Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts

Similar documents
Supporting Information. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed. NiOx Hole Contact

Supporting Information

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

High efficiency MAPbI3-xClx perovskite solar cell via interfacial passivation

Pyridine-functionalized Fullerene Additive Enabling Coordination. Bulk Heterojunction Solar Cells

Supporting Information

Electronic Supplementary Information

Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode

The Current Status of Perovskite Solar Cell Research at UCLA

Supporting Information

Photovoltaic Enhancement Due to Surface-Plasmon Assisted Visible-Light. Absorption at the Inartificial Surface of Lead Zirconate-Titanate Film

Supporting Infromation

SUPPORTING INFORMATION

Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White

Supporting Information

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

Electronic Supplementary information (ESI) for. High-Performance Electrothermal and Anticorrosive Transparent

Supporting Information

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives

Journal of Materials Chemistry A ELECTRONIC SUPPLEMENTARY INFORMATION (ESI )

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Supporting Information

Kinetically-Enhanced Polysulfide Redox Reactions by Nb2O5. Nanocrystal for High-Rate Lithium Sulfur Battery

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supporting Information. Bi-functional Catalyst with Enhanced Activity and Cycle Stability for. Rechargeable Lithium Oxygen Batteries

Supporting Information

Supporting Information

Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage

In-Situ Fabrication of CoS and NiS Nanomaterials Anchored on. Reduced Graphene Oxide for Reversible Lithium Storage

Large-Area and Uniform Surface-Enhanced Raman. Saturation

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr 3 Films

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

Functional p-type, polymerized organic. electrode interlayer in CH 3 NH 3 PbI 3. perovskite/fullerene planar heterojunction. hybrid solar cells

Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH 3 NH 3 SnI 3 Perovskite Thin Films and Solar Cells

Supporting Information

Hydrothermally Activated Graphene Fiber Fabrics for Textile. Electrodes of Supercapacitors

Supporting Information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

All materials were purchased from Sigma-Aldrich unless specified otherwise. PCBA

Supporting Information

Self-floating nanostructural Ni-NiO x /Ni foam for solar thermal water evaporation

Graphene Size-dependent Modulation of Graphene Framework Contributing to Superior. Thermal Conductivity of Epoxy Composite

Supporting Information

Supporting Information. Engineering Two-Dimensional Mass-Transport Channels

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Supplementary Figure 1. Film thickness measurement. (a) AFM images of the perovskite

Flexible Asymmetrical Solid-state Supercapacitors Based on Laboratory Filter Paper

Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

An Advanced Anode Material for Sodium Ion. Batteries

Facile synthesis of accordion-like Ni-MOF superstructure for highperformance

Electronic Supplementary Information

communications Solution-Processed Cu 2 O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells

All-Inorganic Perovskite Solar Cells

Supporting Information

Supporting Information

Controlling the Interface-Areas of. Heterojunction Nanowires for High Performance Diodes

Supporting Information. Metal-Organic Frameworks Mediated Synthesis of One-Dimensional Molybdenum-Based/Carbon Composites for Enhanced Lithium Storage

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Supporting Information for

Supporting Information

Supporting Information

Supporting Information

Supporting information

Review Article Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

Solvent-Assisted Thermal-Pressure Strategy for. as High-Performance Perovskite Photodetectors

Revelation of the Excellent Intrinsic Activity. Evolution Reaction in Alkaline Medium

Supplementary information

Supporting information

Synthesis and Characterizations of TiO 2 /In 2 S 3 Semiconductor Sensitized Solar Cell

Supplementary information

Supporting information

Supporting Information

Honeycomb-like Interconnected Network of Nickel Phosphide Hetero-nanoparticles

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Supporting Information

Hierarchical MoO 2 /Mo 2 C/C Hybrid Nanowires for High-Rate and. Long-Life Anodes for Lithium-Ion Batteries. Supporting Information

Supporting Information. Electronic Modulation of Electrocatalytically Active. Highly Efficient Oxygen Evolution Reaction

Dominating Role of Aligned MoS 2 /Ni 3 S 2. Nanoarrays Supported on 3D Ni Foam with. Hydrophilic Interface for Highly Enhanced

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

Supporting Information

Supporting information

Supporting Information for. Highly active catalyst derived from a 3D foam of Fe(PO 3 ) 2 /Ni 2 P for extremely efficient water oxidation

Photo of the mass manufacture of the Fe-rich nanofiber film by free-surface electrospinning technique

Supporting Information. Co 4 N Nanosheets Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium Sulfur Batteries

Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably. Increased Visible-light Absorption and Superior Photocatalytic.

