Supporting Information

Similar documents
Phosphirenium-Borate Zwitterion: Formation in the 1,1-Carboboration Reaction of Phosphinylalkynes. Supporting Information

Reactions of dimethylzirconocene complexes. with a vicinal frustrated P/B Lewis pair

Supporting Information Borata-alkene Derivatives Conveniently Made by Frustrated Lewis Pair Chemistry

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Phospha-Claisen Type Reactions at Frustrated Lewis Pair. Supporting Information

Supporting Information

Synthesis of Vinyl Germylenes

Supporting Information

Coordination Behaviour of Calcocene and its Use as a Synthon for Heteroleptic Organocalcium Compounds

Manganese-Calcium Clusters Supported by Calixarenes

Chiral Sila[1]ferrocenophanes

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Electronic Supplementary Information (ESI)

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

2-(2 -pyridyl)-4,6-diphenylphosphinine versus 2-(2 -pyridyl)-4,6- diphenylpyridine: An evaluation of their coordination chemistry towards Rh(I)

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Supporting Information

Supporting Information

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

,

Supporting Information

Transformations: New Approach to Sampagine derivatives. and Polycyclic Aromatic Amides

Department of Chemistry, Tianjin University, Tianjin , P. R. China Tel:

Electronic Supplementary Information

Supplementary Figure S1 a, wireframe view of the crystal structure of compound 11. b, view of the pyridinium sites. c, crystal packing of compound

Supplementary Information: Selective Catalytic Oxidation of Sugar Alcohols to Lactic acid

metal-organic compounds

Benzene Absorption in a Protuberant-Grid-Type Zinc(II) Organic Framework Triggered by the Migration of Guest Water Molecules

Iron Complexes of a Bidentate Picolyl NHC Ligand: Synthesis, Structure and Reactivity

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

Simple Solution-Phase Syntheses of Tetrahalodiboranes(4) and their Labile Dimethylsulfide Adducts

A new synthetic route towards heterometallic 3d-3d and 3d-4f Single- Molecule Magnets. First Co II -Mn III heterometallic complex

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Electronic Supplementary Information

Supporting Information

Anion binding vs deprotonation in colorimetric pyrrolylamido(thio)urea based anion sensors

Supporting Information for the Article Entitled

Supporting Information

Aluminum Complexes with Bidentate Amido Ligands: Synthesis, Structure and Performance on Ligand-Initiated Ring-Opening Polymerization of rac-lactide

Scandium and Yttrium Metallocene Borohydride Complexes: Comparisons of (BH 4 ) 1 vs (BPh 4 ) 1 Coordination and Reactivity

Hydrophobic Ionic Liquids with Strongly Coordinating Anions

Supporting Information for: Catalytic N 2 Reduction to Silylamines and Thermodynamics of N 2 Binding at Square Planar Fe

Supporting Information

A water-stable zwitterionic dysprosium carboxylate metal organic. framework: a sensing platform for Ebolavirus RNA sequences

Selective total encapsulation of the sulfate anion by neutral nano-jars

Supporting Information

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Supplementary Materials for

Supporting Information for. an Equatorial Diadduct: Evidence for an Electrophilic Carbanion

Electronic Supplementary Information

Supporting Information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supporting Information

The oxide-route for the preparation of

Synthesis and Unique Optical Properties. of Selenophenyl BODIPYs. and Their Linear Oligomers

Supporting Information. Molecular Iodine-Catalyzed Aerobic α,β-diamination of Cyclohexanones with 2- Aminopyrimidine and 2-Aminopyridines

Total Synthesis of Gonytolides C and G, Lachnone C, and. Formal Synthesis of Blennolide C and Diversonol

Halogen halogen interactions in diiodo-xylenes

One-dimensional organization of free radicals via halogen bonding. Supporting information

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Electronic Supplementary Information

Electronic Supporting Information For. Accessing Heterobiaryls through Transition Metal-Free C-H Functionalization. Content

Electronic Supplementary data. Metal exchange in lithiocuprates: implications for our. understanding of structure and reactivity

Binuclear Rare-Earth Polyhydride Complexes Bearing both

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

organic papers Malonamide: an orthorhombic polymorph Comment

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

A Facile Route to Rare Heterobimetallic Aluminum-Copper. and Aluminum-Zinc Selenide Clusters

Supporting Information

An unprecedented 2D 3D metal-organic polyrotaxane. framework constructed from cadmium and flexible star-like

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

Syntheses and Structures of Mono-, Di- and Tetranuclear Rhodium or Iridium Complexes of Thiacalix[4]arene Derivatives

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Synthesis of 1,2-glycerol carbonate from carbon dioxide: the role of methanol in fluid phase equilibrium

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Electronic Supplementary Information. Pd(diimine)Cl 2 Embedded Heterometallic Compounds with Porous Structures as Efficient Heterogeneous Catalysts

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

Supplementary Material

Supporting Information for:

Electronic Supplementary Information

Supporting Information for: Kinetic Analysis of the Immortal Ring-Opening Polymerization of Cyclic. Esters: A Case Study with Tin(II) Catalysts

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Molecular Imaging of Labile Iron(II) Pools in Living Cells with a Turn-on Fluorescent Probe

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane

Living polymerization of arylisocyanide initiated by phenylethynyl palladium(ii) complex

Impeller-like dodecameric water clusters in metal organic nanotubes

Supplementary Information

A Highly Reactive Scandium Phosphinoalkylidene Complex: C H and H H Bonds Activation

metal-organic compounds

Transcription:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Supporting Information Synthesis and Structures of N-Arylcyano-β-diketiminate Zinc Complexes and Adducts, their Application in Ring Opening Polymerization of L-lactide Oleksandra S. Trofymchuk, a Constantin G. Daniliuc, b Gerald Kehr, b Gerhard Erker,* b and Rene S. Rojas* a Table of contents Synthesis and Characterization of compounds... Zn 2 (L ) 2 (OH) 2 ( a )...22 Crystallography Characterization of compounds...23 H NMR spectra of PLLA formation...26 H NMR spectrum of partially dissociated complex 2.27 H NMR spectrum of PLLA...27 MALDI-TOF spectrum of PLLA...28 PLLA SEC characterization..28. Synthesis and Characterization of compounds Preparation of ZnL N(SiMe 3 ) 2,. Zn{N(SiMe 3 ) 2 } 2 (28.9 mg, 278. mmol) and L H (00 mg, 278. mmol) were dissolved in toluene and stirred at 80 o C for 2 h. Evaporation of the solvent yielded a pale yellow, airsensitive solid, that was washed with 3-4 ml cold pentane, and dried in vacuo. Yield: 0 mg (88.3 mmol, 68 %). Single crystals for X-ray crystallography were grown by layering pentane onto a toluene solution of compound () at-30 o C.

