The balance function in azimuthal angle is a measure of the transverse flow

Similar documents
Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity,

arxiv:nucl-th/ v1 12 Dec 2002

arxiv:hep-ph/ v2 8 Aug 2002

arxiv:nucl-th/ v2 8 Jun 2006

arxiv:hep-ph/ v1 3 Oct 2001

Perfect-fluid hydrodynamics for RHIC successes and problems

COMPARISONS AMONG THE HADRON PRODUCTION IN ULTRA RELATIVISTIC HEAVY ION COLLISIONS IN DIFFERENT TRANSVERSE MOMENTUM RANGES. PRELIMINARY RESULTS *

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

arxiv: v2 [nucl-th] 11 Feb 2013

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

Strange Hadron Production from STAR Fixed-Target Program

arxiv: v1 [nucl-th] 11 Aug 2013

arxiv: v2 [nucl-th] 24 Sep 2012

Bulk matter formed in Pb Pb collisions at the LHC

arxiv: v2 [nucl-th] 15 Jun 2017

Recent highlights in the light-flavour sector from ALICE

arxiv: v1 [hep-ph] 8 Nov 2017

Papers by Helen Caines

Thermal model for Pb+Pb collisions at s NN = 2.76 TeV with explicit treatment of hadronic ground states

Ultra-Relativistic Heavy Ion Collision Results

Particle correlations to be seen by ALICE

Resonance production in a thermal model

arxiv:hep-ph/ v2 5 Jan 2007

arxiv: v1 [hep-ph] 11 Jun 2008

Lambda-Lambda correlation from an integrated dynamical model

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

Hadron Production in ultra relativistic nuclear collisions and the QCD phase boundary

arxiv: v1 [nucl-ex] 10 Feb 2012

On m T dependence of femtoscopy scales for meson and baryon pairs. Abstract

Can Momentum Correlations Proof Kinetic Equilibration in. Heavy Ion Collisions at 160 AGeV?

arxiv: v2 [hep-ph] 2 Jul 2018

Angular correlations of identified particles in the STAR BES data

CHARGE CONSERVATION IN RHIC AND CONTRIBUTIONS TO LOCAL PARITY VIOLATION OBSERVABLES. Soeren Schlichting

Final source eccentricity measured by HBT interferometry with the event shape selection

Measures of charge fluctuations in nuclear collisions

Can hadronic rescattering explain the jet quenching at relativistic energies?

arxiv:nucl-th/ v1 23 May 1999

The effect of the spectator charge on the charged pion spectra in peripheral ultrarelativistic heavy-ion collisions

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

Coherent photo-production of ρ 0 mesons in ultra-peripheral Pb-Pb collisions at the LHC measured by ALICE

Equilibration and decoupling of a relativistic gas in a Friedmann-Robertson-Walker spacetime

Highlights from the ATLAS experiment

STRANGENESS PRODUCTION IN HEAVY ION COLLISIONS AT RELATIVISTIC ENERGIES *

Thermal dileptons as fireball probes at SIS energies

Global and Collective Dynamics at PHENIX

Flow of strange and charged particles in ppb and PbPb collisions at LHC energies

Evidence of Collective Flow in p-p Collisions at LHC

Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-pb collisions at 5.

Pion, Kaon, and (Anti-) Proton Production in Au+Au Collisions at s = 62.4 GeV

Low mass dileptons from Pb + Au collisions at 158 A GeV

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH

FLOW STUDIES IN NUCLEUS-NUCLEUS COLLISIONS AT FAIR-GSI AVAILABLE ENERGIES

A Senior Honors Thesis

Identified charged hadron production in pp, p Pb and Pb Pb collisions at LHC energies with ALICE

Rapidity Dependence of Chemical Freeze out in Au Au Collisions

COLLECTIVE PHENOMENA IN HEAVY ION COLLISIONS

Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC

Photoproduction of vector mesons: from ultraperipheral to semi-central heavy ion collisions

Probing the QCD phase diagram with dileptons a study using coarse-grained transport dynamics

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

Thermal dileptons from coarse-grained transport as probes of hot and dense QCD matter

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Impact of the in-medium conservation of energy on the π /π + multiplicity ratio