Supporting Information

Laser Crystallization of Organic-Inorganic Hybrid

Supplementary Information

Engineering of Hollow Core-Shell Interlinked Carbon Spheres for Highly Stable Lithium-Sulfur Batteries

Perovskite solar cells on metal substrate with high efficiency

Supporting Information. Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes

Size-dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane

Yixin Zhao and Kai Zhu*

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

Transcription:

Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiO x Hole Contacts Xingtian Yin 1 *, Peng Chen 1, Meidan Que 1, Yonglei Xing 1, Wenxiu Que 1 *, Chunming Niu 2, Jinyou Shao 3 1 Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi an Jiaotong University, Xi an 710049, Shaanxi, People s Republic of China 2 Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi an 710049, Shaanxi, People s Republic of China 3 State Key Laboratory for Manufacturing Systems Engineering, Xi an Jiaotong University, Xi an 710049, Shaanxi, People s Republic of China *Corresponding author: xt_yin@mail.xjtu.edu.cn; wxque@mail.xjtu.edu.cn

Figure S1. (a) Transmission sprectra of the PEDOT: PSS and the NiO x film on ITO substrate. (b) (ABS*hν) 2 as a function of photon energy of the NiO x film on quartz substrate.

Figure S2. XPS spectra of NiO x films deposited from NiO x nanoparticles that were annealed at different temperatures. (a) Ni 2p core level; (b) O1s core level.

Figure S3. Digital photographs of NiO x nanoparticle solutions stored for different durations after preparation.

Figure S4: XRD patterns of perovskite film deposited on NiO x films coated ITO substrate.

Figure S5: (a) Schematic band diagram of the NiO x -based perovskite solar cell, in which the band position of PEDOT: PSS is also presented for comparison. The band edge positions for NiO x were taken from Ref. 34, and the band edge positions of ITO, PEDOT: PSS, perovskite and PCBM were taken from Ref. 19. (b) Dark J-V curves for the fabricated devices based on PEDOT: PSS and NiO x films, respectively.

Figure S6: Steady state PCE measurement. The bias voltage for PEDOT: PSS and NiO x -based devices are 0.75V and 0.89 V, respectively.

Figure S7. Transmission sprectra of PEN substrates with and without NiO x.

Table S1 Summary on the performances of the reported NiO x -based organic-inorganic hybrid perovskite solar cells, in which parameters of our devices are also included for comparison. The word non means the parameter was not presented in the paper. Device configuration V oc (V) J sc (ma/cm 2 ) Steady state Area Method/ FF (%) PCE (%) Reference PCE (%) (cm 2 ) temperature ITO/Cu:NiO/CH 3 NH 3 PbI 3 /Bis-C 60 /C 60 /Ag 1.05 21.60 77 17.46 17.8 0.0314 Combustion/150 o C ITO/PLD-NiO/CH 3 NH 3 PbI 3 /PCBM/LiF/Al 1.06 20.20 0.813 17.3 17.2 Non PLD/ 200 o C ITO/NiO/CH 3 NH 3 PbI 3 /PCBM/Ag 1.07 20.58 0.748 16.47 16.22 0.07 Spin coating/ 130 o C This work ITO/NiOx/ CH 3 NH 3 PbI 3 /ZnO/Al 1.01 21.00 76 16.1 Non 0.1 Spin coating/ 300 o C FTO/Cu:NiO/CH 3 NH 3 PbI 3 /PCBM/Ag 1.11±0.01 18.75±0.42 0.72±0.01 15.40±0.33 Non Non Spin coating/ 550 o C FTO/TiO 2 /ZrO 2 /NiO/Carbon-(CH 3 NH 3 PbI 3 ) 0.917 21.36 0.76 14.9 Non Non Doctor blade/500 o C FTO/NiO x /CH 3 NH 3 PbI 3 /PCBM/Ag 1.09 17.93 73.8 14.42 14.18 0.07 Spin coating/ 500 o C FTO/NiO/Meso-Al 2 O 3 /CH 3 NH 3 PbI 3 /PCBM/BCP/Ag 1.04 18.0 72 13.5 13.61 0.09 Spray pyrolysis/ 500 o C ITO/ NiO/meso-NiO/CH 3 NH 3 PbI 3 /BCP/Al 0.96 19.8 61 11.6 Non Non Sputtering+spin coating/ 400 o C FTO/TiO2/NiO(CH3NH3PbI3)/Carbon 0.89 18.2 71 11.4 Non 0.6 Screen-printing/ 500 o C FTO/ NiO NCs/CH 3 NH 3 PbCl 3-x I x /PCBM (1.5 wt% PS)/Al 1.07 15.62 0.64 10.68 Non Non Spin coating/ 500 o C 1 2 3 4 5 6 7 8 9 10 FTO/NiO/CH 3 NH 3 PbI 3 /PCBM/Ag 1.10 15.17 0.59 9.84 Non Non Sputtering/ No heated FTO/NiO NCs/CH 3 NH 3 PbI 3 /PCBM/Au 0.882 16.27 63.5 9.11 Non Non Spin coating/ 500 o C ITO/NiO/meso-NiO/CH 3 NH 3 PbI 3 /BCP/Al 1.04 13.24 69 9.51 Non 0.06 Spin coating/ 400 o C ITO/NiO/CH 3 NH 3 PbI 3 - x Cl x /PCBM/BCP/Al 0.92 12.43 68 7.8 Non 0.06 Spun-cast/ 300 o C ITO/NiO/CH 3 NH 3 PbI 3 /PCBM/Al 1.05 15.4 48 7.6 Non 0.0725 Spin coating/ 350 o C ITO/NiO/CH 3 NH 3 PbI 3 /PCBM/BCP/Al 0.901 13.16 65.38 7.75 Non 0.06 Evaporation+annealing/ 450 o C FTO/NiO /CH 3 NH 3 PbI 3 x Cl x /PCBM/Ag 0.786 14.2 0.65 7.26 Non 0.07 Electrodeposited/ 350 o C 11 12 13 14 15 16 17