H NMR (600 MHz, C 6 D 6, 299 K) 3 C {H} (00 MHz, C 6 D 6, 299 K) 2

H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm = 0.03 (bd, 8H, N(SiMe 3 ) 2 ),.6 (d, J =.6 Hz, 6H, CH(CH 3 ) 2 ),.46 (d, 6H, J =.6 Hz, CH(CH 3 ) 2 ),.64 (s, 3H, Me),.65 (s, 3H, Me), 3.33 (bs, 2H, CH(CH 3 ) 2 ), 4.88 (s, H, CH), 6.59 (m, H, Ar-H), 6.99 (m, 2H, Ar-H), 7.09 (m, H, Ar-H), 7.3 (m, 3H, Ar-H j,j,k ). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 5.22 (N(Si(CH 3 ) 3 ) 2 ), 23.58 (CH(CH 3 ) 2 ), 24.5 (CH(CH 3 ) 2 ), 24.79 (Me), 28.77 (CH(CH 3 ) 2 ), 97.22 (CH), 0.77 (Ar-C), 7.67 (C N), 25.34 (Ar-CH), 26.98 (Ar-CH), 27.59 (Ar-CH), 28.06 (Ar-C), 28.5 (Ar-C), 33.05 (Ar-CH), 33.3 (Ar-CH), 43.87 (Ar-C), 52.59 (Ar-C), 67.0 (C=N), 7.69 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) =.6/ 3.33 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 3.33/.6,.46 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 6.59/ 6.99, 7.09 (Ar-H/ Ar-H, Ar-H), 6.99/ 6.59 (Ar-H/ Ar-H), 7.09/ 6.59, 6.99 (Ar-H/ Ar-H, Ar-H). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.03/ 5.22 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.6/ 23.58 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.46/ 24.5 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.64/ 24.79 (Me/ Me),.65/ 24.79 (Me/ Me), 3.33/ 28.77 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 4.88/ 97.22 (CH/ CH), 6.59/ 25.34 (Ar-H/ Ar-CH), 6.99/ 27.59, 33.05 (Ar- H/ Ar-CH, Ar-CH), 7.09/ 33.3 (Ar-H/ Ar-CH), 7.3/ 26.98 (Ar-H/ Ar-CH). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.03/ 5.22 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.6/ 23.58, 24.79, 43.87 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH, Ar- C),.46/ 24.5, 24.79, 43.87, 52.59 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH, Ar-C, Ar-C),.64/ 97.22, 67.0 (Me/ CH, C=N),.65/ 97.22, 7.69 (Me/ CH, C=N), 4.88/ 24.79, 43.87, 52.59, 67.0, 7.69 (CH/ Me, Ar-C, Ar-C, C=N, C=N), 6.59/ 0.77, 27.59 (Ar-H/ Ar-C, Ar- CH), 6.99/ 27.59, 33.05 (Ar-H/ Ar-CH, Ar-CH), 6.99/ 7.67, 25.34, 33.3, 52.59 (Ar-H/ C N, Ar-CH, Ar-CH, Ar-C), 7.09/ 7.67, 33.3, 52.59 (Ar-H/ C N, Ar-CH, Ar- C), 7.3/ 23.58, 24.5, 25.34, 43.87 (Ar-H/ CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH, Ar-C). 29 Si, { H} (75 MHz, C 6 D 6, 299 K): δ = 0.05 ppm. DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.6/.46,.64,.65, 3.33, 7.3 (CH(CH 3 ) 2 / CH(CH 3 ) 2, Me, Me, CH(CH 3 ) 2, Ar-H),.46/ 3.33, 7.3 (CH(CH 3 ) 2 / CH(CH 3 ) 2, Ar-H),.64/ 3.33, 4.88, 6.59 (Me/ CH(CH 3 ) 2, CH, Ar-H), 6.59/ 6.99, 7.09 (Ar-H/ Ar-H, Ar- H), 6.99/ 7.09 (Ar-H/ Ar-H), 7.3/.6,.46 (Ar-H/ CH(CH 3 ) 2, CH(CH 3 ) 2 ). 3

D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.6/.46, 3.33 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.46/.6, 3.33 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 6.59/ 6.99, 7.09 (Ar-H/ Ar-H, Ar-H). IR (KBr): ν/cm - = 2225 (ν (C N), s). Elemental analysis (%) C 30 H 46 N 4 Si 2 Zn (M = 584.2640 g/mol): calculated C 6.67, H 7.94, N 9.59; found C 62.3, H 7.47, N 9.54. Preparation of ZnL 2 N(SiMe 3 ) 2, 2. Zn{N(SiMe 3 ) 2 } 2 (54.3 mg, 332.9 mmol) and L 2 H (00 mg, 332.9 mmol) were dissolved in toluene and stirred at 80 o C for 2 h. Evaporation of the solvent yielded a yellow, airsensitive solid, that was washed with 5 ml cold pentane, and dried in vacuo. Yield: 3 mg (249.5 mmol, 75 %). Single crystals for X-ray crystallography were grown by layering pentane onto a toluene solution of compound (2) at-30 o C. 4

H NMR (600 MHz, C 6 D 6, 299 K) 3 C {H} (00 MHz, C 6 D 6, 299 K) H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm = 0.00 (s, 8H, N(SiMe 3 ) 2 ),.59 (s, 6H, Me), 4.85 (s, H, CH ), 6.54 (m, 2H, Ar-H), 6.70 (m, 2H, Ar-H), 6.89 (m, 2H, Ar-H), 7.09 (m, 2H, Ar-H). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 5.24 (N(Si(CH 3 ) 3 ) 2 ), 23.73 (Me), 97.76 (CH), 0.5 (Ar-C), 7.42 (C N), 25.59 (Ar-CH), 26.67 (Ar-CH), 26.98 (Ar-C), 26.79 (Ar-C), 33.02 (Ar-CH), 33.38 (Ar-CH), 5.86 (Ar-C), 69.3 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) = 6.54/ 6.89, 7.09 (Ar-CH/ Ar-CH, Ar-CH), 6.70/ 6.89 (Ar-CH/ Ar-CH), 6.89/ 6.54, 6.70 (Ar-H/ Ar-H, Ar-H), 7.09/ 6.54 (Ar-H/ Ar-H). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.00/ 5.24 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.59/ 23.73 (Me/ Me), 4.85/ 97.76 (CH/ CH), 6.54/ 25.59 (Ar-H/ Ar-CH), 6.70/ 26.67 (Ar-H/ Ar-CH), 6.89/ 33.02 (Ar-H/ Ar-CH), 7.09/ 33.38 (Ar-H/ Ar-CH). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.00/ 5.24 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.59/ 97.76, 69.3 (Me/ CH, C=N), 4.85/ 23.73 (CH/ Me), 6.54/ 0.5, 26.67 (Ar-H/ Ar-C, Ar-CH). 29 Si, { H} (75 MHz, C 6 D 6, 299 K): δ = - 0.05 ppm. DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.59/ 4.85 (Me/ CH), 6.54/ 7.09 (Ar-H/ Ar-H). 5

D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.59/ 4.85 (Me/ CH), 6.54/ 6.70, 6.89, 7.09 (Ar-H/ Ar-H, Ar-H, Ar-H). IR (KBr): ν/cm - = 2226 (ν (C N), s). Elemental analysis (%) C 25 H 33 N 5 Si 2 Zn (M = 525.40 g/mol): calculated C 57.8, H 6.33, N 3.34; found C 57.23, H 6.0, N 3.2. Preparation of ZnL N(SiMe 3 ) 2 * B(C 6 F 5 ) 3, 3. eq of Tris(pentafluorophenyl)borane (7.6 mg in 2 ml of toluene, 34.2 mmol) was added to a toluene solution of (20 mg, 34.2 mmol). The reaction mixture was stirred for 0 min, filtered and dried several hours under vacuum. Compound 3 was isolated as bright yellow solid in 8 % yield. 6

