14, 137.34, 137.26, 136.77, 135.14, 133.11, 130.30, 129.46, 129.08, 128.72, 128.60, 128.45, 128.36, 128.28, 128.04, 127.47, 126.63, 126.03, 124.64, 117.61, 117.54, 116.02, 115.85, 113.39, 113.19, 109.24, 85.39, 67.86, 66.55, 54.63, 46.90, 45.11, 26.77. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 3.8 min, t R (major) = 11.3 min; 98:2 er. [ ] D 25 = +166.6 (c = 0.8, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3270.9, 2968.8, 2231.0, 1741.5, 1717.2, 1685.5, 1466.0, 1371.4, 1215.0, 760.2, 698.9 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 32 FN 2 O 5, m/z: 651.2294, observed: 651.2280. 13 nature chemistry www.nature.com/naturechemistry 13

Product 3d (Table 2, entry 3) 1 H-NMR (500 MHz, CDCl 3 ) 8.08 (d, J = 2.0 Hz, 1H), 7.97-7.95 (m, 2H), 7.46-7.44 (dd, J = 9.0, 2.0 Hz, 1H), 7.38-7.32 (m, 5H), 7.24-7.17 (m, 2H), 7.15-7.11 (m, 4H), 7.07-6.93 (m, 7H), 6.87 (d, J = 7.5 Hz, 1H), 5.24 (s, 1H), 5.20 (d, J = 15.0 Hz, 1H), 4.40 (d, J = 15.0 Hz, 1H), 4.29 (d, J = 14.5 Hz, 1H), 2.58 (d, J = 14.0 Hz, 1H), 2.47 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.48, 183.96, 177.81, 170.84, 142.14, 140.26, 137.30, 136.71, 135.13, 133.14, 132.43, 130.30, 129.48, 129.10, 128.75, 128.68, 128.63, 128.36, 128.32, 128.07, 127.51, 126.57, 126.03, 124.64, 117.91, 117.87 109.26, 85.35, 67.77, 66.56, 54.2, 46.87, 45.14, 26.81. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (minor) = 7.1 min, t R (major) = 25.0 min; 98:2 er. [ ] 25 D = +204.2 (c = 1.0, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3290.9, 2925.2, 2361.0, 1749.9, 1713.4, 1682.5, 1611.1, 1468.4, 1371.6, 1297.4, 753.5, 696.9 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 32 BrN 2 O 5, m/z: 711.1489, observed: 711.1475. Product 3e (Table 2, entry 4) 1 H-NMR (500 MHz, CDCl 3 ) 8.06 (d, J = 8.0 Hz, 1H), 7.99-7.97 (m,1h), 7.94 (d, J = 7.5 Hz, 1H), 7.42-7.32 (m, 14 nature chemistry www.nature.com/naturechemistry 14

6H), 7.29-7.25 (m, 1H), 7.19-7.15 (m, 1H), 7.12-7.09 (m, 1H), 7.05-6.99 (m, 6H), 6.92 (s, 1H), 6.80-6.78 (m, 2H), 6.52-6.50 (m, 2H), 5.33 (s, 1H), 5.07 (d, J = 15.0 Hz, 1H), 4.59 (d, J = 15.0 Hz, 1H), 4.30 (d, J = 14.0 Hz, 1H), 2.58 (d, J = 14.0 Hz, 1H), 2.46 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 195.39, 183.95, 178.43, 170.98, 142.12, 139.39, 137.48, 130.41, 135.21, 135.11, 130.41, 129.58, 129.20, 128.74, 128.63, 128.60, 127.98, 126.73, 126.15, 126.02, 125.66, 124.90, 116.32, 109.23, 85.28, 67.76, 66.08, 54.56, 47.13, 45.27, 26.85. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (minor) = 5.2 min, t R (major) = 11.4 min; 97:3 er. [ ] D 25 = +168.0 (c = 0.5, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3322.7, 2919.8, 2235.1, 1747.8, 1680.0, 1610.7, 1481.1, 1296.1, 750.5 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 32 ClN 2 O 5, m/z: 667.1994, observed: 667.1976. Product 3f (Table 2, entry 5) 1 H-NMR (500 MHz, CDCl 3 ) 8.10 (d, J = 7.5 Hz, 1H), 7.98-7.94 (m, 2H), 7.37-7.23 (m, 8H), 7.13-7.11 (m, 2H), 7.04-6.94 (m, 7H), 6.81-6.78 (m, 2H), 6.36 (d, J = 7.5 Hz, 1H), 5.30 (s, 1H), 5.21 (d, J = 15.0 Hz, 1H), 4.36 (d, J = 15.5 Hz, 1H), 4.28 (d, J = 14.0 Hz, 1H), 2.58 (d, J = 14.0 Hz, 1H), 2.53 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.44, 184.02, 178.53, 170.99, 163.83, 161.86, 142.12, 141.21, 136.87, 135.78, 133.04, 130.34, 129.63, 129.45, 129.05, 128.59, 128.34, 128.21, 128.09, 128.02, 15 nature chemistry www.nature.com/naturechemistry 15

