Synthesis of Enamides via CuI-Catalyzed Reductive Acylation of. Ketoximes with NaHSO 3

Similar documents
Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

PTSA-Catalyzed Green Synthesis of 1,3,5-Triarylbenzene under Solvent-Free Conditions

Supporting Information

Supporting information

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Bio-based Green Solvent Mediated Disulfide Synthesis via Thiol Couplings Free of Catalyst and Additive

Antibacterial Coordination Polymer Hydrogels Consisted of Silver(I)-PEGylated Bisimidazolylbenzyl Alcohol

Supporting Information

Supporting Information

Supplementary Information

Supporting information. An improved photo-induced fluorogenic alkene-tetrazole reaction for protein labeling

Supporting Information

Supporting Information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Supporting Information

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

How to build and race a fast nanocar Synthesis Information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting information. Ni-catalyzed the efficient conversion of phenols protected with 2, 4, 6-trichloro-1, 3, 5- triazine (TCT) to olefins

Cu-Catalyzed Synthesis of 3-Formyl imidazo[1,2-a]pyridines. and Imidazo[1,2-a]pyrimidines by Employing Ethyl Tertiary

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Electronic Supplementary Material

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Supplementary Information

Supplementry Information for

Supporting Information

Supporting Information. Cells. Mian Wang, Yanglei Yuan, Hongmei Wang* and Zhaohai Qin*

Supporting Information

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Light-Controlled Switching of a Non- Photoresponsive Molecular Shuttle

Supporting Information for

SUPPORTING INFORMATION FOR

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting information. Direct Enantioselective Aldol Reactions catalyzed by a Proline-Thiourea Host- Guest Complex

Supporting Information

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Palladium-Catalyzed Alkylarylation of Acrylamides with

Supporting Information

Supporting Information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

Electronic Supplementary Information

Supporting Information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

1. Reagents: All commercial materials were used as received unless otherwise noted. The following solvents were obtained from a JC Meyer solvent dispe

Supporting Information

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information

Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis

Supporting Information

Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Table of Contents 1. General procedure for the chiral phosphoric acid catalyzed asymmetric reductive amination using benzothiazoline

Supporting Information. Rhodium(III)-Catalyzed Synthesis of Naphthols via C-H Activation. of Sulfoxonium Ylides. Xingwei Li*, Table of Contents

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine

Tsuji Trost N-Allylation with Allylic Acetates by Using a Cellulose Palladium Catalyst

Supporting Information

Trisulfur Radical Anion as the Key Intermediate for the. Synthesis of Thiophene via the Interaction between Elemental.

Electronic Supplementary Information. ligands for efficient organic light-emitting diodes (OLEDs)

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

Supporting Information

Ullmann Reaction of Aryl Chlorides on Various Surfaces and the Application in Stepwise Growth of 2D Covalent Organic Frameworks

Photooxidations of 2-(γ,ε-dihydroxyalkyl) furans in Water: Synthesis of DE-Bicycles of the Pectenotoxins

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

SUPPORTING INFORMATION

Iridium-catalyzed regioselective decarboxylative allylation of. β-ketoacids: efficient construction of γ, δ-unsaturated ketones

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Electronic Supplementary Information

Supporting Information for

Supporting Information for:

Lab Documentation. General methods

A Visible Near-Infrared Chemosensor for Mercury Ion

Supporting Information

Copper-catalyzed cleavage of benzyl ethers with diacetoxyiodobenzene and p-toluenesulfonamide

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical

Zn-Catalyzed Diastereo- and Enantioselective Cascade. Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles:

Supplementary Information. Direct difunctionalization of alkynes with sulfinic acids and

Supporting Information

Halogen halogen interactions in diiodo-xylenes

Stereocontrolled Self-Assembly and Photochromic Transformation of

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Supporting Information

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Facile Synthesis of Flavonoid 7-O-Glycosides

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA Experimental Procedures

Synthesis of Glaucogenin D, a Structurally Unique. Disecopregnane Steroid with Potential Antiviral Activity

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION

Supporting Information

Transcription:

Supporting Information For Synthesis of Enamides via CuI-Catalyzed Reductive Acylation of Ketoximes with NaHSO 3 Zheng-Hui Guan*, Zhi-Yuan Zhang, Zhi-Hui Ren, Yao-Yu Wang, and Xumu Zhang Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi an 710069, P. R. China (E-mail: guanzhh@nwu.edu.cn) Context 1. General information-----------------------------------------------------------------------s2 2. Typical procedure for CuI-Catalyzed Reductive Acylation of Ketoximes------S2 3. Spectroscopic data for enamides 2-------------------------------------------------S2-S6 4. Copies of 1 H NMR, 13 C NMR spectra--------------------------------------------s7-s52 S 1

