Carrier and Timing Synchronization in Digital Modems

Similar documents
Carrier Synchronization

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Residual Versus Suppressed-Carrier Coherent Communications

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

A First Course in Digital Communications

Digital Communications

Mapper & De-Mapper System Document

Symbol Synchronization

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

Analog Electronics 2 ICS905

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference

LECTURE 3 CMOS PHASE LOCKED LOOPS

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

Tutorial on Dynamic Analysis of the Costas Loop. 12

The Performance of Quaternary Amplitude Modulation with Quaternary Spreading in the Presence of Interfering Signals

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Summary II: Modulation and Demodulation

Tracking of Spread Spectrum Signals

8 PAM BER/SER Monte Carlo Simulation

Direct-Sequence Spread-Spectrum

Chapter 4 Code Tracking Loops

Chapter 1. Introduction

Behavior of Phase-Locked Loops

Consider a 2-D constellation, suppose that basis signals =cosine and sine. Each constellation symbol corresponds to a vector with two real components

Quantization Noise Conditioning Techniques for Digital Delta-Sigma Modulators

Computation of Bit-Error Rate of Coherent and Non-Coherent Detection M-Ary PSK With Gray Code in BFWA Systems

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Chapter 2 Random Processes

EE538 Digital Signal Processing I Session 13 Exam 1 Live: Wed., Sept. 18, Cover Sheet

Carrier Transmission. The transmitted signal is y(t) = k a kh(t kt ). What is the bandwidth? More generally, what is its Fourier transform?

Rapport technique #INRS-EMT Exact Expression for the BER of Rectangular QAM with Arbitrary Constellation Mapping

Homework 8 Solutions

Mobile Communications (KECE425) Lecture Note Prof. Young-Chai Ko

Representation of Signals & Systems

Timing Recovery at Low SNR Cramer-Rao bound, and outperforming the PLL

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Computing Probability of Symbol Error

On VDSL Performance and Hardware Implications for Single Carrier Modulation Transceivers

CHANNEL CAPACITY CALCULATIONS FOR M ARY N DIMENSIONAL SIGNAL SETS

1. Band-pass modulations. 2. 2D signal set. 3. Basis signals p(t)cos(2πf 0 t) e p(t)sin(2πf 0 t) 4. Costellation = m signals, equidistant on a circle

Determining the Optimal Decision Delay Parameter for a Linear Equalizer

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D.

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

ECE 564/645 - Digital Communications, Spring 2018 Midterm Exam #1 March 22nd, 7:00-9:00pm Marston 220

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

representation of speech

EE6604 Personal & Mobile Communications. Week 13. Multi-antenna Techniques

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Wireless Information Transmission System Lab. Channel Estimation. Institute of Communications Engineering. National Sun Yat-sen University

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

Iterative Timing Recovery

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

UTA EE5362 PhD Diagnosis Exam (Spring 2011)

Image Degradation Model (Linear/Additive)

Fundamentals of PLLs (III)

4/16/2012 S EVEN LESS S LESS S LESS R E MORE M O MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MORE MO RE

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Trellis Coded Modulation

PY3107 Experimental Physics II


SIGNAL SPACE CONCEPTS

ELEG 5633 Detection and Estimation Signal Detection: Deterministic Signals

Synchronization of Spread Spectrum Signals

ECE 564/645 - Digital Communications, Spring 2018 Homework #2 Due: March 19 (In Lecture)

Summary: ISI. No ISI condition in time. II Nyquist theorem. Ideal low pass filter. Raised cosine filters. TX filters

Blind phase/frequency synchronization with low-precision ADC: a Bayesian approach

EE4440 HW#8 Solution

ρ = sin(2π ft) 2π ft To find the minimum value of the correlation, we set the derivative of ρ with respect to f equal to zero.

Fundamentals: Frequency & Time Generation

Digital Transmission Methods S

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

Chapter 10. Timing Recovery. March 12, 2008

Motivation for CDR: Deserializer (1)

Revision of Lecture 4

Finite Word Length Effects and Quantisation Noise. Professors A G Constantinides & L R Arnaut

EE123 Digital Signal Processing

ECE4270 Fundamentals of DSP Lecture 20. Fixed-Point Arithmetic in FIR and IIR Filters (part I) Overview of Lecture. Overflow. FIR Digital Filter

Synchronization Techniques for Burst-Mode Continuous Phase Modulation

EE241 - Spring 2006 Advanced Digital Integrated Circuits

Elementary Differential Equations, Section 2 Prof. Loftin: Practice Test Problems for Test Find the radius of convergence of the power series

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

A New Method For Simultaneously Measuring And Analyzing PLL Transfer Function And Noise Processes

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

EE456 Digital Communications

Pulse-Code Modulation (PCM) :

Chapter 2: Problem Solutions

Analysis of Receiver Quantization in Wireless Communication Systems

Signal Processing for Digital Data Storage (11)

Optimization of Phase-Locked Loops With Guaranteed Stability. C. M. Kwan, H. Xu, C. Lin, and L. Haynes

Sinusoidal Modeling. Yannis Stylianou SPCC University of Crete, Computer Science Dept., Greece,

Application of Matched Filter

3.9 Diversity Equalization Multiple Received Signals and the RAKE Infinite-length MMSE Equalization Structures

Performance Analysis of Spread Spectrum CDMA systems

Grades will be determined by the correctness of your answers (explanations are not required).