127.48, 126.64, 126.06, 125.73, 124.95, 124.65, 116.38, 114.87, 114.71, 109.32, 100.00, 84.88, 67.64, 66.45, 54.57, 47.13, 45.07, 26.99. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (minor) = 6.1 min, t R (major) = 12.8 min; 95:5 er. [ ] D 25 = +144.0 (c = 0.4, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3244.3, 2923.0, 2234.6, 1734.9, 1680.6, 1608.4, 1465.8, 1277.2, 1165.4, 760.5 cm - 1. HRMS (ESI) calcd for [M+H] C 41 H 32 FN 2 O 5, m/z: 651.2294, observed: 651.2310. Product 3g (Table 2, entry 6) 1 H-NMR (500 MHz, CDCl 3 ) 8.09 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.36-7.23 (m, 9H), 7.13-7.12 (m, 2H), 7.06-7.01 (m, 2H), 6.98-6.95 (m, 4H), 6.73-6.68 (m, 2H), 6.43 (s, 1H), 6.36 (d, J = 8.0 Hz, 1H), 5.31 (s, 1H), 5.22 (d, J = 15.5 Hz, 1H), 4.36 (d, J = 15.5 Hz, 1H), 4.28 (d, J = 14.5 Hz, 1H), 3.43 (S, 3H), 2.59 (d, J = 14.0 Hz, 1H), 2.49 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.53, 184.11, 178.37, 171.01, 159.38, 142.12, 141.45, 139.12, 136.97, 135.19, 132.98, 130.46, 129.44, 128.99, 128.71, 128.56, 128.32, 128.21, 127.90, 127.47, 126.71, 126.52, 125.66, 124.82, 124.62, 118.00, 116.33, 115.43, 111.05, 109.19, 85.24, 67.61, 66.21, 55.29, 54.60, 46.92, 45.06, 26.86. 16 nature chemistry www.nature.com/naturechemistry 16

HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 7.3 min, t R (major) = 13.6 min; 98:2 er. [ ] D 25 = +205.5 (c = 0.6, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3298.9, 2934.8, 1746.8, 1682.9, 1605.4, 1465.8, 1179.9, 753.9 cm -1. HRMS (ESI) calcd for [M+H] C 42 H 35 N 2 O 6, m/z: 663.249, observed: 663.2505. Product 3h (Table 2, entry 7) 1 H-NMR (500 MHz, CDCl 3 ) 8.21 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.0 Hz, 1H), 7.88 (d, J = 7.0 Hz, 1H), 7.37-7.28 (m, 6H), 7.26-7.23 (m, 2H), 7.19-7.18 (m, 1H), 7.11-7.09 (m, 2H), 7.02-6.94 (m, 6H), 6.86 (s, 1H), 6.19-6.18 (m, 1H), 5.93 (d, J = 3.0 Hz, 1H), 5.23 (s, 1H), 5.19 (d, J = 15.5 Hz, 1H), 4.34 (d, J = 15.5 Hz, 1H), 4.08 (d, J = 14.5 Hz, 1H), 2.68 (s, 3H), 2.59 (d, J = 14.5 Hz, 1H). 13 C-NMR (125 MHz, CDCl 3 ) 196.30, 183.97, 178.20, 171.35, 152.28, 142.38, 142.16, 141.27, 136.86, 135.12, 133.04, 129.97, 129.52, 129.45, 129.02, 128.57, 128.32, 128.19, 127.48, 126.78, 126.30, 125.78, 125.07, 124.63, 116.41, 110.79, 109.17, 107.52, 82.40, 66.46, 66.31, 54.86, 47.29, 45.06, 27.10. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 19.3 min, t R (major) = 27.8 min; 97:3 er. [ ] D 25 = +156.7 (c = 0.6, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3271.5, 2933.7, 2360.8, 1751.3, 1681.2, 1611.3, 1485.4, 1278.9, 1173.0, 1016.9, 754.9 cm -1. 17 nature chemistry www.nature.com/naturechemistry 17

HRMS (ESI) calcd for [M+H] C 39 H 31 N 2 O 6, m/z: 623.2177, observed: 623.2189. Product 3i (Table 2, entry 8) 1 H-NMR (500 MHz, CDCl 3 ) 8.13 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.37-7.23 (m, 8H), 7.12-7.09 (m, 4H), 7.04-7.01 (m, 1H), 6.98-6.95 (m, 3H), 6.78-6.77 (m, 1H), 6.77 (s, 1H), 6.35 (d, J = 7.5 Hz, 1H), 5.27 (s, 1H), 5.20 (d, J = 15.0 Hz, 1H), 4.34 (d, J = 15.5 Hz, 1H), 4.18 (d, J = 14.0 Hz, 1H), 2.68 (d, J = 14.0 Hz, 1H), 2.62 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.36, 183.97, 178.44, 171.19, 142.15, 141.97, 141.61, 136.87, 135.12, 133.04, 130.05, 129.65, 129.44, 129.05, 128.58, 128.33, 128.19, 127.50, 126.73, 126.43, 126.19, 126.04, 125.84, 124.93, 124.64, 124.25, 116.31, 109.22, 84.39, 67.72, 66.39, 54.77, 48.72, 45.06, 27.07. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 8.1 min, t R (major) = 16.6 min; 98:2 er. [ ] D 25 = +179.3 (c = 0.4, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3305.1, 2922.9, 1746.0, 1714.1, 1680.7, 1610.9, 1466.5, 1371.4, 1230.3, 755.2 cm - 1. HRMS (ESI) calcd for [M+H] C 39 H 31 N 2 O 5 S, m/z: 639.1948, observed: 639.1941. Product 3j (Table 2, entry 9) 18 nature chemistry www.nature.com/naturechemistry 18