H NMR (600 MHz, C 6 D 6, 299 K) 3 C {H} (00 MHz, C 6 D 6, 299 K) H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm = 0. (s, 9H, N(SiMe 3 ) 2 ), 0.25 (s, 9H, N(SiMe 3 ) 2 ),.03 (d, J =.4 Hz, 3H, CH(CH 3 ) 2 ),.5 (d, J =.4 Hz, 3H, CH(CH 3 ) 2 ),.25 (m, 6H, CH(CH 3 ) 2 ),.50 (s, 3H, Me),.63 (s, 3H, Me), 2.9 (s, H, CH(CH 3 ) 2 ), 2.99 (s, H, CH(CH 3 ) 2 ), 4.83 (s, H, CH), 6.50 (m, H, Ar-H d ), 6.85 (m, H, Ar-H), 6.95 (m, H, Ar-H), 7.05 (m, 2H, Ar-H), 7.0 (m, H, Ar-H), 7.38 (m, H, Ar-H e ). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 4.6 (N(SiMe 3 ) 2 ), 5.47(N(SiMe 3 ) 2 ), 23.04 (Me), 24.23 (Me), 24.53 (CH(CH 3 ) 2 ), 24.57 (CH(CH 3 ) 2 ), 24.70 (CH(CH 3 ) 2 ), 24.77 (CH(CH 3 ) 2 ), 28.52 (CH(CH 3 ) 2 ), 28.72 (CH(CH 3 ) 2 ), 97.73 (CH), 03.72 (Ar-C), 5.32 7

(C N), 24.49 (Ar-CH), 24.87 (Ar-CH), 26.04 (Ar-CH d ), 27.28 (Ar-CH), 28.95 (Ar- CH), 35.53 (Ar-CH e ), 37.04 (Ar F5 -C), 37.89 (Ar-CH), 38.56 (Ar F5 -C), 40.3 (Ar F5 - C), 4.02 (Ar-C), 4.79 (Ar F5 -C), 42.35 (Ar-C), 42.87 (Ar-C), 47.78 (Ar F5 -C), 49.40 (Ar F5 -C), 54.83 (Ar-C), 65.02 (C=N), 73.85 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) =.03/ 2.9, 2.99 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.5/ 2.9, 2.99 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.25/ 2.9, 2.99 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.9/.03,.5,.25 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.99/.03,.5,.25 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 4.83/.50,.63 (CH/ Me, Me), 6.50/ 6.85, 7.38 (Ar-H d / Ar-H, Ar-H e ), 6.85/ 6.95 (Ar-H/ Ar-H), 6.95/ 6.85 (Ar-H/ Ar-H), 7.05/ 7.0 (Ar-H/ Ar-H), 7.0/ 7.05 (Ar-H/ Ar-H), 7.38/ 6.50 (Ar- H e / Ar-H d ). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.25/ 4.6 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ), 0./ 5.47 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ),.03/ 24.53 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.5/ 24.57 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.25/ 24.70, 24.77 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.50/ 23.04 (Me/ Me),.63/ 24.23 (Me/ Me), 2.9/ 28.52 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 2.99/ 28.72 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 4.83/ 97.73 (CH/ CH), 6.50/ 26.04 (Ar-CH d / Ar-CH d ), 6.85/ 28.95 (Ar-CH/ Ar-CH), 6.95/ 37.89 (Ar-CH/ Ar-CH), 7.05/ 24.49, 24.87 (Ar-CH/ Ar- CH, Ar-CH ), 7.0/ 27.28 (Ar-CH/ Ar-CH), 7.38/ 35.53 (Ar-CH e / Ar-CH). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.25/ 4.6 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ), 0./ 5.47 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ),.03/ 24.53, 24.57, 28.52, 4.02 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C),.5/ 24.53, 28.52, 42.35 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C),.25/ 24.70, 24.77, 28.52, 4.02, 42.35 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C, Ar-C ),.50/ 97.73, 65.02 (Me/ CH, C=N),.63/ 97.73, 73.85 (Me/ CH, C=N), 2.9/ 24.70, 24.77, 24.49, 4.02, 42.87 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH, Ar-C, Ar-C), 2.99/ 24.53, 24.57, 24.87, 42.35 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH, Ar-C), 4.83/ 23.04, 24.23, 42.87, 54.83, 65.02, 73.85 (CH/ Me, Me, Ar-C, Ar-C, C=N, C=N), 6.50/ 03.72, 28.95 (Ar-CH d / Ar- C, Ar-CH), 6.85/ 03.72, 26.04 (Ar-CH/ Ar-C, Ar-CH d ), 6.95/ 35.53, 54.83 (Ar-CH/ Ar-CH e, Ar-C), 7.05/ 28.52, 28.72, 24.49, 24.87, 4.02, 42.35, 42.87 (Ar-CH/ CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH, Ar-CH, Ar-C, Ar-C, Ar-C), 7.0/ 4.02 (Ar-CH/ Ar-C), 7.38/ 5.32, 54.83 (Ar-CH e / C N, Ar-C). 8

DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) = 0./ 0.25,.25, 2.9, 2.99, 6.85 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH), 0.25/ 0.,.25, 2.9, 2.99, 6.85 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH),.03/.5,.25,.63, 2.9, 6.95 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH),.5/.03,.25,.63, 2.99, 6.95 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH),.63/ 2.9, 2.99, 6.95 (CH/ CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-H),.50/ 4.83 (Me/ CH),.63/ 0., 0.25, 4.83, (Me/ N(SiMe 3 ) 2, N(SiMe 3 ) 2, CH), 4.83/.50,.63 (CH/ Me, Me), 7.38/ 6.50 (Ar-H e / Ar-H d ). D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) = 0./ 0.25 (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ), 0.25/ 0. (N(SiMe 3 ) 2 / N(SiMe 3 ) 2 ),.03/.25, 2.9 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.5/.25, 2.99 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.25/.03,.5, 2.9, 2.99 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.9/.03,.25 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.99/.5,.25 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 4.83/.50,.63 (CH/ Me, Me), 6.50/ 6.85, 6.95, 7.38 (Ar-H d / Ar-H, Ar-H, Ar-H e ), 6.85/ 6.50, 6.95 7.38 (Ar-H/ Ar-H d, Ar-H, Ar-H e ), 6.95/ 6.50, 6.85, 7.38 (Ar-H/ Ar-H d, Ar-H, Ar-H e ), 7.38/ 6.50, 6.85, 6.95 (Ar-H e / Ar-H d, Ar-H, Ar-H). 9 F NMR (564 MHz, C 6 D 6, 299 K): δ -62.89 (m, 4F, m-c 6 F 5 ), -55.67 (m, 2F, p-c 6 F 5 ), - 33.64 (m, 4F, o-c 6 F 5 ) ppm. B NMR (92 MHz, C 6 D 6, 299 K): δ -9.74 ppm. IR (KBr): ν/cm - = 2305 (ν (C N), s). Elemental analysis (%) C 48 H 46 BF 5 N 4 Si 2 Zn (M = 096.2437 g/mol): calculated C 52.59 H 4.23, N 5.; found C 52.60, H 4.33, N 5.0. Preparation of ZnL 2 N(SiMe 3 ) 2 * 2B(C 6 F 5 ) 3, 4. 2 eq of Tris(pentafluorophenyl)borane (39 mg in ml of toluene, 76.2 mmol) was added to a toluene solution of 2 (20 mg, 38 mmol). The reaction mixture was stirred for 0 min, filtered and dried several hours under vacuum. Compound 4 was isolated as bright yellow solid in 83 % yield. Single crystals for X-ray crystallography were grown by layering pentane onto a toluene solution of compound (4) at-30 o C. 9