General information: Column chromatography was carried out on silica gel. 1 H NMR spectra were recorded on 400 MHz in d 6 -DMSO or CDCl 3 and 13 C NMR spectra were recorded on 100 MHz in d 6 -DMSO or CDCl 3. Commercially available reagents and solvents were used without further purification. The ketoximes were in all cases prepared from the corresponding ketones according to literature procedures 1,2 and used in the reaction without further purification. (1) Bousquet, E. W.; Carothers, W. H.; McEwen, W. L. Organic Synthesis; Wiley and Sons: New York, 1943; Collect. Vol II, pp 313-315. (2) Zhao, H.; Vandenbossche, C. P.; Koenig, S. G.; Singh, S. P.; Bakale, R. P. Org. Lett. 2008, 10, 505. Typical procedure for CuI-Catalyzed Reductive Acylation of Ketoximes: R 1 OH N 10 mol%cui, 2 eq Ac 2 O, 3eq NaHSO 3 n DCE, 120 o C The mixture of ketoxime 1 (0.5 mmol), acetic anhydride (1.0 mmol, 102.0 mg), NaHSO 3 (1.5 mmol, 156.2 mg) and CuI (10 mol%, 9.1 mg) was stirred in 1,2-dichloroethane (DCE, 5.0 ml) at 120 C under Ar, After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, diluted with EtOAc (25 ml) and washed with NaOH (2N, 20 ml) and brine (20 ml). The organic layers were dried over anhydrous Na 2 SO 4 and evaporated in vacuo. The desired enamide 2 was obtained after purification by flash chromatography on silica gel with hexane/ethyl acetate as the eluent. Spectroscopic data for enamides 2: R 2 n 2a 1 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.34 (m, 5H), 6.89 (bs, 1H), 5.87 (s, 1H), 5.09 (s, 1H), 2.13 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.2, 140.5, 138.3, 128.6, 126.0, 102.6, 24.4. 2b 1 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.31 (d, J = 8 Hz, 2H), 7.17 (d, J = 8 Hz, 2H), 6.94 (bs, 1H), 5.81 (s, 1H), 5.05 (s, 1H), 2.38 (s, 3H), 2.11 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.0, 140.3, 138.6, 135.5, 129.3, 125.9, 101.8, 24.5, 21.1. S 2

MeO 2c 2 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.34 (d, J = 8 Hz, 2H), 6.88 (d, J = 8 Hz, 2H), 5.76 (s, 1H), 5.01 (s, 1H), 3.82 (s, 3H), 2.11 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.4, 159.6, 140.1, 130.5, 127.2, 113.5, 101.5, 55.2, 24.1. AcHN 2d: 1 H NMR (400 MHz,DMSO) δ 10.02 (s, 1H), 9.25 (s, 1H), 7.58 (d, J = 9.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 5.54 (s, 1H), 4.95 (s, 1H), 2.03 (s, 6H). 13 C NMR (100 MHz, DMSO) δ 174.2, 173.5, 146.1, 144.5, 137.6, 131.7, 123.7, 106.1, 29.1, 28.9. Br 2e 2 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.45 (d, J = 8 Hz, 2H), 7.25 (m, 3H), 5.70 (s, 1H), 5.06 (s, 1H), 2.05 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.3, 139.6, 137.0, 131.6, 127.6, 103.7, 24.2. Cl 2f 3 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.37 (s, 4H), 7.00 (bs, 1H), 5.76 (s, 1H), 5.08 (s, 1H), 2.10 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.4, 139.6, 136.4, 134.2, 128.5, 127.3, 103.7, 24.0. F 2g 4 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.40 (s, 2H), 7.08-7.05 (t, J = 8.4 Hz, 2H), 6.84 (bs, 1H), 5.79 (s, 1H), 5.04 (s, 1H), 2.13 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.7, 162.9 (d, J = 246.3 Hz), 139.8, 134.0, 127.8 (d, J = 7.7 Hz), 115.1 (d, J = 7.7 Hz), 103.3, 23.8. O 2 N 2h 2 : 1 H NMR (400 MHz, CDCl 3 ) δ 8.22 (d, J = 8.8 Hz, 2H), 7.58 (d, J= 8.4 Hz, 2H), 6.92 (bs, 1H), 5.82 (s, 1H), 5.27 (s, 1H), 2.17 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.1, 147.6, 144.1, 139.2, 126.8, 123.9, 107.1, 24.2. S 3