1 H-NMR (500 MHz, CDCl 3 ) 8.13 (d, J = 8.0 Hz, 1H), 7.96-7.95 (m, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.41-7.34 (m, 6H), 7.28-7.25 (m, 1H), 7.10-7.09 (m, 1H), 7.04-7.00 (m, 6H), 6.82-6.76 (m, 4H), 6.51-6.49 (m, 1H), 5.18 (s, 1H), 5.06 (d, J = 15.0 Hz, 1H), 4.57 (d, J = 15.0 Hz, 1H), 4.17 (d, J = 14.5 Hz, 1H), 2.68 (d, J = 14.5 Hz, 1H), 2.60 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 195.21, 183.82, 178.35, 171.15, 141.84, 141.57, 139.47, 135.10, 135.03, 129.96, 129.73, 129.59, 129.28, 128.76, 128.62, 128.60, 126.77, 126.49, 126.20, 126.04, 125.68, 124.96, 124.72, 124.26, 116.32, 109.27, 84.34, 67.77, 66.15, 54.70, 48.86, 45.26, 27.06. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 6.5 min, t R (major) = 14.6 min; 98:2 er. [ ] D 25 = +187.2 (c = 1.1, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3286.9, 2920.6, 1710.8, 1680.2, 1611.6, 1482.9, 1166.8, 752.3 cm -1. HRMS (ESI) calcd for [M+H] C 39 H 30 ClN 2 O 5 S, m/z: 673.1558, observed: 673.1563. Product 3k (Table 2, entry 10) 1 H-NMR (500 MHz, CDCl 3 ) 8.12 (d, J = 9.0 Hz, 1H), 7.96 (J = 7.5 Hz, 1H), 7.66 (d, J = 8.5 Hz, 1H), 7.37-7.30 (m, 5H), 7.26-7.23 (m, 1H), 7.15 (s, 1H), 7.12-7.10 (m, 3H), 7.06-7.01 (m, 2H), 6.98-6.94 (m, 3H), 6.83-7.79 (m, 2H), 6.36 (d, J = 8.5 Hz, 1H), 5.19 (d, J = 19 nature chemistry www.nature.com/naturechemistry 19

15.5 Hz, 1H), 5.19 (s, 1H), 4.36 (d, J = 15.0 Hz, 1H), 4.17 (d, J = 14.5 Hz, 1H), 2.68 (d, J = 14.0 Hz, 1H), 2.61 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 196.30, 183.85, 178.07, 170.96, 161.10, 159.17, 142.16, 141.74, 137.56, 136.66, 135.06, 133.18, 129.85, 129.46, 129.14, 128.62, 128.38, 128.25, 127.96, 127.89, 127.49, 126.67, 126.55, 126.30, 124.66, 124.34, 117.59, 117.53, 116.17, 115.99, 113.80, 113.60, 109.27, 84.45, 67.86, 66.61, 54.76, 48.67, 45.11, 26.98. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 4.6 min, t R (major) = 16.9 min; 98:2 er. [ ] D 25 = +183.2 (c = 1.0, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3284.9, 2923.6, 1732.9, 1681.2, 1611.3, 1482.2, 1296.5, 1166.1, 751.9 cm -1. HRMS (ESI) calcd for [M+H] C 39 H 30 FN 2 O 5 S, m/z: 657.1854, observed: 657.1850. Product 3l (Table 2, entry 11) 1 H NMR (500 MHz, CDCl 3 ) 8.17 (dd, J = 7.5, 0.8 Hz, 1H), 8.07 (dd, J = 8.0, 0.7 Hz, 1H), 7.94 (dd, J = 7.5, 1.1 Hz, 1H), 7.40-7.21 (m, 7H), 7.21-6.96 (m, 9H), 6.90 (s, 1H), 6.87 (t, J = 7.3 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.32 (d, J = 7.4 Hz, 1H), 5.36 (s, 1H), 5.21 (d, J = 15.4 Hz, 1H), 4.25 (dd, J = 14.7, 10.4 Hz, 2H), 2.54 (d, J = 14.2 Hz, 1H), 2.45 (s, 3H), 1.92 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) 197.51, 183.75, 178.42, 170.46, 141.58, 140.87, 139.05, 137.18, 135.49, 134.77, 131.61, 131.39, 130.51, 128.97, 128.50, 128.16, 128.04, 127.59, 127.54, 127.51, 20 nature chemistry www.nature.com/naturechemistry 20

126.14, 125.87, 125.56, 125.12, 124.47, 124.38, 124.09, 115.89, 108.79, 84.65, 67.57, 66.94, 54.07, 46.62, 44.62, 26.38, 20.66. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (minor) = 5.0 min, t R (major) = 6.7 min; 91:9 er. [ ] D 25 = +172.9 (c = 1.0, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3313.9, 3057.5, 2927.5, 1744.6, 1708.9, 1678.8, 1609.9, 1465.1, 1371.0, 1277.3, 1171.6, 1016.0, 755.5, 697.2 cm -1. HRMS (ESI) calcd for [M+H] C 42 H 35 N 2 O 5, m/z: 647.2540, observed: 647.2558. Product 3m (Table 2, entry 12) 1 H NMR (500 MHz, CDCl 3 ) 8.30 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.43-7.15 (m, 9H), 7.07 (d, J = 8.2 Hz, 2H), 7.04-6.86 (m, 4H), 6.36-6.24 (m, 2H), 5.16 (m, 2H), 4.31 (d, J = 15.3 Hz, 1H), 3.48 (d, J = 14.2 Hz, 1H), 2.89 (s, 3H), 2.38 (d, J = 14.2 Hz, 1H), 1.12 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) 196.31, 183.72, 179.50, 171.25, 141.71, 140.84, 136.44, 134.81, 132.55, 129.87, 129.00, 128.93, 128.38, 128.09, 127.87, 127.72, 127.08, 126.17, 125.57, 124.70, 124.06, 115.98, 108.62, 83.07, 67.07, 65.39, 54.91, 49.69, 44.57, 27.12, 19.90. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (major) = 17.2 min, t R (minor) = 26.7 min; 97:3 er. [ ] D 25 = +121.3 (c = 0.8, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3326.9, 3028.4, 2969.2, 1745.3, 1711.5, 1684.2, 1611.1, 1348.2, 755.7 cm -1. HRMS (ESI) calcd for [M+H] C 36 H 31 N 2 O 5, m/z: 571.2227, observed: 571.2224. 21 nature chemistry www.nature.com/naturechemistry 21