Collective Dynamics of the p+pb Collisions

arxiv: v1 [hep-ex] 18 May 2015

Outline: Introduction and Motivation

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES

Search for Lepton Number Violation at LHCb

Predictions for hadronic observables from. from a simple kinematic model

Indications for the Onset of Deconfinement in Pb+Pb collisions at the SPS

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Ultra-Relativistic Heavy Ion Physics (FYSH551), May 31, 2013 Jan Rak and Thorsten Renk

Evidence for hadronic deconfinement in p p collisions at 1.8 TeV

PoS(CFRNC2006)014. Fluctuation studies in STAR. Supriya Das (for the STAR Collaboration)

arxiv:nucl-ex/ v1 10 May 2004

Uncertainties in the underlying e-by-e viscous fluid simulation

Transport Model Description of Flow

Heavy Ion Results from the ALICE Experiment

Soft physics results from the PHENIX experiment

Global variables and identified hadrons in the PHENIX experiment

ALICE results on identified particle spectra in p-pb collisions

Heavy quark results from STAR

arxiv: v1 [nucl-th] 6 Apr 2011

Transport studies of heavy ion collisions and antiproton-induced reactions on nuclei at FAIR energies

arxiv: v3 [nucl-th] 11 Jul 2014

arxiv: v1 [nucl-th] 2 Mar 2015

Overview* of experimental results in heavy ion collisions

J/Ψ-suppression in the hadron resonance gas

FROM LITTLE BANGS TO BIG BANG

Hadronic Signature of Quark-Gluon Plasma

Strangeness Production at SIS: Au+Au at 1.23A GeV with HADES & Microscopic Description by Transport Models

Overview of flow results from ALICE experiment

Dilepton Production from Coarse-grained Transport Dynamics

nucleus-nucleus collisions at the NA61/SHINE experiment

Comparing Initial Conditions in a (3+1)d Boltzmann + Hydrodynamics Transport Approach

Hints of incomplete thermalization in RHIC data

SMR/ International Workshop on QCD at Cosmic Energies III. 28 May - 1 June, Lecture Notes. E. Zabrodin University of Oslo Oslo, Norway

Transcription:

Physics Letters B 609 (2005) 247 251 www.elsevier.com/locate/physletb The balance function in azimuthal angle is a measure of the transverse flow Piotr Bożek The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland Received 20 December 2004; accepted 25 January 2005 Available online 2 February 2005 Editor: W. Haxton Abstract The charge or barion number balance function in the relative azimuthal angle of a pair of particles emitted in ultrarelativistic heavy-ion collisions is studied. The π + π and p p balance functions are computed using thermal models with two different set of parameters, corresponding to a large freeze-out temperature and a moderate transverse flow or a small temperature and a large transverse flow. The single-particle spectra including pions from resonance decays are similar for the two scenarios, on the other hand the azimuthal balance function is very different and could serve as an independent measure of the transverse flow at the freeze-out. 2005 Elsevier B.V. Open access under CC BY license. PACS: 25.75.-q; 24.85.+p Keywords: Ultra-relativistic heavy-ion collisions; Particle correlations; Collective flow; Freeze-out The balance function in rapidity has been proposed as a measure of correlations between particles of opposite charges [1 3]. This includes the electric charge, the barion number or the strangeness, which we call below charge correlations, unless specified explicitely. Elementary processes occurring in heavy-ion collisions conserve the charges which means that op- Research supported in part by the Polish State Committee for Scientific Research, grant 2 P03B 059 25. E-mail address: bozek@kokos.ifj.edu.pl (P. Bożek). posite charged particles are produced in pairs. One expects that due to such a microscopic local constraint on the production process of a pair of particles some correlations in the momenta of the particles appear. We propose a new observable sensitive to the freeze-out characteristics, the charge balance function in the relative azimuthal angle. In the following we call this quantity the φ-balance function, it is defined similarly to the charge balance function in rapidity 0370-2693 2005 Elsevier B.V. Open access under CC BY license. doi:10.1016/j.physletb.2005.01.072