MeO 2i 3 : 1 H NMR (400 MHz, DMSO) δ 9.31 (s, 1H), 7.32-7.30 (t, J = 8 Hz, 1H), 7.04-6.92 (m, 3H), 5.65 (s, 1H), 5.01 (s, 1H), 3.78 (s, 3H), 2.02 (s, 3H). 13 C NMR (100 MHz, DMSO) δ 174.3, 164.3, 146.4, 144.7, 134.5, 123.7, 118.9, 117.0, 107.0, 60.2, 28.9. 2j 5 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.19-7.12 (m, 3H), 6.79 (bs, 1H), 5.84 (s, 1H), 5.05 (s, 1H), 2.27 (s, 6H), 2.14 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.2, 140.5, 137.1, 136.7, 135.8, 129.7, 127.1, 123.3, 101.5, 24.3, 19.7, 19.4. 2k: 1 H NMR (400 MHz, CDCl 3 ) δ 7.17 (bs, 1H), 7.06 (s, 3H), 5.97 (s, 1H), 4.65 (s, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 1.95 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 168.9, 140.5, 138.3, 135.2, 132.4, 130.2, 129.7, 129.0, 102.1, 24.1, 20.7, 18.9. 2l 6 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.4 (d, J = 8.4 Hz, 4H), 7.55-7.50 (m, 3H), 6.98 (bs, 1H), 5.95 (s, 1H), 5.24 (s, 1H), 2.18 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.4, 140.4, 135.3, 133.1, 132.9, 128.2, 128.1, 127.5, 126.4, 126.3, 124.7, 124.0, 103.5, 24.2. 2m: 1 H NMR (400 MHz, CDCl 3 ) δ 7.14-7.05 (m, 3H), 6.78 (bs,1h), 5.84 (s, 1H), 5.03 (s, 1H), 2.77 (s, 4H), 2.13 (s, 3H), 1.79 (s, 4H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.1, 140.5, 137.7, 137.2, 135.4, 129.2, 126.5, 123.0, 101.4, 29.3, 29.0, 24.3, 22.9. 2n 6 : 1 H NMR (400 MHz, DMSO) δ 9.11 (s, 1H), 7.40-7.36 (m, 2H), 7.32-7.26 (m, 3H), 6.05 (q, J = 6.8 Hz, 1H), 1.90 (s, 3H), 1.61 (d, J = 7.2 Hz, 3H). 13 C NMR (100 S 4

MHz, DMSO) δ 173.5, 141.8, 140.2, 133.8, 133.1, 132.6, 118.5, 28.6, 18.7. 2n 6 : 1 H NMR (400 MHz, DMSO) δ 9.12 (s, 1H), 7.38-7.22 (m, 5H), 5.90 (q, J = 6.8 Hz, 1H), 2.01 (s, 3H), 1.66 (d, J = 6.8 Hz, 3H). 13 C NMR (100 MHz, DMSO) δ 172.9, 143.5, 139.9, 133.3, 132.3, 130.2, 124.4, 27.8, 18.9. 2o 6 : 1 H NMR (400 MHz, DMSO) δ 9.03 (s, 1H), 7.33-7.20 (m, 5H), 1.89 (s, 3H), 1.71 (s, 6H), 13 C NMR (100 MHz, DMSO) δ 172.7, 144.2, 134.0, 132.9, 132.5, 131.8, 51.5, 27.8, 25.9. N H O 2p 7 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.40-7.31 (m, 6H), 5.79 (s, 1H), 5.04 (s, 1H), 2.26 (q, J = 7.2 Hz, 2H), 1.14 (t, J =7.2 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ) δ 173.0, 140.5, 138.3, 128.4, 125.9, 102.3, 30.3, 9.5. 2q 1 : 1 H NMR (400 MHz, DMSO) δ 9.12 (s, 1H), 7.20-7.16 (m, 4H), 6.16 (s, 1H), 2.70-2.68 (t, J = 8 Hz, 2H), 2.27 (s, 2H), 2.01 (s, 3H). 13 C NMR (100 MHz, DMSO) δ 174.0, 141.2, 137.6, 136.9, 132.6, 132.3, 131.3, 127.3, 124.2, 32.3, 28.5, 26.9. MeO 2r 1 : 1 H NMR (400 MHz, DMSO) δ 9.05 (s, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.75 (s, 2H), 6.04 (s, 1H), 3.74 (s, 3H), 2.66 (s, 2H), 2.23 (s, 2H), 2.01 (s, 3H). 13 C NMR (100 MHz, DMSO) δ 173.9, 163.6, 143.1, 137.3, 129.8, 128.6, 121.2, 118.5, 116.1, 60.2, 32.8, 28.5, 26.9. 2s 1 : 1 H NMR (400 MHz, CDCl 3 ) δ 7.49 (d, J = 8 Hz, 1H), 7.36 (s, 1H), 7.2 (d, J = 7.6 Hz, 1H), 7.28-7.25 (m, 2H), 6.88 (s, 1H), 3.44 (s, 2H), 2.25 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 169.3, 142.6, 139.7, 135.6, 125.8, 125.2, 124.0, 116.6, 115.8, 36.4, S 5