Typical Procedure for the construction of bispirocyclic oxindoles with different esters (Figure 4): The multifunctional catalyst VIII (0.01 mmol, 0.2 equiv) was added to a solution of 3-substituted oxindole 1 (0.05 mmol, 1.0 equiv) and methyleneindolinone ester 2 (0.075 mmol, 1.5 equiv) in DCM (0.2-0.4 ml) at room temperature (23 C). After 24 hours, the product was afforded by silica gel flash column chromatography using gradient elution (EtOAc/Hexane = 1:10 to 1:8). Product 3a (Figure 4) 22 nature chemistry www.nature.com/naturechemistry 22

1 H-NMR (500 MHz, CDCl 3 ) 8.18 (d, J = 7.0 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 7.0 Hz, 1H), 7.38-7.29 (m, 7H), 7.25-7.22 (m, 1H), 7.19-7.16 (m, 2H), 7.11 (t, J = 8.0 Hz, 2H), 7.02 (d, J = 7.5 Hz, 2H), 6.92 (s, 1H), 6.79 (d, J = 7.5 Hz, 1H), 5.32 (d, J = 16.0 Hz, 1H), 4.84 (d, J = 15.5 Hz, 1H), 4.55 (s, 1H), 4.29 (d, J = 14.5 Hz, 1H), 2.92 (s, 3H), 2.58 (d, J = 14.0 Hz, 1H), 2.42 (s, 3H). 13 C-NMR (100 MHz, CDCl 3 ) 183.91, 177.90, 170.82, 169.01, 142.89, 141.18, 137.57, 135.34, 131.85, 129.61, 129.28, 129.12, 128.65, 128.36, 128.00, 127.43, 126.08, 125.92, 124.95, 124.57, 116.20, 109.84, 85.85, 67.87, 62.29, 54.70, 51.98, 26.06, 44.81, 26.75. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 8.4 min, t R (major) = 18.0 min; 95:5 er. [ ] D 25 = +91.5 (c = 0.4, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3285.1, 2913.9, 2359.1, 1707.6, 1684.8, 1611.0, 1466.7, 1276.8, 1171.5, 756.5 cm - 1. HRMS (ESI) calcd for [M+H] C 36 H 30 N 2 O 6, m/z: 587.2177, observed: 587.2159. Product 3n (Figure 4) 1 H-NMR (500 MHz, CDCl 3 ) 8.17 (d, J = 8.5 Hz, 1H), 8.06 (J = 8.0 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H), 7.37-7.28 (m, 6H), 7.26-7.23 (m, 1H), 7.22-7.20 (m, 1H), 7.17-7.14 (m, 1H), 7.06-7.03 (m, 1H), 6.93 (s, 1H), 6.77 (d, J = 7.5 Hz, 1H), 6.72-6.70 (m, 2H), 6.69 (s, 1H), 23 nature chemistry www.nature.com/naturechemistry 23

5.31 (d, J = 15.5 Hz, 1H), 4.82 (d, J = 15.0 Hz, 1H), 4.54 (s, 1H),4.24 (d, J = 14.0 Hz, 1H), 3.42 (s, 3H), 2.91 (s, 3H), 2.58 (d, J = 14.0 Hz, 1H), 2.42 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 183.91, 177.75, 170.89, 168.99, 159.39, 142.88, 141.36, 139.10, 135.34, 131.82, 129.55, 129.28, 128.13, 128.75, 128.36, 127.89, 127.42, 126.10, 125.95, 124.89, 124.58, 117.84, 116.22, 115.39, 111.00, 109.85, 85.76, 67.78, 62.16, 55.28, 54.67, 51.97, 45.99, 44.81, 26.73. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 14.3min, t R (major) = 18.1 min; 95:5 er. [ ] D 25 = +73.3 (c = 0.7, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3309.3, 3057.6, 2942.7, 2362.4, 1744.8, 1709.8, 1682.7, 1610.5, 1466.9, 1277.4, 1170.3, 755.5 cm -1. HRMS (ESI) calcd for [M+H] C 37 H 33 N 2 O 7, m/z: 617.2282, observed: 617.2289. Product 3o (Figure 4) 1 H-NMR (500 MHz, CDCl 3 ) 8.17 (d, J = 8.0 Hz, 1H), 8.10 (J = 7.5 Hz, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.38-7.25 (m, 7H), 7.22-7.17 (m, 2H), 7.15-7.12 (m, 1H), 6.82 (s, 1H), 6.76 (d, J = 7.5 Hz, 1H), 6.18-6.17 (m, 1H), 5.92 (dd, J = 3.5, 1.0 Hz, 1H), 5.30 (d, J = 15.5 Hz, 1H), 4.81 (d, J = 16.0 Hz, 1H), 4.46 (s, 1H),4.06 (d, J = 14.0 Hz, 1H), 2.91 (s, 3H), 2.65 (d, J = 14.5 Hz, 1H), 2.62 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 183.81, 177.52, 171.13, 168.76, 152.26, 142.94, 142.35, 141.16, 135.29, 131.33, 129.62, 129.28, 129.15, 128.37, 127.41, 126.16, 126.05, 24 nature chemistry www.nature.com/naturechemistry 24