H NMR (600 MHz, C 6 D 6, 299 K) 0

3 C {H} (00 MHz, C 6 D 6, 299 K) H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm = 0.33 (s, 8H, N(SiMe 3 ) 2 ),.50 (s, 6H, Me), 4.57 (s, H, CH ), 6.48 (m, 2H, Ar-H b ), 6.95 (m, 4H, Ar-H c,d ), 7.23 (m, 2H, Ar-H e ). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 4.85 (N(Si(CH 3 ) 3 ) 2 ), 23.38 (Me), 98.5 (CH), 4.48 (C N), 5.48 (Ar-C), 27.34 (Ar-CH b ), 27.87 (Ar-C), 28.5 (Ar-C), 35.28 (Ar-CH e ), 37.09 (Ar F5 -C), 38.63 (Ar-CH), 38.7 (Ar F5 -C), 40.24 (Ar F5 -C), 4.93 (Ar F5 -C), 47.96 (Ar F5 -C), 49.70 (Ar F5 -C), 53.88 (Ar-C), 70.38 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) =.50/ 4.57 (Me/ CH), 4.57/.50 (CH/ Me), 6.48/ 6.95, 7.23 (Ar-H b / Ar-H c,d, Ar-H e ), 6.95/ 6.48 (Ar-H c,d / Ar-H b ), 7.23/ 6.48, 6.95 (Ar-H e / Ar-H b, Ar-H c,d ). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.33/ 4.85 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.50/ 23.38 (Me/ Me), 4.85/ 98.5 (CH/ CH), 6.48/ 27.34 (Ar-H b / Ar-CH b ), 6.95/ 27.87, 38.63 (Ar-H c,d / Ar-CH, Ar-CH), 7.23/ 35.28 (Ar-H e / Ar- CH e ). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 0.33/ 4.85 (N(Si(CH 3 ) 3 ) 2 / N(Si(CH 3 ) 3 ) 2 ),.50/ 98.5, 70.38 (Me/ CH, C=N), 4.85/ 23.38, 53.88, 70.38 (CH/ Me, Ar-C, C=N), 6.48/ 27.87 (Ar-H b / Ar-CH), 6.95/ 35.28, 53.88 (Ar-H c,d / Ar-CH e, Ar-C), 7.23/ 4.48, 38.63, 53.88 (Ar-H e / C N, Ar-CH, Ar-C). DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) = 0.33/ 7.23 (N(SiMe 3 ) 2 / Ar-H e ),.50/ 4.57 (Me/ CH), 6.48/ 6.95, 7.23 (Ar-H b / Ar-H c,d, Ar-H e ), 6.95/ 6.48, 7.23 (Ar-H c,d / Ar- H b, Ar-H e ), 7.23/ 6.48, 6.95 (Ar-H e / Ar-H b, Ar-H c,d ). D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.50/ 4.57 (Me/ CH), 6.48/ 6.95, 7.23 (Ar-H b / Ar-H c,d, Ar-H e ), 6.95/ 6.48, 7.23 (Ar-H c,d / Ar-H b, Ar-H e ), 7.23/ 6.48, 6.95 (Ar- H e / Ar-H b, Ar-H c,d ). 9 F NMR (564 MHz, C 6 D 6, 299 K): δ -62.79 (m, 4F, m-c 6 F 5 ), -55.22 (m, 2F, p-c 6 F 5 ), - 33.87 (m, 4F, o-c 6 F 5 ) ppm. B NMR (92 MHz, C 6 D 6, 299 K): δ -8.62 ppm. IR (KBr): ν/cm - = 230 (ν (C N), s). Elemental analysis (%) C 6 H 33 B 2 F 30 N 5 Si 2 Zn (M = 549.0733 g/mol): calculated C 47.30;, H 2.5, N 4.52; found C 47.4, H.65, N 4.8.

Preparation of ZnL C 6 F 5, 5. ZnL N(SiMe 3 ) 2 () (50 mg, 85.6 mmol) and HB(C 6 F 5 ) 2 (29.6 mg, 85.6 mmol) were dissolved in toluene and stirred at 80 o C for 2 h. The color of the solution was changed from yellow to orange. Evaporation of the solvent yielded pale orange, air-sensitive solid, that was washed several times with 2 ml cold pentane, and dried few hours under vacuum. Yield: 23.3 mg (39.4 mmol, 46 %). Single crystals for X-ray crystallography were grown by layering pentane onto a toluene solution of compound (5) at room temperature. H NMR (600 MHz, C 6 D 6, 299 K) 2

3 C {H} (00 MHz, C 6 D 6, 299 K) H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm =.4 (d, J =.5 Hz, 6H, CH(CH 3 ) 2 ),.23 (bs, 3H, CH(CH 3 ) 2 ),.36 (bs, 3H, CH(CH 3 ) 2 ),.72 (s, 3H, Me),.83 (s, 3H, Me), 3.3 (bs, 2H, CH(CH 3 ) 2 ), 3.45 (bs, 2H, CH(CH 3 ) 2 ), 5.02 (s, H, CH), 6.45 (t, H, Ar-H d ), 6.9 (t, H, Ar-H c ), 7.00 (d, H, Ar-H b ), 7.08 (m, 3H, Ar-H j,k ), 7.8 (d, H, Ar-H e ). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 23.2 (Me), 23.69 (Me), 23.8 (CH(CH 3 ) 2 ), 24.0 (CH(CH 3 ) 2 ), 24.3 (CH(CH 3 ) 2 ), 25.07 (CH(CH 3 ) 2 ), 28.28 (CH(CH 3 ) 2 ), 28.40 (CH(CH 3 ) 2 ), 96.7 (CH), 07.7 (Ar-C), 7.82 (C N), 24.02 (Ar-CH j,k ), 24.80 (Ar-CH d ), 26.44 (Ar-CH b ), 27.0 (Ar-C), 28.9 (Ar-C), 33.6 (Ar-CH e ), 34.62 (Ar- CH c ), 35.88 (Ar F5 -C), 37.65 (Ar F5 -C), 39.32 (Ar F5 -C), 40.9 (Ar F5 -C), 4.68 (Ar-C), 42.4 (Ar-C), 44.0 (Ar-C), 48.28 (Ar F5 -C), 49.77 (Ar F5 -C), 54.70 (Ar-C), 65.00 (C=N), 70.03 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) =.4/.23,.36 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 3.3/.4 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 3.45/.4 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 6.45/ 6.9, 7.8 (Ar-H d / Ar-H c, Ar-H e ), 6.9/ 6.45, 7.00, 7.8 (Ar-H c / Ar-H d, Ar-H b, Ar-H e ), 7.00/ 6.9 (Ar-H b / Ar-H c ), 7.8/ 6.45, 6.9 (Ar-H e / Ar-H d, Ar-H c ). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) =.4/ 23.2, 23.8 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ),.23/ 24.3 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.36/ 25.07 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.72/ 23.69 (Me/ Me),.83/ 23.2 (Me/ Me), 3.3/ 28.28 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 3.45/ 28.40 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ), 5.02/ 96.7 (CH/ CH), 6.45/ 3