Reference 1. Jung, J. W.; Chueh, C.-C.; Jen, A. K. Y., A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27 (47), 7874-7880. 2. Park, J. H.; Seo, J.; Park, S.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Shin, H.-W.; Ahn, T. K.; Noh, J. H.; Yoon, S. C.; et al. Efficient CH 3 NH 3 PbI 3 Perovskite Solar Cells Employing Nanostructured p-type NiO Electrode Formed by a Pulsed Laser Deposition. Adv. Mater. 2015, 27, 4013-4019. 3. You, J.; Meng, L.; Song, T.-B.; Guo, T.-F.; Yang, Y.; Chang, W.-H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; et al. Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers. Nat Nano 2015, 11, 75-81. 4. Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y. High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Adv. Mater. 2015, 27, 695-701. 5. Xu, X.; Liu, Z.; Zuo, Z.; Zhang, M.; Zhao, Z.; Shen, Y.; Zhou, H.; Chen, Q.; Yang, Y.; Wang, M. Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Lett. 2015, 15, 2402-2408. 6. Yin, X.; Que, M.; Xing, Y.; Que, W. High Efficiency Hysteresis-Less Inverted Planar Heterojunction Perovskite Solar Cells with a Solution-Derived NiOx Hole Contact Layer. J. Mater. Chem. A 2015, 3, 24495-24503. 7. Chen, W.; Wu, Y. Z.; Liu, J.; Qin, C. J.; Yang, X. D.; Islam, A.; Cheng, Y. B.; Han, L. Y. Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells. Energy Environ. Sci. 2015, 8, 629-640. 8. Wang, K. C.; Shen, P. S.; Li, M. H.; Chen, S.; Lin, M. W.; Chen, P.; Guo, T. F. Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 11851-11858. 9. Liu, Z. H.; Zhang, M.; Xu, X. B.; Bu, L. L.; Zhang, W. J.; Li, W. H.; Zhao, Z. X.; Wang, M. K.; Cheng, Y. B.; He, H. S. p-type Mesoscopic NiO as an Active Interfacial Layer for Carbon Counter Electrode Based Perovskite Solar Cells. Dalton Trans 2015, 44, 3967-3973.

10. Bai, Y.; Yu, H.; Zhu, Z. L.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S. H.; Yan, H. High Performance Inverted Structure Perovskite Solar Cells Based on a PCBM:Polystyrene Blend Electron Transport Layer. J. Mater. Chem. A 2015, 3, 9098-9102. 11. Cui, J.; Meng, F. P.; Zhang, H.; Cao, K.; Yuan, H. L.; Cheng, Y. B.; Huang, F.; Wang, M. K. CH 3 NH 3 PbI 3 -Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Appl. Mater. Interfaces 2014, 6, 22862-22870. 12. Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; et al. High-Performance Hole-Extraction Layer of Sol Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 12571-12575. 13. Wang, K. C.; Jeng, J. Y.; Shen, P. S.; Chang, Y. C.; Diau, E. W. G.; Tsai, C. H.; Chao, T. Y.; Hsu, H. C.; Lin, P. Y.; Chen, P.; et al. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci Rep 2014, 4, 8. 14. Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26, 4107-4113.. 15. Hu, L.; Peng, J.; Wang, W.; Xia, Z.; Yuan, J.; Lu, J.; Huang, X.; Ma, W.; Song, H.; Chen, W.; et al. Sequential Deposition of CH 3 NH 3 PbI 3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells. ACS Photonics 2014, 1, 547-553. 16. Wei-Chih, L.; Kun-Wei, L.; Tzung-Fang, G.; Jung, L. Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer. IEEE Trans. Electron Devices 2015, 62, 1590-1595. 17. Subbiah, A. S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S. K. Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1748-1753.