125.88, 125.10, 124.58, 116.29, 110.85, 109.81, 107.60, 82.93, 66.43, 62.40, 54.95, 51.98, 46.45, 44.82, 26.96. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 18.9 min, t R (major) = 32.9 min; 96:4 er. [ ] D 25 = +91.2 (c = 1.0, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3300.1, 3057.6, 2919.8, 1706.5, 1678.3, 1569.5, 1466.7, 1359.0, 752.0 cm -1. HRMS (ESI) calcd for [M+H] C 34 H 29 N 2 O 7, m/z: 577.1969, observed: 577.1952. Product 3p (Figure 4) 1 H-NMR (500 MHz, CDCl 3 ) 8.13 (d, J = 7.5 Hz, 1H), 8.10 (J = 2.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.35-7.12 (m, 11H), 7.05-7.03 (m, 2H), 6.94 (s, 1H), 6.78 (d, J = 7.5 Hz, 1H), 5.30 (d, J = 15.5 Hz, 1H), 4.83 (d, J = 16.0 Hz, 1H), 4.49 (s, 1H), 4.25 (d, J = 14.0 Hz, 1H), 2.94 (s, 3H), 2.65 (d, J = 14.5 Hz, 1H), 2.41 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 183.44, 177.92, 170.83, 168.65, 141.96, 141.23, 137.31, 134.87, 134.00, 132.08, 129.71, 129.38, 129.17, 128.75, 128.55, 128.04, 127.40, 125.99, 125.87, 15.65, 124.95, 117.34, 116.26, 111.29, 85.77, 67.91, 62.05, 54.70, 52.21, 46.05, 44.91, 26.78. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 11.4 min, t R (major) = 14.3 min; 94:6 er. [ ] D 25 = +93.2 (c = 0.5, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3392.8, 2942.5, 1750.2, 1715.1, 1682,9, 1610.3,1470.6, 1390.0, 1287.6, 1168.1, 749.6.cm -1. 25 nature chemistry www.nature.com/naturechemistry 25

HRMS (ESI) calcd for [M+H] C 36 H 30 ClN 2 O 6, m/z: 621.1787, observed: 621.1793. Product 3q (Figure 4) 1 H-NMR (500 MHz, CDCl 3 ) 8.03 (d, J = 8.0 Hz, 1H), 7.89-7.88 (m, 2H), 7.37-7.28 (m, 7H), 7.17-7.15 (m, 1H), 7.11-7.08 (m, 2H), 7.02-7.00 (m, 2H), 6.94 (s, 1H), 6.75-6.72 (m, 1H), 6.66 (d, J = 8.5 Hz, 1H), 5.28 (d, J = 15.5 Hz, 1H), 4.80 (d, J = 16.0 Hz, 1H), 4.55 (s, 1H), 4.25 (d, J = 14.0 Hz, 1H), 3.80 (s, 3H), 2.96 (s, 3H), 2.57 (d, J = 14.0 Hz, 1H), 2.41 (s, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 183.47, 177.94, 170.85, 168.96, 157.44, 141.17, 137.59, 136.22, 135.42, 133.17, 129.59, 129.30, 129.26, 128.62, 128.33, 127.44, 126.08, 125.93, 124.94, 116.18, 113.77, 112.94, 110.27, 85.81, 67.83, 62.28, 56.23, 55.04, 52.04, 46.27, 44.88, 26.77. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 15.1 min, t R (major) = 22.7 min; 96:2 er. [ ] D 25 = +79.5 (c = 0.8, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3301.5, 3056.7, 2926.6, 1742.4, 1710.8, 1677.9, 1602.9, 1491.4, 1372.2, 1276.1, 1168.5, 1033.9, 756.9, 697.5 cm -1. HRMS (ESI) calcd for [M+H] C 37 H 33 N 2 O 7, m/z: 617.2282, observed: 617.2253. Product 3r (Figure 4) 26 nature chemistry www.nature.com/naturechemistry 26

1 H-NMR (500 MHz, CDCl 3 ) 8.18 (d, J = 7.5 Hz, 1H), 8.03 (J = 7.5 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.39-7.28 (m, 7H), 7.26-7.23 (m, 1H), 7.18-7.15 (m, 2H), 7.11-7.08 (m, 2H), 7.01-6.99 (m, 2H), 6.92 (s, 1H), 6.80 (d, J = 7.5 Hz, 1H), 5.30 (d, J = 15.5 Hz, 1H), 4.82 (d, J = 15.5 Hz, 1H), 4.54 (s, 1H), 4.27 (d, J = 14.0 Hz, 1H), 3.46 (q, J = 7.5 Hz, 2H), 2.57 (d, J = 14.0 Hz, 1H), 2.40 (s, 3H), 0.35 (t, J = 7.0 Hz, 3H). 13 C-NMR (125 MHz, CDCl 3 ) 184.00, 177.53, 170.79, 168.56, 143.06, 141.20, 137.60, 135.38, 132.07, 129.55, 129.29, 129.08, 128.62, 128.40, 127.98, 127.63, 126.12, 126.06, 126.03, 125.90, 124.90, 124.65, 114.18, 109.75, 85.65, 68.04, 61.98, 61.47, 54.63, 46.39, 44.89, 26.74, 13.42. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 6.3 min, t R (major) = 16.2 min; 95:5 er. [ ] D 25 = +103.7 (c = 0.9, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3316.3, 3054.5, 2358.5, 1709.6, 1682.9, 1610.9, 1466.7, 1390.4, 1278.1, 1170.9, 1015.1, 758.3 cm -1. HRMS (ESI) calcd for [M+H] C 37 H 33 N 2 O 6, m/z: 601.2333, observed: 601.2324. Changing different protecting group 27 nature chemistry www.nature.com/naturechemistry 27