23.9. Cl 2t 8 : 1 H NMR (400 MHz, DMSO) δ 9.80 (s, 1H), 7.77 (d, J = 8 Hz, 1H), 7.52 (s, 1H), 7.40 (d, J = 8 Hz, 1H), 6.76 (s, 1H), 3.39-3.34 (m, 2H), 2.10 (s, 3H). 13 C NMR (100 MHz, DMSO) δ 174.1, 149.7, 144.1, 141.2, 135.2, 131.1, 129.3, 124.7, 119.7, 41.1, 28.6. 2u 9 : 1 H NMR (400 MHz, CDCl 3 ) δ 6.31 (bs, 1H), 6.06 (s,1h), 2.11-2.04 (m, 4H), 2.01 (s, 3H), 1.70-1.65 (m, 2H), 1.59-1.54 (m, 2H). 13 C NMR (100 MHz, CDCl 3 ) δ 168.7, 132.7, 113.1, 27.7, 24.0, 23.8, 22.3, 21.7. 2v 9 : 1 H NMR (400 MHz, DMSO) δ 9.38 (s, 1H), 5.74 (s, 1H), 2.37-2.33 (m, 2H), 2.28 (s, 2H), 1.99-1.89 (m, 3H), 1.75-1.70 (m, 2H). 13 C NMR (100 MHz, DMSO) δ 172.9, 142.2, 113.2, 38.1, 35.7, 28.5, 25.9. References: (1) Guan, Z.-H.; Huang, K.; Yu, S.; Zhang, X. Org. Lett. 2009, 11, 481. (2) Tang, W.; Capacci, A.; Sarvestani, M.; Wei, X.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2009, 74, 9528. (3) Gridnev, I. D.; Yasutake, M.; Higashi, N.; Imamoto, T. J. Am. Chem. Soc. 2001, 123, 5268 (4) Shi, L.; Wang, X.; Sandoval, C. A.; Wang, Z.; Li, H.; Wu, J.; Yu, L.; Ding, K. Chem. Eur. J. 2009, 15, 9855. (5) Jia, Y.-X.; Zhong, J; Zhu, S-F; Zhang, C-M; Zhou, Q-L. Angew. Chem., Int. Ed. 2007, 46, 5565. (6) Zhao, H.; Vandenbossche, C. P.; Koenig, S. G.; Singh, S. P.; Bakale, R. P. Org. Lett. 2008, 10, 505. (7) Baudequin, C; Zamfir, A; Tsogoeva, S. B. Chem. Commun. 2008, 38, 4637. (8) Sklarz, B; Cohen, S; Speiser, T.; Nachman, R. PCT Int. Appl. (2000), 70 pp. WO 2000038673 A1 20000706 CAN 133:73867 AN 2000:456874 (9) Gilmore, C. D.; Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 1558 S 6

2a: S 7

2a: S 8

2b: S 9

2b: S 10

2c: MeO S 11

2c: MeO S 12

2d: AcHN S 13

2d: AcHN S 14

2e: Br S 15

2e: Br S 16

2f: Cl S 17

2f: Cl S 18

2g: F S 19

2g: F S 20

2h: O 2 N S 21

2h: O 2 N S 22

MeO 2i: S 23

MeO 2i: S 24

2j: S 25

2j: S 26

2k: S 27

2k: S 28

2l: S 29

2l: S 30

2m: S 31

2m: S 32

2n: S 33

2n: S 34

2n: S 35

2n: S 36

2o: S 37

2o: S 38

O 2p: N H S 39

O 2p: N H S 40

2q: S 41

2q: S 42

2r: MeO S 43

2r: MeO S 44

2s: S 45

2s: S 46

2t: Cl S 47

2t: Cl S 48

2u: S 49

2u: S 50

2v: S 51

2v: S 52