248 P. Bożek / Physics Letters B 609 (2005) 247 251 B φ (δφ, φ) = 1 2 { N+ (δφ, φ) N ++ (δφ, φ) N + (φ) + N +(δφ, φ) N (δφ, φ) N (φ) }, (1) where, e.g., the quantity N + (δφ, φ) is defined as the number of pairs of particles with the particle (+) flying at an angle φ and the particle ( ) at an angle φ + δφ. The dependence on the angle φ (measured with respect to the reaction plane) could be useful to study the difference between the correlations in and out of the reaction plane. Other quantities appearing in Eq. (1) are defined in an analogous way. In the following we study the azimuthally averaged φ-balance function B φ (δφ) = 2π 0 dφb φ (δφ, φ) (2) and azimuthally symmetric freeze-out conditions. Obviously B φ has the same normalization condition as the balance function in rapidity π π dδφb φ (δφ) = 1, (3) with the acceptance window and detector efficiency effects modifying the above relation [3,4].Theφ-balance function can be studied in ultrarelativistic heavy ion experiments for different centrality and transverse momentum cuts. The STAR Collaboration has presented results on the charge balance function for Au Au collisions at RHIC, indicating a narrow correlation in rapidity [4,5], significantly smaller than observed in elementary particle collisions. It means that the charges in heavy-ion collisions are produced in a different way than in elementary processes. In particular, this observation indicates the creation of charged particle pairs in the late stage of the collision. Theoretical estimates of the balance function in rapidity for pion pairs have been obtained in the framework of thermal models [6,7]. The basic assumption behind those calculations is that the pair formation occurs in a thermalized local source. It is consistent with a late hadronization scenario, as the π + π pair must be created late in a system which undergoes a strong longitudinal flow [2]. Theπ + π balance function has two contributions, corresponding to two different mechanisms for the creation of a pair of opposite charges [6]. The first one (the resonance contribution) is determined by the decays of neutral hadronic resonances with a π + π pair in the final state. The second one (the nonresonant contribution) is given by the emission of a pair of opposite charged particles from a local thermal source. The momenta of the particles in the source rest frame are given by the thermal distribution, and are boosted by the velocity corresponding to the collective flow of the source. For the calculation of the p p correlation we take only the second mechanism, the emission from a thermal source. We compare two different thermal models, the single freeze-out model [8] and the boost invariant blastwave parameterization [9]. In the first case the kinetic freeze-out happens at the same time as the chemical one. The temperature of the latter is fixed by the observed particle ratios at a relatively high value of T f = 165 MeV. The elements of the hypersurface of emission are moving with a collective flow velocity given by the three-dimensional Hubble flow. In the transverse direction the flow has the scaling form β r = r/t as a function of the radial distance r, with t = τ 2 + r 2, τ = 7.6 fm, and 0 <r<ρ= 6.7 fm. The parameters ρ and τ define the size of the source and the amount of the transverse flow. The average transverse velocity is β =0.5. On the other hand, the blast-wave model assumes a late kinetic freezeout, happening some time after the chemical processes have ceased. The typical temperature at the freeze-out T f = 90 MeV and the parameters of the transverse flow are fixed by a fit to the transverse momentum spectra of pions, protons and kaons [9]. The transverse flow in the blast-wave parameterization is given by β r = β(r/r max ) α where the parameters α = 0.82 and β r = 0.84 are adjusted to describe the spectra in central events at s = 200 GeV. The freeze-out temperature and the flow profile depend on the energy and the centrality of the collision. In the following we take only the quoted above parameters of the blast-wave model corresponding to central events at the highest RHIC energy as representative for thermal models with a late kinetic freeze-out. Both the single freeze-out model and the blast-wave model fit well the single-particle transverse momentum spectra. The reason is that in the first model a large freeze-out temperature is supplemented with a