The multifunctional catalyst VIII (0.15 equiv) was added to a solution of 3-substituted oxindole 4 (0.05 mmol, 1.0 equiv) and methyleneindolinone ketone 2b (0.075 mmol, 1.5 equiv) in DCM (0.4 ml) at room temperature (23 C). After 24 hours, the reaction was complete, the product 5 was afforded with 83% yield by silica gel flash column chromatography using gradient elution (EtOAc/Hexane = 1:10 to 1:8). 1 H NMR (500 MHz, CDCl 3 ) 8.07 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.34 (t, J = 7.8 Hz, 1H), 7.30-7.24 (m, 2H), 7.17-7.09 (m, 7H), 7.07-6.95 (m, 6H), 6.86 (s, 1H), 6.30 (d, J = 7.8 Hz, 1H), 5.31 (s, 1H), 5.16 (d, J = 15.5 Hz, 1H), 4.43-4.22 (m, 2H), 2.56 (d, J = 14.2 Hz, 1H), 2.47 (s, 3H). 13 C NMR (125 MHz, CDCl 3 ) 196.04, 183.70, 178.04, 170.58, 137.07, 136.62, 132.16, 129.41, 127.90, 127.56, 127.04, 126.44, 125.79, 125.60, 125.21, 124.47, 124.38, 122.15, 115.91, 108.57, 84.92, 67.22, 65.85, 54.17, 46.55, 44.01, 26.45. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate: 2 ml/min, = 254 nm), t R (minor) = 9.3 min, t R (major) = 21.2 min; 95:5 er. [ ] 25 D = +143.6 (c = 1.0, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 33290.7, 2918.7, 2339.4, 1707.7, 1682.6, 1611.01, 1466.5, 1387.8, 1278.1, 1272.9, 756.0 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 32 BrN 2 O 5, m/z: 711.1489, observed: 711.1456. Synthesis of the other enantiomer 28 nature chemistry www.nature.com/naturechemistry 28

The multifunctional catalyst XI (0.01 mmol, 0.2 equiv) was added to a solution of 3-substituted oxindole 1a (0.05 mmol, 1.0 equiv) and methyleneindolinone ketone 2b (0.075 mmol, 1.5 equiv) in DCM (0.1 ml) at room temperature (23 C). After 48 hours (the reaction wasn t complete), the product was afforded with 76% yield by silica gel flash column chromatography using gradient elution (EtOAc/Hexane = 1:10 to 1:8). HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (major) = 8.0 min, t R (minor) = 17.7 min; Er = 5:95 (90% ee) [ ] D 25 = -156.0 (c = 0.6, CH 2 Cl 2 ). Experimental procedure for the deprotection of product 6 To a stirred solution of 3b (15 mg, 0.023 mmol) in ethanol (3 ml) was added concentrated HCl (1 ml), after stirred at 80 o C for 2 hours, the reaction was complete. Diluted with water (10 ml), extrated with DCM (10 ml x 2), dried over Na 2 SO 4, evaporated to obtain the deprotected product 4b with quatitative yield. 1 H NMR (500 MHz, CDCl 3 ) 8.15 (dd, J = 7.5, 1.0 Hz, 1H), 7.90 (d, J = 7.3 Hz, 1H), 7.29-6.94 (m, 23H), 6.66 (d, J = 7.7 Hz, 1H), 6.30 (d, J = 7.6 Hz, 1H), 5.32 (s, 1H), 5.23 (d, J = 15.3 Hz, 1H), 4.38 (d, J = 13.9 Hz, 1H), 4.28 (d, J = 15.4 Hz, 1H), 2.53 (d, J = 14.0 Hz, 1H). 29 nature chemistry www.nature.com/naturechemistry 29

13 C NMR (125 MHz, CDCl 3 ) 196.46, 183.84, 178.07, 141.63, 141.36, 137.99, 137.01, 134.87, 132.29, 130.34, 128.96, 128.65, 128.32, 128.03, 127.81, 127.67, 127.63, 127.43, 127.23, 127.06, 126.13, 125.90, 124.17, 121.81, 108.86, 108.51, 84.42, 66.98, 64.96, 54.21, 46.32, 44.54. HPLC: Chiralpak AD-H (hexane/i-proh = 90/10, flow rate 2 ml/min, = 254 nm), t R (minor) = 21.2 min, t R (major) = 43.7 min; 98:2 er. HRMS (ESI) calcd for [M+H] C39H30N2O4, m/z: 591.2278, observed: 591.2297. Experimental procedure for synthesis of catalyst VIII 4. Vakulya, B., Varga, S., Csámpai, A. & Soós, T. Org. Lett. 2005, 7, 1967-1969 5. Bassas, O., Huuskonen, J., Rissanen, K. & Koskinen, A. M. P. Eur. J. Org. Chem. 2009, 1340-1351. A solution of isothiocyanate HQ-NCS (367 mg, 1 mmol) in THF (3 ml) was added to a stirred solution of the (S)-binaphthyl diamine (284 mg, 1 mmol) in THF (3 ml) at 50 o C. After 8 hours, the solvent was removed under reduced pressure and the residue was purified by flash column 30 nature chemistry www.nature.com/naturechemistry 30