24.80 (Ar-H d / Ar-CH d ), 6.9/ 34.62 (Ar-H c / Ar-CH c ), 7.00/ 26.44 (Ar-H b / Ar-CH b ), 7.08/ 24.02 (Ar-H j,k / Ar-CH j,k ), 7.8/ 33.6 (Ar-H e / Ar-CH e ). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) =.4/ 28.28, 28.40, 4.68, 42.4 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C, Ar-C),.72/ 96.7, 70.03 (Me/ CH, C=N),.83/ 96.7, 65.00 (Me/ CH, C=N), 5.02/ 23.2, 23.69, 65.00, 70.03 (CH/ CH(CH 3 ) 2, CH(CH 3 ) 2, C=N, C=N), 6.45/ 07.7, 27.0 (Ar-H d / Ar-C, Ar-C), 6.9/ 33.6, 54.70 (Ar-H c / Ar-CH e, Ar-C), 7.00/ 44.0 (Ar-H b / Ar-C), 7.8/ 54.70 (Ar-H e / Ar-C). 9 F NMR (564 MHz, C 6 D 6, 299 K): δ -62.09 (m, 2F, m-c 6 F 5 ), -56.7 (m, F, p-c 6 F 5 ), - 5.4 (m, 2F, o-c 6 F 5 ) ppm. DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.4/.72 (CH(CH 3 ) 2 / Me),.72/.4, 5.02 (Me/ CH(CH 3 ) 2, CH ), 5.02/.72,.83 (CH/ Me, Me), 6.45/ 7.8 (Ar-H d / Ar-H e ), 6.9/ 7.00 (Ar-H c / Ar-H b ). D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.4/.23,.36, 3.3, 3.45 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 6.45/ 6.9, 7.00, 7.8 (Ar-H d / Ar-H c, Ar-H b, Ar-H e ), 6.9/ 6.45, 7.00, 7.8 (Ar-H c / Ar-H d, Ar-H b, Ar-H e ). IR (KBr): ν/cm - = 2249 (ν (C N), s). HRMS (ESI + H + ): m/z calculated (for (C 30 H 28 F 5 N 3 Zn)(C 24 H 30 N 3 )): 949.3929 Found: 949.393. 4

Figure S. Experimental (above) and calculated (below) HRMS (ESI + H + ) spectra for (C 30 H 28 F 5 N 3 Zn)(C 24 H 30 N 3 ) Preparation of ZnL C 6 F 5 * B(C 6 F 5 ) 3, 6. eq of Tris(pentafluorophenyl)borane (33.8 mg in ml of toluene, 66 mmol) was added to a toluene solution of 5 (40 mg, 66 mmol). The reaction mixture was stirred for 20 min, filtered, washed with 3 ml cold pentane and dried under vacuum. Compound 6 was isolated as orange solid in 73 % yield. 5

H NMR (600 MHz, C 6 D 6, 299 K) 3 C {H} (00 MHz, C 6 D 6, 299 K) 6

H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm =.05 (d, J =.05 Hz, 3H, CH(CH 3 ) 2 ),.09 (d, J =.08 Hz, 3H, CH(CH 3 ) 2 ),.4 (d, J =.4 Hz, 3H, CH(CH 3 ) 2 ),.9 (d, J =.8 Hz, 3H, CH(CH 3 ) 2 ),.5 (s, 3H, Me),.63 (s, 3H, Me), 2.90 (s, H, CH(CH 3 ) 2 ), 5.00 (s, H, CH), 6.33 (t, H, Ar-H d ), 6.39 (d, H, Ar-H b ), 6.72 (t, H, Ar-H c ), 7.00 (m, 2H, Ar-H j,j ), 7.04 (m, H, Ar-H k ), 7.2 (d, H, Ar-H e ). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 23.58 (Me), 23.60 (CH(CH 3 ) 2 ), 23.65 (CH(CH 3 ) 2 ), 23.82 (CH(CH 3 ) 2 ), 24. (CH(CH 3 ) 2 ), 28.67 (CH(CH 3 ) 2 ), 28.78 (CH(CH 3 ) 2 ), 98.6 (CH), 03.95 (Ar-C f ), 3.94 (C N), 24.7 (Ar-CH j ), 24.78 (Ar-CH j ), 26.27 (Ar- CH d ), 27.30 (Ar-CH k ), 27.59 (Ar-CH b ), 34.45 (Ar-CH e ), 37.0 (Ar F5 -C), 37.7 (Ar- CH c ), 38.65 (Ar F5 -C), 40.24 (Ar F5 -C), 40.65 (Ar-C i ), 4.84 (Ar-C i ), 4.89 (Ar F5 -C), 42.3 (Ar-C h ), 47.97 (Ar F5 -C), 49.44 (Ar F5 -C), 55.45 (Ar-C a ), 65.89 (C=N), 73.69 (C=N). H- H GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) =.05/ 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.09/ 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.4/ 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.9/ 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.5/ 5.00 (Me/ CH), 2.90/.05,.09,.4,.9, (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 5.00/.5,.63 (CH/ Me, Me), 6.33/ 6.72, 7.2 (Ar-H d / Ar-H c, Ar-H e ), 6.39/ 6.72, 7.2 (Ar-H b / Ar-H c, Ar-H e ), 6.72/ 6.33, 6.39, 7.2 (Ar-H c / Ar-H d, Ar-H b, Ar-H e ), 7.00/ 7.04 (Ar-H j,j / Ar-H k ), 7.04/ 7.00 (Ar- H k / Ar-H j,j ), 7.2/ 6.33 (Ar-H e / Ar-H d ). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) =.05/ 23.60 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.09/ 23.65 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.4/ 23.82 (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.9/ 24. (CH(CH 3 ) 2 / CH(CH 3 ) 2 ),.5/ 23.58 (Me/ CH 3 ),.63/ 23.58 (Me/ CH 3 ), 2.90/ 28.67, 28.78 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2 ), 5.00/ 98.6 (CH/ CH), 6.33/ 26.27 (Ar-H d / Ar-CH d ), 6.39/ 27.59 (Ar-H b / Ar-CH b ), 6.72/ 37.7 (Ar-H c / Ar-CH c ), 7.00/ 24.7, 24.78 (Ar-H j,j / Ar-CH j, Ar-CH j ), 7.04/ 27.30 (Ar-H k / Ar-CH k ), 7.2/ 34.45 (Ar-H e / Ar-CH e ). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) =.05/ 23.60, 28.67, 28.78, 4.84 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C i ),.09/ 23.65, 28.67, 28.78, 40.65 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C i ),.4/ 23.82, 28.67, 28.78, 4.84 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C i ),.9/ 24., 28.67, 28.78, 40.65 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-C i ),.5/ 98.6, 7