P. Bożek / Physics Letters B 609 (2005) 247 251 249 Fig. 1. Spectra in the transverse mass calculated in thermal models for two different freeze-out conditions. T f = 90 MeV and β =0.6 (dashed line) and T f = 165 MeV and β =0.5 (solid line) for pions (upper curves) and protons (lower curves). The dotted line denotes the pions obtained at the higher freeze-out temperature including pions from the decay of resonances. The normalization is arbitrary. moderate flow β r =0.5 and in the second model the emission at a small temperature happens in the presence of a significant transverse flow β r =0.6. The resulting spectra of pions and protons are very similar (Fig. 1). Some difference is visible for low momentum pions but in the scenario with a high freeze-out temperature, most of the pions come from the decay of resonances. This effect modifies noticeably the spectra at small momenta. The resulting transverse mass spectra for the single freeze-out model with resonance decays included is very similar to the blast-wave results, although the temperatures are very different. Due to the combined effect of the transverse flow and of the thermal motion with the addition of resonance decays it is not possible to determine the freeze-out temperature and the flow from the spectra of light hadrons only. This lack of sensitivity is at the origin of two different parameterization of the freeze-out surface which can describe acceptably the experimental spectra of particles produced in ultrarelativistic heavy-ion collisions. A simultaneous description of HBT radii could give an additional constraint [10 12] but within both models the gross features of the observed correlation radii can be reproduced. From general principles different space time emission function can given similar HBT correlations for on-shell pions. In thermal models hadron production occurs at the chemical freeze-out. In the single freeze-out model [8] the kinetic and chemical freeze-outs happen at the same time and the distribution of momenta of a correlated pair of particles is not significantly changed after its creation. If the kinetic freeze-out is delayed, as in the blast-wave models, one has to assume that the two correlated particles are created in a local thermal ensemble at the chemical freeze-out and follow the same thermal history until the kinetic freeze-out. By rescattering the two particles stay in contact with the same local thermal system, as a consequence the particle momenta evolve with the decreasing temperature and increasing transverse flow of the system [7]. It has been noticed that the charge balance function in rapidity is somewhat sensitive to the characteristics of the final state [2,5,7]. For massive particles the width of the balance function decreases with increasing ratio of the mass to the temperature. The charge balance function in rapidity is narrower for pions emitted from a source with a large transverse velocity or for pions originating from the decay of a fast resonance [6,7]. The variation of the amount of transverse flow with the centrality of the collision can reproduce [7] the experimentally observed narrowing of the balance functions for central events [5]. Theφ-balance function measures the charge corelation in the relative angle of the emitted pair and not the rapidity. We show that this quantity is very sensitive to the characteristics of the freeze-out and could also give some insight into the microscopic process of the charge creation. The calculation proceeds in a similar manner as for the charge balance function in rapidity [6]. Forthe π + π pairs we take explicitely into account the pion pairs from the decay of the neutral resonances K S, ρ 0, σ, and f 0, (4) as well pions emitted from the local thermal source. In the rest frame of the resonance, pions from a two-body decay are correlated back to back in the azimuthal angle. Nonresonant pion are emitted isotropically in the local frame of the source, therefore their correlation in the relative angle is flat. Isotropic emission is also a good approximation for the decays with manybody final states, therefore for the production of the

250 P. Bożek / Physics Letters B 609 (2005) 247 251 Fig. 2. Balance functions for pions in thermal models calculated for two different freeze-out conditions: T f = 165 MeV, β =0.5 (dashed line for nonresonant pions and dotted line for pions from the decay of a ρ 0 resonance) and for nonresonant pions at T f = 90 MeV, β =0.6 (solid line). resonant pion pairs we take into account only neutral resonances with two-body decays (4). The azimuthal angle correlations are modified by the collective flow of the thermal source or by the fact that the resonances decay in flight. In Fig. 2 is presented the φ-balance function for pions from ρ decays (at T f = 165 MeV) and for nonresonant pions thermally emitted with the two freeze-out conditions that we consider. The contribution of pions from resonance decays can be neglected at T f = 90 MeV and is not taken into account. Clearly, pions emitted with a small temperature have smaller relative momenta and after the boost from the rapidly moving source frame to the laboratory frame their momenta are pointing approximately in the same direction. The situation is different at the higher freeze-out temperature. First, thermally emitted pions have a significant thermal motion and second the boost to the laboratory frame is done with a smaller velocity. At T f = 165 MeV, 30% of pions [13] come from the decay of resonances (4). Due to the back to back emission the angular distribution of resonance decay products is even wider than for the nonresonant pions at T f = 165 MeV. It was noted that the effect of resonance decays reduces the elliptic flow of pions [10,14]. If restricted to π + π correlations and to the relative angle of the Fig. 3. Balance functions for pions in thermal models calculated for two different freeze-out conditions: T f = 165 MeV, β =0.5 (dashed line) and T f = 90 MeV, β =0.6 (solid line). pair as for the φ-balance function this effect is even stronger. The correlation between the pions is given by a weighed [6] sum of the two mechanisms (nonresonant pions and decay products of resonances listed in (4)) fort f = 165 MeV and by nonresonant pion pairs for the freeze-out at 90 MeV. The width of resulting φ-balance function is very different (Fig. 3). At T f = 165 MeV both the nonresonant pion pairs and pion pairs from the decay of resonances have a large angular separation. The contribution of the resonant pion pairs makes the φ-balance function show a flat correlation between 50 and 50. The width of the φ-balance function decreases with the mean transverse momentum of the pion pair. The average angle between a π + and a π is 54 for pairs of 1 GeV total transverse momentum and 24 for the total momentum of 2 GeV if the pions are emitted at T f = 90 MeV, whereas it is 80 and 50, respectively, for pions emitted at the higher freeze-out temperature. Of course for very small total momentum of the pair the correlation is trivially dominated by back to back emission. Changing the mean momentum of the pair the contribution of pions from resonance decays changes, being the largest for small momenta. In Fig. 4 the φ-balance function for protons and antiprotons is shown. Very similar behavior appears as for the pion correlations. The emission at higher