chromatography to afford product with 78% yield. 1 H NMR (500 MHz, MeOD) 8.41 (s, 1H), 7.89-7.78 (m, 5H), 7.60 (dd, J = 20.2, 8.4 Hz, 2H), 7.34-7.28 (m, 2H), 7.08-6.93 (m, 5H), 6.81 (d, J = 8.8 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 5.98 (brs, 1H), 3.84 (s, 3H), 3.29 (brs, 1H), 3.02-2.99 (m, 2H), 2.57-2.52 (m, 1H), 2.21 (d, J = 10.6 Hz, 1H), 1.51-1.31 (m, 4H), 1.13-1.08 (m, 3H), 0.69-0.66 (m, 4H). 13 C NMR (125 MHz, MeOD) 183.61, 159.57, 148.36, 145.17, 145.13, 137.25, 135.60, 134.43, 134.01, 131.37, 130.66, 130.15, 129.63, 129.53, 129.33, 129.26, 129.09, 128.07, 127.73, 127.52, 127.21, 127.03, 124.82, 123.63, 123.12, 121.24, 119.67, 112.98, 104.49, 61.49, 58.34, 56.61, 42.62, 38.44, 29.38, 28.41, 26.77, 26.65, 12.40. [ ] 25 D = -68.8 (c = 0.9, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3305.1, 2928.3, 2361.3, 1620.7, 1506.4, 1263.4, 819.0, 750.1 cm -1. HRMS (ESI) calcd for [M+H] C 41 H 42 N 5 OS, m/z: 652.3104, observed: 652.3120. Experimental procedure for synthesis of catalyst XI A solution of isothiocyanate QD-NCS (110 mg, 0.3 mmol) in THF (3 ml) was added to a stirred 31 nature chemistry www.nature.com/naturechemistry 31

solution of the (S)-binaphthyl diamine (100 mg, 0.35 mmol) in THF (3 ml) at 60 o C. After 4 hours, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography to afford product with 46% yield. 1 H NMR (500 MHz, MeOD) 8.43 (d, J = 4.7 Hz, 1H), 7.92 (d, J = 8.9 Hz, 1H), 7.89-7.79 (m, 4H), 7.68 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.36-7.33 (m, 2H), 7.17-7.05 (m, 4H), 6.93 (t, J = 7.4 Hz, 1H), 6.76-6.69 (m, 2H), 6.01 (s, 1H), 5.85 (ddd, J = 17.0, 10.4, 6.2 Hz, 1H), 5.11 (d, J = 17.3 Hz, 1H), 5.04 (d, J = 10.5 Hz, 1H), 3.91 (s, 3H), 3.11 (s, 1H), 3.04-2.94 (m, 1H), 2.86-2.78 (m, 3H), 2.24 (s, 1H), 1.49-1.43 (m, 3H), 1.22 (s, 1H), 1.11-1.06 (m, 1H), 0.83-0.79 (m, 1H). 13 C NMR (125 MHz, MeOD) 182.71, 158.42, 147.15, 144.10, 143.93, 140.81, 136.42, 134.18, 133.02, 132.74, 130.02, 129.63, 129.11, 128.40, 128.17, 127.88, 127.60, 126.93, 126.43, 126.37, 125.90, 125.73, 123.78, 122.73, 122.06, 119.76, 118.69, 114.19, 111.99, 103.01, 60.63, 55.48, 54.95, 49.08, 39.34, 31.73, 27.80, 26.40, 25.41. [ ] 25 D = +141.4 (c = 0.7, CH 2 Cl 2 ). IR (CH 2 Cl 2 ) 3323.5, 2918.5, 2868.4, 2359.2, 1602.9, 1507.2, 1263.6, 1029.7, 818.7, 750.2 cm -1. HRMS (ESI) calcd for [M+H] C41H40N5OS, m/z: 650.2948, observed: 650.2951. Proposed activation mode of catalyst and substrates (Figure 7) 32 nature chemistry www.nature.com/naturechemistry 32

Control experiment for mechanistic studies (Figure 8): No reaction at all (no hydrogen bond acceptor part like ester or ketone) X-ray stuctures of 3e and 3p (Figure 9) 33 nature chemistry www.nature.com/naturechemistry 33

Crystal data and structure refinement for 3e Identification code barbas 09 (TB341) 34 nature chemistry www.nature.com/naturechemistry 34

Empirical formula C45 H39 Cl N2 O7 Formula weight 755.23 Temperature 100(2) K Wavelength 1.54178 Å Crystal system Monoclinic Space group P2(1) Unit cell dimensions a = 9.7093(6) Å α= 90. b = 11.9854(8) Å β= 93.883(5). c = 15.6951(11) Å γ = 90. Volume 1822.2(2) Å 3 Z 2 Density (calculated) 1.376 Mg/m 3 Absorption coefficient 1.403 mm -1 F(000) 792 Crystal size 0.40 x 0.40 x 0.06 mm 3 Crystal color, habit Colorless Plate Theta range for data collection 2.82 to 67.24. Index ranges -11<=h<=11, -14<=k<=14, -18<=l<=18 Reflections collected 5241 Independent reflections 5241 [R(int) = 0.0536] Completeness to theta = 65.00 98.8 % Absorption correction Multi-scan Max. and min. transmission 0.9205 and 0.6037 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 5241 / 1 / 497 Goodness-of-fit on F 2 1.029 Final R indices [I>2sigma(I)] R1 = 0.0560, wr2 = 0.1318 R indices (all data) R1 = 0.0635, wr2 = 0.1398 Absolute structure parameter 0.02(3) Largest diff. peak and hole 0.306 and -0.380 e.å -3 Crystal data and structure refinement for 3p Identification code barbas07 (TB303 (6-Cl)) 35 nature chemistry www.nature.com/naturechemistry 35