65.89 (Me/ CH, C=N),.63/ 98.6, 73.69 (Me/ CH, C=N), 2.90/ 23.60, 23.65, 23.82, 24., 24.7, 24.78, 40.65, 4.84, 42.3 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH j, Ar-CH j, Ar-C i, Ar-C i, Ar-C h ), 5.00/ 23.58, 4.84, 42.3, 55.45, 65.89, 73.69 (CH/ Me, Ar-C i, Ar-C h, Ar-C a, C=N, C=N), 6.33/ 03.95, 34.45 (Ar-H d / Ar-C f, Ar-CH e ), 6.39/ 03.95 (Ar-H b / Ar-C f ), 6.72/ 34.45, 55.45 (Ar-H c / Ar-CH e, Ar-C a ), 7.00/ 28.67, 28.78, 24.7, 24.78, 4.84, 42.3 (Ar-H j,j / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-CH j, Ar-CH j, Ar-C i, Ar-C h ), 7.04/ 40.65 (Ar-H k / Ar-C i ), 7.2/ 3.94, 37.7, 55.45 (Ar-H e / C N, Ar-CH c, Ar-C a ). DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.05/.09,.9, 2.90, 7.00 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-H j,j ),.09/.05,.4, 2.90, 7.00 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-H j,j ),.4/.09, 2.90, 7.00 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-H j,j ),.9/.05, 2.90, 7.00 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, Ar-H j,j ),.5/ 2.90, 6.33 (Me/ CH(CH 3 ) 2, Ar-H j,j ),.63/.09,.4,.9 (Me/ CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.90/.05,.09,.4,.9,.63 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, Me), 5.00/.63 (CH/ Me), 6.33/ 6.39, 6.72, 7.2 (Ar-H d / Ar-H b, Ar- H c, Ar-H e ), 6.39/ 6.33, 6.72, 7.2 (Ar-H b / Ar-H d, Ar-H c, Ar-H e ), 6.72/ 6.33, 6.39, 7.2 (Ar- H c / Ar-H d, Ar-H b, Ar-H e ), 7.00/ 7.04 (Ar-H j,j / Ar-H k ), 7.04/ 7.00 (Ar-H k / Ar-H j,j ), 7.2/ 6.33, 6.39, 6.72 (Ar-H e / Ar-H d, Ar-H b, Ar-H c ). D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.05/.09,.4,.9, 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ),.09/.05,.4,.9, 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ),.4/.05,.4,.9, 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ),.9/.05,.4,.9, 2.90 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 2.90/.05,.09,.4,.9 (CH(CH 3 ) 2 / CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2, CH(CH 3 ) 2 ), 5.00/.5,.63 (CH/ Me, Me), 6.33/ 6.72 (Ar-H d / Ar-H c ), 6.39/ 6.33 (Ar-H b / Ar-H d ), 6.72/ 6.33, 6.39 (Ar-H c / Ar-H d, Ar- H b ), 7.00/ 7.04 (Ar-H j,j / Ar-H k ), 7.04/ 7.00 (Ar-H k / Ar-H j,j ), 7.2/ 6.33 (Ar-H e / Ar-H c ). 9 F NMR (564 MHz, C 6 D 6, 299 K): δ -62.75 (m, 6F, m-c 6 F 5 ), -60.86 (m, 2F, m-c 6 F 5 ), - 55.54 (m, 3F, p-c 6 F 5 ), -53.9 (m, F, p-c 6 F 5 ), -34.23 (m, 6F, o-c 6 F 5 ), -6.72 (m, 2F, o-c 6 F 5 ) ppm. 9 F- 9 F GCOSY (564 MHz / 564 MHz, C 6 D 6, 299 K): δ ( 9 F)/ δ ( 9 F) = -62.75/ -55.54, - 34.23 (m-c 6 F 5 / p-c 6 F 5, o-c 6 F 5 ), -60.86/ -53.9, -6.72 (m-c 6 F 5 / p-c 6 F 5, o-c 6 F 5 ), - 8

55.54/ -62.75, 34.23 (p-c 6 F 5 / m-c 6 F 5, o-c 6 F 5 ), -53.9/ -60.86, -6.72 (p-c 6 F 5 / m- C 6 F 5, o-c 6 F 5 ), -34.23/ -62.75, -55.54 (o-c 6 F 5 / m-c 6 F 5, p-c 6 F 5 ), -6.72/ -60.86, - 53.9 (o-c 6 F 5 / m-c 6 F 5, p-c 6 F 5 ) ppm. B NMR (92 MHz, C 6 D 6, 299 K): δ -9.52 ppm. IR (KBr): ν/cm - = 239 (ν (C N), s). Elemental analysis (%) C 48 H 28 BF 20 N 3 Zn * 0.5 C 5 H 2 : calculated C 53.25 H 3.0, N 3.69; found C 53.44, H 2.75, N 3.98. Preparation of ZnL 2, 7. Diketimine L 2 H (40 mg, 33.2 mmol) and Zn{N(SiMe 3 ) 2 } 2 (34.2 mg, 88.8 mmol) were reacted in toluene (5 ml) for 2 hours at 80 o C. The residue obtained after evaporation of the solvent was washed with pentane and dried under vacuum to yield yellow powder of 7 (36.5 mg, 62 %). Single crystals for X-ray crystallography were grown by layering pentane onto a toluene solution of compound (7) at-30 o C. 9

H NMR (600 MHz, C 6 D 6, 299 K) 3 C {H} (00 MHz, C 6 D 6, 299 K) H NMR (600 MHz, C 6 D 6, 299 K): δ/ppm =.54 (s, 6H, Me),.55 (s, 3H, Me),.57 (s, 6H, Me),.68 (s, 8H, Me),.69 (s, 6H, Me),.82 (s, 3H, Me),.98 (s, 6H, Me), 4.58 (s, H, CH), 4.63 (s, 3H, CH), 4.65 (s, 2H, CH), 4.67 (s, 2H, CH), 6.5 (m, 2H, Ar-H), 6.53 (m, 3H, Ar-H), 6.54 (m, 3H, Ar-H), 6.55 (m, H, Ar-H), 6.56 (m, 4H, Ar-H), 6.58 (m, 2H, Ar-H), 6.59 (m, H, Ar-H), 6.63 (m, H, Ar-H), 6.64 (m, H, Ar-H), 6.7 (m, H, Ar-H), 6.72 (m, H, Ar-H), 6.75 (m, H, Ar-H), 6.76 (m, H, Ar-H), 6.78 (m, H, Ar-H), 6.79 (m, 20