Quantum Field Modelling in Optical Communication Systems

that efficiently utilizes the total available channel bandwidth W.

A FAST AND ACCURATE ADAPTIVE NOTCH FILTER USING A MONOTONICALLY INCREASING GRADIENT. Yosuke SUGIURA

Signal Design for Band-Limited Channels

QPSK and OQPSK in Frequency Nonselective Fading

Transcription:

Carrier and Timing Synchronization in Digital Modems Synchronization-3 Carrier Phase Lock fred harris 21-21 June, 218

Locking to Carrier of Modulated Signal with Suppressed Carrier 2

How Can One Lock to a Carrier That s Not There? Phase Jump f f Frequency Jump 3 f Non Linea rity Forms Line f f f

Estimate Modulation and Remove it from Modulated Waveform. m( t) x( t) j y( t) R( t) exp( j ( t)) Baseband Modulation signal s( t) [ x( t) j y( t)] exp( j t) R( t) exp( j ( t)) exp( j t) v( t) s( t) exp( j( t )) R( t) exp( j ( t)) exp( j t) exp( j( ˆ t )) mˆ ( t) slice [ v( t)] slice [ R( t) exp( j ( t)) exp( j )] Rˆ ( t) exp( j ˆ ( t)) R( t) exp( j ( t)) exp( j ) ( ) ˆ ( ) ( ) exp( ( )) exp( ) ˆ( ) exp( ˆ( )) * v t m t R t j t j R t j t 4 Up-Converted Signal, Modulation Signal On Carrier R( t) Rˆ ( t) exp( j( ( t) ˆ ( t))) exp( j ) Estimate of Modulated Signal Component R( t) Rˆ( t) exp( j )exp( j ) R( t) Rˆ( t) exp( j( )) is Phase Error Due to Additive Noise Down-Convert Received Signal With Phase Error in Local Oscillator Remove Estimated Modulated Signal Component from Down Converted Signal

Computation Are Performed in Cartesian Coordinates not Polar Coordinates ( ) ˆ ( ) ( ) exp( ( )) exp( ) ˆ ( ) exp( ˆ( )) * v t m t R t j t j R t j t R exp( j ) exp( j ) R exp( j ) 1 1 2 2 R R exp( j( )) exp( j ) 1 2 1 2 R R exp( j ) exp( j ) 1 2 R R exp( j( )) 1 2 R R [cos( ) j sin( )] 1 2 is Phase Error Due to Additive Noise * v t () mˆ ( t) [ x ( t) j y ( t)] [ x ( t) j y ( t)] 1 1 2 2 [ x j y ] [ x j y ] 1 1 2 2 [ x x y y ] j [ x y x y ] 1 2 1 2 1 2 2 1 [ x y x y ] R R sin( ) 1 2 2 1 1 2 5

Phase Measurement with Modulated Signal Constellation Points Noise Cloud s(n) Noise cloud N(n) Rotated Data Decision Boundaries s(n) e j r(n)= s(n) e j + N(n) r(n) Slic er s(n) * d(n) 6

Angle Varianc e Due to Noise Cloud for Small Signal Decision Aided Acquisition Noise Cloud Angle Varianc e Due to Noise Cloud for Large Signal r(n) e j (n) Matc hed Filter Equalizer Filter r(n) Detector (Slic er) s(n) (n) * -j (n) e DDS Loop Filter SNR ATAN d(n) 7

Decision Aided Acquisition Angle Varianc e Due to Noise Cloud for Small Signal Noise Cloud Angle Varianc e Due to Noise Cloud for Large Signal r(n) e j (n) Phase Detector, Estimates Modulation and Removes it Matc hed Filter Equalizer Filter r(n) Detector (Slic er) s(n) (n) * -j (n) e DDS Loop Filter SNR ATAN d(n) 8 Water Pistol Cleverly Disguised as a PLL Phase Detector

BPSK Phase Error y A sin( ) A exp(j ) x A cos( ) Consider x(n) y(n) x n y n A 2 ( )* ( ) cos( )*sin( ) A 2 2 sin(2 ) 9