Empirical formula C36 H29 Cl N2 O6 Formula weight 621.06 Temperature 123(2) K Wavelength 0.71073 Å Crystal system Monoclinic Space group P2(1) Unit cell dimensions a = 9.4062(6) Å α= 90 b = 27.3462(17) Å β= 97.5890(10) c = 12.0053(8) Å γ = 90 Volume 3061.0(3) Å 3 Z, Z 4, 2 Density (calculated) 1.348 g/cm 3 Absorption coefficient 0.176 mm -1 F(000) 1296 Crystal size 0.44 x 0.34 x 0.10 mm 3 Crystal color, habit Colorless plate Theta range for data collection 1.49 to 25.36 Index ranges -11<=h<=11, -32<=k<=26, -14<=l<=14 Reflections collected 22482 Independent reflections 9782 [R(int) = 0.0644] Completeness to theta = 25.36 99.5 % Max. and min. transmission 0.9826 and 0.9267 Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 9782 / 1 / 815 Goodness-of-fit on F 2 1.041 Final R indices [I>2sigma(I)] R1 = 0.0471, wr2 = 0.1178 R indices (all data) R1 = 0.0528, wr2 = 0.1232 Absolute structure parameter -0.03(5) Largest diff. peak and hole 0.364 and -0.320 e Å -3 36 nature chemistry www.nature.com/naturechemistry 36

NMR Spectra 37 nature chemistry www.nature.com/naturechemistry 37

38 nature chemistry www.nature.com/naturechemistry 38

39 nature chemistry www.nature.com/naturechemistry 39

40 nature chemistry www.nature.com/naturechemistry 40

41 nature chemistry www.nature.com/naturechemistry 41

42 nature chemistry www.nature.com/naturechemistry 42

43 nature chemistry www.nature.com/naturechemistry 43

44 nature chemistry www.nature.com/naturechemistry 44

45 nature chemistry www.nature.com/naturechemistry 45

46 nature chemistry www.nature.com/naturechemistry 46

47 nature chemistry www.nature.com/naturechemistry 47

48 nature chemistry www.nature.com/naturechemistry 48

50 nature chemistry www.nature.com/naturechemistry 49

51 nature chemistry www.nature.com/naturechemistry 50

52 nature chemistry www.nature.com/naturechemistry 51

53 nature chemistry www.nature.com/naturechemistry 52

54 nature chemistry www.nature.com/naturechemistry 53

55 nature chemistry www.nature.com/naturechemistry 54

56 nature chemistry www.nature.com/naturechemistry 55

57 nature chemistry www.nature.com/naturechemistry 56

58 nature chemistry www.nature.com/naturechemistry 57

59 nature chemistry www.nature.com/naturechemistry 58

61 nature chemistry www.nature.com/naturechemistry 59

62 nature chemistry www.nature.com/naturechemistry 60

63 nature chemistry www.nature.com/naturechemistry 61

64 nature chemistry www.nature.com/naturechemistry 62

66 nature chemistry www.nature.com/naturechemistry 63

67 nature chemistry www.nature.com/naturechemistry 64

68 nature chemistry www.nature.com/naturechemistry 65

69 nature chemistry www.nature.com/naturechemistry 66

70 nature chemistry www.nature.com/naturechemistry 67

71 nature chemistry www.nature.com/naturechemistry 68

72 nature chemistry www.nature.com/naturechemistry 69

73 nature chemistry www.nature.com/naturechemistry 70

74 nature chemistry www.nature.com/naturechemistry 71

75 nature chemistry www.nature.com/naturechemistry 72

76 nature chemistry www.nature.com/naturechemistry 73

77 nature chemistry www.nature.com/naturechemistry 74

78 nature chemistry www.nature.com/naturechemistry 75

79 nature chemistry www.nature.com/naturechemistry 76

80 nature chemistry www.nature.com/naturechemistry 77

HPLC Spectra 81 nature chemistry www.nature.com/naturechemistry 78

82 nature chemistry www.nature.com/naturechemistry 79

83 nature chemistry www.nature.com/naturechemistry 80

84 nature chemistry www.nature.com/naturechemistry 81

85 nature chemistry www.nature.com/naturechemistry 82

86 nature chemistry www.nature.com/naturechemistry 83

87 nature chemistry www.nature.com/naturechemistry 84

88 nature chemistry www.nature.com/naturechemistry 85

89 nature chemistry www.nature.com/naturechemistry 86

90 nature chemistry www.nature.com/naturechemistry 87

91 nature chemistry www.nature.com/naturechemistry 88

92 nature chemistry www.nature.com/naturechemistry 89

93 nature chemistry www.nature.com/naturechemistry 90

94 nature chemistry www.nature.com/naturechemistry 91

95 nature chemistry www.nature.com/naturechemistry 92

96 nature chemistry www.nature.com/naturechemistry 93

97 nature chemistry www.nature.com/naturechemistry 94

98 nature chemistry www.nature.com/naturechemistry 95

99 nature chemistry www.nature.com/naturechemistry 96

100 nature chemistry www.nature.com/naturechemistry 97

101 nature chemistry www.nature.com/naturechemistry 98

102 nature chemistry www.nature.com/naturechemistry 99

103 nature chemistry www.nature.com/naturechemistry 100

104 nature chemistry www.nature.com/naturechemistry 101