H, Ar-H), 6.88 (m, H, Ar-H), 6.90 (m, H, Ar-H), 6.9 (m, H, Ar-H), 6.92 (m, H, Ar- H), 6.95 (m, H, Ar-H), 6.96 (m, 3H, Ar-H), 6.98 (m, 2H, Ar-H), 7.02 (m, 2H, Ar-H), 7.07 (m, 5H, Ar-H), 7.09 (m, 5H, Ar-H), 7.0 (m, H, Ar-H), 7. (m, H, Ar-H), 7.3 (m, 2H, Ar-H), 7.5 (m, 2H, Ar-H), 7.7 (m, 2H, Ar-H), 7.8 (m, H, Ar-H), 7.9 (m, H, Ar-H), 7.2 (m, H, Ar-H), 7.22 (m, H, Ar-H), 7.29 (m, 2H, Ar-H), 7.37 (m, H, Ar-H), 7.45 (m, H, Ar-H), 7.9 (m, 2H, Ar-H). 3 C { H} NMR (00 MHz, C 6 D 6, 299 K): δ/ppm = 22.66 (Me), 22.7 (Me), 23.2 (Me), 23.45 (Me), 23.52 (Me), 98.27 (CH), 98.45 (CH), 98.52 (CH), 98.53 (CH), 07.99 (Ar-C), 08.39 (Ar-C), 08.40 (Ar-C), 09.3 (Ar-C), 09.9 (Ar-C), 6.48 (C N), 7.08 (C N), 7.6 (C N), 7.72 (C N), 8.00 (C N), 8.20 (C N), 23.35 (Ar), 23.48 (Ar-CH), 23.6 (Ar), 24.09 (Ar-CH), 24.8 (Ar), 24.24 (Ar), 24.35 (Ar), 25.00 (Ar- CH), 25.34 (Ar), 25.5 (Ar), 26. (Ar), 26.72 (Ar-CH), 26.78 (Ar), 27.2 (Ar), 32.7 (Ar-CH), 32.55 (Ar), 32.76 (Ar), 32.87 (Ar), 32.92 (Ar), 32.97 (Ar), 33.0 (Ar), 33.06 (Ar), 33.4 (Ar-CH), 33.32 (Ar-CH), 33.53 (Ar), 33.64 (Ar), 33.68 (Ar- CH), 35.2 (Ar), 5.62 (Ar), 52.07 (Ar), 52.88 (Ar), 53.05 (Ar), 53.29 (Ar), 53.48 (Ar), 67.39 (C=N), 67.53 (C=N), 68.04 (C=N), 68.45 (C=N), 69.07 (C=N), 69.7 (C=N), 69.84 (C=N). GCOSY (600 MHz / 600 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( H) = 6.5/ 6.95, 6.96, 6.98, 7.07, 7.09 (Ar-H/ Ar-H, Ar-H, Ar-H, Ar-H), 6.55/ 6.78, 6.79 (Ar-H/ Ar-H, Ar-H), 6.56/ 6.7, 6.72 (Ar-H/ Ar-H, Ar-H), 6.58/ 7.8 (Ar-H/ Ar-H), 6.59/ 7.8 (Ar-H/ Ar-H), 6.63/ 7.22 (Ar-H/ Ar-H), 6.64/ 7.22 (Ar-H/ Ar-H), 6.7/ 6.53, 6.55, 6.56 (Ar-H/ Ar-H, Ar-H, Ar-H), 6.78/ 6.54, 6.58 (Ar-H/ Ar-H, Ar-H), 6.90/ 6.5, 6.54 (Ar-H/ Ar-H, Ar-H), 6.95/ 6.5, 6.54, 7.07, 7.09 (Ar-H/ Ar-H, Ar-H, Ar-H, Ar-H), 6.98/ 6.5, 6.54, 7.07, 7.09 (Ar-H/ Ar-H, Ar- H, Ar-H, Ar-H), 7.07/ 6.5, 6.54, 6.95, 6.98 (Ar-H/ Ar-H, Ar-H, Ar-H, Ar-H), 7.09/ 6.5, 6.54, 6.95, 6.98 (Ar-H/ Ar-H, Ar-H, Ar-H, Ar-H), 7.3/ 7.45 (Ar-H/ Ar-H), 7.7/ 6.56 (Ar- H/ Ar-H), 7.8/ 6.59, 7.9 (Ar-H/ Ar-H, Ar-H), 7.9/ 6.54 (Ar-H/ Ar-H), 7.22/ 6.54, 6.58, 6.63, 6.64 (Ar-H/ Ar-H, Ar-H, Ar-H, Ar-H), 7.45/ 7.3 (Ar-H/ Ar-H), 7.9/ 7.5, 7.8 (Ar- H/ Ar-H, Ar-H). 3 C-GHSQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) =.68/ 23.2 (Me/ Me),.68/ 23.45 (Me/ Me),.68/ 23.52 (Me/ Me), 4.63/ 98.27 (CH/ CH), 4.65/ 98.45 (CH/ CH), 4.67/ 98.52 (CH/ CH), 6.5/ 23.48, 25.00 (Ar-H/ Ar-CH, Ar-CH), 6.53/ 24.09 (Ar-H/ 2

Ar-CH), 6.58/ 25.00 (Ar-H/ Ar-CH), 6.95/ 26.72 (Ar-H/ Ar-CH), 6.96/ 33.4, 33.32 (Ar-H/ Ar-CH, Ar-CH), 7.07/ 32.7, 33.68 (Ar-H/ Ar-CH, Ar-CH). H, 3 C-GHMQC (600 MHz / 00 MHz, C 6 D 6, 299 K): δ ( H)/ δ ( 3 C) = 4.63/ 22.66, 22.7, 98.45 (CH/ Me, Me, CH), 7.7/ 98.45 (Ar-H/ CH). DPFGNOE (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.54/.55,.57 (Me/ Me, Me),.55/.54,.57 (Me/ Me, Me),.57/.54,.55 (Me/ Me, Me),.68/.69, 4.63 (Me/ Me, Me),.69/.68, 4.63 (Me/ Me, CH), 4.63/.68, 4.65, 4.67 (CH/ Me, CH, CH), 4.65/.68, 4.63, 4.67 (CH/ Me, CH, CH), 4.67/.68, 4.63, 4.65 (CH/ Me, CH, CH). D TOCSY (600 MHz, C 6 D 6, 299 K): δ ( H ir ) / δ ( H res ) =.54/.55,.57 (Me/ Me, Me),.55/.54,.57 (Me/ Me, Me),.57/.54,.55 (Me/ Me, Me),.68/.69 (Me/ Me),.69/.68 (Me/ Me), 4.63/ 4.65, 4.67 (CH/ CH, CH), 4.65/ 4.63, 4.67 (CH/ CH, CH), 4.67/ 4.63, 4.65 (CH/ CH, CH). IR (KBr): ν/cm - = 2226 (ν (C N), s). Elemental analysis (%) (M = 662.885 g/mol): calculated C 68.73, H 4.55, N 6.87; found C 68.42, H 4.25, N 6.52. 2. Zn 2 (L ) 2 (OH) 2 ( a ) Zn 2 (L ) 2 (OH) 2 ( a ). Zinc amide complex with a long stay in a toluene solution was spotted to decompose to bimetallic zinc complex Zn 2 (L ) 2 (OH) 2 ( a ), single crystals of this compound suitable for X-ray diffraction were obtained, but only in quantities insufficient for further characterization. Scheme S. Synthesis of Zn 2 (L ) 2 (OH) 2 ( a ) a crystallizes in the triclinic space group Pī as a hydroxide-bridged centrosymmetric dimer (Scheme S, Figure S2). The Zn-O bond lengths are almost identical (Zn-O.969(); 22

Zn-O*.966() Ȧ) as was previously observed for [MesnacnacZn(µ-OH)] 2, whereas terminal OH groups show shorter Zn-O bond lengths (.85-.90 Ȧ). The Zn 2 O 2 metallacycle in a is planar (dihedral angle Zn-O-Zn*-O* is -0.0() o ) with the Zn Zn distance 3.002() Ȧ, while in [MesnacnacZn(µ-OH)] 2 the distance between two atoms of zinc is 2.909 Ȧ. Zn-N bond lengths within the complex a are slightly larger compared to the starting amide zinc complex (Figure, Figure S2). Four-coordinate zinc a adopts distorted tetrahedral geometry (O-Zn-N 5.5() o, O*-Zn-N2 2.() o, N-Zn-N2 97.2() o ). Figure S2. X-ray crystal structure of a with thermal ellipsoids drawn at the 50 % probability level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Ȧ) and angles (deg): Zn-O.969(), Zn-O*.966(), Zn-Zn* 3.002(), Zn-N.997(2), Zn-N2.989(2), O-O* 2.544(), O-Zn-O* 80.6(), N-Zn-N2 97.2(), O-Zn-N 5.5(), O*-Zn-N2 2.(), Zn-O-Zn*-O* -0.0(). 3. Crystallography Characterization. X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); structure solution SHELXS- 23