P. Bożek / Physics Letters B 609 (2005) 247 251 251 temperature and smaller transverse flow produces proton and antiproton pairs less focused in the azimuthal angle. Protons which are quite massive are more sensitive to the transverse flow and have less thermal motion than pions. Also resonance decays are expected not to modify significantly our estimates for the baryonic charge φ-balance function; fits to the experimental data could give direct information on the freeze-out parameters. In summary, we propose to study charge anticharge correlations in the azimuthal angle. The experimental observable is defined as the charge balance function in the relative azimuthal angle of the particle pair. The measurement of the φ-balance function in heavy-ion collisions could serve as another independent constraint on the temperature and the amount of transverse flow at the freeze-out. The effect of an increase of the freeze-out temperature and of a simultaneous decrease of the transverse flow compensate to a large extend in the single particle spectra. On the other hand both the increase of the temperature and the reduction of the transverse flow make the φ-balance function wider. Accordingly the width of the φ-balance function could be used independently of the particle spectra and HBT radii to determine the values of the freeze-out parameters. Explicit estimates of the φ-balance function for two thermal models with different freeze-out temperatures and different transverse flow confirm these expectations both for π + π and p p pairs. We find that the most sensitive region is for the total momentum of the pair of around 1 GeV. Finally we note that the φ-balance function B φ (δφ, φ) with angular dependence with respect to the reaction plane (Eq. (1)) could give some insight into the angular dependence of the transverse flow. The elliptic flow gives a combined information on the spatial and momentum asymmetries [10,12]. The measurement of the angular dependence of the width of the φ-balance function could serve as a probe of the momentum asymmetry alone. Fig. 4. Proton antiproton balance functions in thermal models calculated for two different freeze-out conditions, as in Fig. 3. Acknowledgements The author would like to thank Wojtek Broniowski and Wojtek Florkowski for useful discussions. References [1] D. Drijard, et al., Nucl. Phys. B 155 (1979) 269; D. Drijard, et al., Nucl. Phys. B 166 (1980). [2] S.A. Bass, P. Danielewicz, S. Pratt, Phys. Rev. Lett. 85 (2000) 2689. [3] S. Jeon, S. Pratt, Phys. Rev. C 65 (2002) 044902. [4] M.B. Tonjes, Ph.D. Thesis, Michigan State University, 2002. [5] J. Adams, et al., STAR Collaboration, Phys. Rev. Lett. 90 (2003) 172301. [6] P. Bozek, W. Broniowski, W. Florkowski, nucl-th/0310062. [7] S. Cheng, C. Gale, S. Jeon, S. Petriconi, S. Pratt, M. Skoby, V. Topor Pop, Q.H. Zhang, Phys. Rev. C 69 (2004) 054906. [8] W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87 (2001) 272302; W. Broniowski, W. Florkowski, Phys. Rev. C 65 (2002) 024905; W. Broniowski, A. Baran, W. Florkowski, Acta Phys. Pol. B 33 (2002) 4235. [9] J. Adams, et al., STAR Collaboration, Phys. Rev. Lett. 92 (2004) 112301. [10] W. Broniowski, A. Baran, W. Florkowski, AIP Conf. Proc. 660 (2003) 185. [11] S.V. Akkelin, Y.M. Sinyukov, nucl-th/0310036. [12] F. Retiere, M.A. Lisa, nucl-th/0312024. [13] G. Torrieri, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, nucl-th/0404083. [14] T. Hirano, Phys. Rev. Lett. 86 (2001) 2754.