BPSK Phase Error Option 1: x(n) y(n) x n y n A 2 ( )* ( ) cos( )*sin( ) A 2 2 sin(2 ) A sin( ) y Phase Error Down Converted Modulation Component With Carrier Phase Error A cos( ) A exp(j ) x BPSK Slicer Output. Estimate of Modulation Component Option 2: sgn(x(n)) y(n) x + j y Estimated Constellation point = A sgn(x ) = A sgn(cos( )) 1 1 1 x + j y Observed Constellation point = A cos( )+ j A sin( ) 2 2 2 [ x1 y2 x2 y1] A sgn(cos( )) A sin( ) A sgn(cos( )) sin( ) 1

I-Q Product Phase Detectors for Modulated BPSK 1.8.6.4.2 -.2 -.4 -.6 -.8 Inputs to Product Detector 1.8.6.4.2 -.2 -.4 -.6 -.8 Inputs to Product Detector sgn(cosine) cosine -1 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 - -1 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5-1.8.6.4.2 -.2 -.4 -.6 -.8 S-Curve Product detector x*y 1.8.6.4.2 -.2 -.4 -.6 -.8 S-Curve Product Detector sign(x)*y -1-1 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 - -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 11 No Multiplies in sgn(x) y -

12 I-Q Product Phase Detectors for Modulated BPSK

1.8.6.4.2 -.2 -.4 -.6 -.8-1 I-Q Product Phase Detectors for Modulated QPSK Inputs to Phase Detector -.5 -.4 -.3 -.2 -.1.1.2.3.4.5-1.8.6.4.2 -.2 -.4 -.6 -.8-1 y(n)*sign(x(n-1))-x(n)*sign(y(n-1)) and y(n-1)*sign(x(n))-x(n-1)*sign(y(n)) -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 S-Curve Product Phase Detector: sign(x)*y-sign(y)*x 1.8.6.4.2 -.2 -.4 -.6 -.8-1 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 -.5.4.3.2.1 -.1 -.2 -.3 -.4 [y(n)*sign(x(n-1))-x(n)*sign(y(n-1))]- [y(n-1)*sign(x(n))-x(n-1)*sign(y(n))] Quadricorrelator (Frequency Estimator) -.5 -.5 -.4 -.3 -.2 -.1.1.2.3.4.5 13 No Multiplies in sgn(x) y-sgn(y) x No Multiplies in Frequency Estimator

I-Q Product Phase Detectors for Modulated QPSK Det ( 4 ) sgn( I( )) Q( ) sgn( Q( )) I( ) Det ( ) 3 2 [ I( ) Q( )] [ I( ) Q( )] I( ) Q( ) 14

Tanh( SNR I( )) Q( ) Tanh( SNR Q( )) I( ) QPSK S-Curves for Range of SNR 15

Non Data Aided BPSK Low SNR TIME SYNCH r(t) T ( ) dt cos( t + ) SAMPLE Output I k Quadrature VCO sin( t + ) T ( ) dt LOOP FILTER SAMPLE e(t) TIME SYNCH 16

Non Data Aided BPSK High SNR TIME SYNCH T ( ) dt SAMPLE Output I k r(t) cos( t + ) SIGN Quadrature VCO sin( t + ) LOOP FILTER e(t) T ( ) dt SAMPLE TIME SYNCH 17

Costas Loop PLL r(t) T ( ) dt cos( t + ) Quadrature VCO sin( t + ) T ( ) dt LOOP FILTER e(t) Output S(t) 18

Digital PLL for Sinusoid r(n) cos( + ) FIR LPF Down Sam ple x(n) ATAN k P Loop Filter -Sin( + ) FIR LPF Y(n) K I Z -1 Sin-Cos Table Z -1 Direc t Digital Synthesizer If we replace ATAN with a product, we have a Costas Loop! 19

QPSK PLL I(n)+ jq(n) (n) Loops Differ in Phase Detectors That Change Slicers to Match Constellation r(n) cos( + ) FIR LPF x(n) x(n)+ jy(n) I(n) + -Sin( + ) FIR LPF y(n) Q(n) - DDS Loop Filter I(n)y(n)-Q(n)x(n) ~ sin( (n)) 2 Direc t Digital Synthesizer

QPSK PLL-II r(n) cos( + ) FIR LPF x(n) SNR I(n) Tanh(-) + -Sin( + ) Trig Table FIR LPF Loop Filter y(n) Direc t Digital Synthesizer SNR Tanh(-) Q(n) I(n)y(n)-Q(n)x(n) ~ sin( (n)) -

I(n)+ jq(n) (n) x(n)+ jy(n) 16-QAM PLL r(n) -sin( + ) DDS cos( + ) FIR LPF FIR LPF Loop Filter x(n) y(n) 2-D Slic er + - I(n) Q(n) Gain Det Loops Differ in Phase Detectors That Change Slicers to Match Constellation Slicer Boundaries 22