97 (G. M. Sheldrick, Acta Crystallogr. 990, A46, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 2-22) and graphics, XP (BrukerAXS, 2000). R-values are given for observed reflections, and wr 2 values are given for all reflections. The crystal data and refinement of, a, 2, 4, 5 and 7 are summarized below. X-ray crystal structure analysis of (erk7483): formula C 30 H 46 N 4 Si 2 Zn, M = 584.26, pale yellow crystal, 0.4 x 0. x 0.03 mm, a = 0.6036(), b = 7.0996(2), c = 9.825(3) Å, α = 7.047(), β = 8.865(), γ = 89.954(), V = 3252.7() Å 3, ρ calc =.93 gcm -3, µ = 0.852 mm -, empirical absorption correction (0.890 T 0.974), Z = 4, triclinic, space group P- (No. 2), λ = 0.7073 Å, T = 223(2) K, ω and φ scans, 2985 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.62 Å -, 367 independent (R int = 0.047) and 0493 observed reflections [I>2σ(I)], 69 refined parameters, R = 0.05, wr2 = 0.22, max. (min.) residual electron density 0.53 (-0.42) e.å -3, the hydrogens were calculated and refined as riding atoms. X-ray crystal structure analysis of 2 (erk7466): formula C 50 H 66 N 0 Si 4 Zn 2, M = 050.23, colorless crystal, 0.23 x 0.2 x 0.5 mm, a = 0.3795(3), b =.20(4), c = 5.3836(6) Å, α = 75.093(), β = 80.392(2), γ = 7.743(2), V = 635.4() Å 3, ρ calc =.066 gcm -3, µ = 0.842 mm -, empirical absorption correction (0.829 T 0.884), Z =, triclinic, space group P- (No. 2), λ = 0.7073 Å, T = 223(2) K, ω and φ scans, 2752 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.62 Å -, 6468 independent (R int = 0.042) and 5746 observed reflections [I>2σ(I)], 306 refined parameters, R = 0.057, wr2 = 0.36, max. (min.) residual electron density 0.46 (-0.47) e.å -3, the hydrogens were calculated and refined as riding atoms. X-ray crystal structure analysis of 4 (erk7454): formula C 6 H 33 B 2 F 30 N 5 Si 2 Zn, M = 549.09, pale yellow, 0.40 x 0.30 x 0.5 mm, a = 24.0692(3), b = 6.8248(3), c = 5.96(3) Å, β = 93.334(), V = 6434.5(2) Å 3, ρ calc =.599 gcm -3, µ = 0.55 mm -, empirical absorption correction (0.809 T 0.922), Z = 4, monoclinic, space group C2/c (No. 5), λ = 0.7073 Å, T = 273(2) K, ω and φ scans, 2499 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.59 Å -, 5538 independent (R int = 0.050) and 4537 observed reflections 24

[I>2σ(I)], 495 refined parameters, R = 0.06, wr2 = 0.64, max. (min.) residual electron density 0.35 (-0.25) e.å -3, the hydrogens were calculated and refined as riding atoms. X-ray crystal structure analysis of 5 (erk752): formula C 60 H 56 N 6 F 0 Zn 2, M = 8.85, pale yellow crystal, 0.8 x 0.08 x 0.06 mm, a = 9.7839(), b = 28.202(3), c = 20.4432(3) Å, β = 9.327(), V = 5639.() Å 3, ρ calc =.392 gcm -3, µ = 0.928 mm -, empirical absorption correction (0.850 T 0.946), Z = 4, monoclinic, space group P2 /c (No. 4), λ = 0.7073 Å, T = 223(2) K, ω and φ scans, 30909 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.62 Å -, 342 independent (R int = 0.054) and 8289 observed reflections [I>2σ(I)], 75 refined parameters, R = 0.057, wr2 = 0.20, max. (min.) residual electron density 0.37 (-0.42) e.å -3, the hydrogens were calculated and refined as riding atoms. X-ray crystal structure analysis of 7 (erk75): formula C 38 H 30 N 8 Zn, M = 664.07, yellow crystal, 0.6 x 0.07 x 0.03 mm, a = 9.7928(3), b =.355(4), c = 6.9990(6) Å, α = 72.96(), β = 83.43(2), γ = 68.922(2), V = 680.4() Å 3, ρ calc =.32 gcm -3, µ = 0.770 mm -, empirical absorption correction (0.886 T 0.977), Z = 2, triclinic, space group P- (No. 2), λ = 0.7073 Å, T = 223(2) K, ω and φ scans, 4852 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.59 Å -, 575 independent (R int = 0.045) and 525 observed reflections [I>2σ(I)], 428 refined parameters, R = 0.049, wr2 = 0.2, max. (min.) residual electron density 0.62 (-0.36) e.å -3, the hydrogens were calculated and refined as riding atoms. X-ray crystal structure analysis of a (erk7487): formula C 48 H 58 N 6 O 2 Zn 2, M = 88.74, pale yellow crystal, 0.5 x 0.2 x 0.07 mm, a = 9.7845(3), b = 0.226(4), c = 2.4486(4) Å, α = 0.950(2), β = 04.633(2), γ = 04.72(), V = 5.6(7) Å 3, ρ calc =.32 gcm -3, µ =.20 mm -, empirical absorption correction (0.850 T 0.925), Z =, triclinic, space group P- (No. 2), λ = 0.7073 Å, T = 223(2) K, ω and φ scans, 440 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.62 Å -, 4478 independent (R int = 0.037) and 4207 observed reflections [I>2σ(I)], 27 refined parameters, R = 0.032, wr2 = 0.085, max. (min.) residual electron density 0.23 (-0.38) e.å -3, the hydrogen at O atom was refined freely, but with O- H distance restraints (DFIX and fixed U-value); others were calculated and refined as riding atoms. 25

4. H NMR spectra of PLLA formation. Figure S7. H NMR spectra of PLLA formation in C 6 D 6 CD 3 ([LA]/[] = 250) 26

5. H NMR spectra of partially dissociated complex 2. Figure S8. H NMR spectra of partially dissotiated complex 2 (see signals of compound 2 and signals of compound 7). 6. H NMR spectrum of PLLA 27

Figure S9. H NMR spectrum (200 MHz, CDCl 3 ) of the oligomer product obtained from a reaction between L-LA and at room temperature. 7. MALDI-TOF spectrum of PLLA Figure S0. MALDI-TOF spectrum of the oligomer product obtained from a reaction between L-LA and at room temperature. 8. PLLA SEC characterization Figure S. GPC traces of polymer produced using at 25 o C. See Entry, Table 2 (manuscript). 28

References (a) S. Schulz, J. Spielmann, D. Blaser and C. Wolper, Chem. Commun., 20, 47, 2676-2678; (b) S. S. Al-Juaid, N. H. Buttrus, C. Eaborn, P. B. Hitchcock, A. T. L. Roberts, J. D. Smith and A. C. Sullivan, Chem. Commun., 986, 908. (c) G. Anantharaman and K. Elango, Organometallics, 2007, 26, 089. 29