SUPPLEMENTARY INFORMATION

Similar documents
SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION. doi: /nature07461

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supporting Information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Table S1. Overview of used PDZK1 constructs and their binding affinities to peptides. Related to figure 1.

Table 1. Crystallographic data collection, phasing and refinement statistics. Native Hg soaked Mn soaked 1 Mn soaked 2

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supplementary information for:

ml. ph 7.5 ph 6.5 ph 5.5 ph 4.5. β 2 AR-Gs complex + GDP β 2 AR-Gs complex + GTPγS

The structure of a nucleolytic ribozyme that employs a catalytic metal ion. Yijin Liu, Timothy J. Wilson and David M.J. Lilley

Supplementary Figure 1. Biochemical and sequence alignment analyses the

type GroEL-GroES complex. Crystals were grown in buffer D (100 mm HEPES, ph 7.5,

SUPPLEMENTARY INFORMATION

Cks1 CDK1 CDK1 CDK1 CKS1. are ice- lobe. conserved. conserved

Supplementary information

Supplementary Information. Structural basis for precursor protein-directed ribosomal peptide macrocyclization

Supplementary Figure 1 Crystal contacts in COP apo structure (PDB code 3S0R)

SUPPLEMENTARY INFORMATION

Diphthamide biosynthesis requires a radical iron-sulfur enzyme. Pennsylvania State University, University Park, Pennsylvania 16802, USA

Crystal lattice Real Space. Reflections Reciprocal Space. I. Solving Phases II. Model Building for CHEM 645. Purified Protein. Build model.

The structure of a nucleolytic ribozyme that employs a catalytic metal ion Liu, Yijin; Wilson, Timothy; Lilley, David

Supplementary Figure 1. Aligned sequences of yeast IDH1 (top) and IDH2 (bottom) with isocitrate

SUPPLEMENTARY FIGURES

Structure, mechanism and ensemble formation of the Alkylhydroperoxide Reductase subunits. AhpC and AhpF from Escherichia coli

Supplementary Figure 1 Crystal packing of ClR and electron density maps. Crystal packing of type A crystal (a) and type B crystal (b).

SUPPLEMENTARY INFORMATION

Crystal Structure of Fibroblast Growth Factor 9 (FGF9) Reveals Regions. Implicated in Dimerization and Autoinhibition

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Structure and RNA-binding properties. of the Not1 Not2 Not5 module of the yeast Ccr4 Not complex

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

Structural characterization of NiV N 0 P in solution and in crystal.

Transmembrane Domains (TMDs) of ABC transporters

Supplementary figure 1. Comparison of unbound ogm-csf and ogm-csf as captured in the GIF:GM-CSF complex. Alignment of two copies of unbound ovine

Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis

SUPPLEMENTARY INFORMATION

Supplementary Figures

Structure and evolution of the spliceosomal peptidyl-prolyl cistrans isomerase Cwc27

Potassium channel gating and structure!

Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached

Phase problem: Determining an initial phase angle α hkl for each recorded reflection. 1 ρ(x,y,z) = F hkl cos 2π (hx+ky+ lz - α hkl ) V h k l

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Structure and Function of Neisseria gonorrhoeae MtrF Illuminates a Class of Antimetabolite Efflux Pumps

SUPPLEMENTARY INFORMATION

RNA Polymerase I Contains a TFIIF-Related DNA-Binding Subcomplex

SUPPLEMENTARY INFORMATION

Supplemental Data SUPPLEMENTAL FIGURES

Full-length GlpG sequence was generated by PCR from E. coli genomic DNA. (with two sequence variations, D51E/L52V, from the gene bank entry aac28166),

Supplementary Information

Nature Structural and Molecular Biology: doi: /nsmb.2938

ENZYME MECHANISMS, PROTEASES, STRUCTURAL BIOLOGY

Supplementary Materials for

Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

Refined Structure of the Nicotinic Acetylcholine Receptor at 4 Å Resolution

Building a Homology Model of the Transmembrane Domain of the Human Glycine α-1 Receptor

Structure of a bacterial multi-drug ABC transporter

SUPPLEMENTARY FIGURES. Structure of the cholera toxin secretion channel in its. closed state

SUPPLEMENTARY INFORMATION

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Gene regulation I Biochemistry 302. Bob Kelm February 25, 2005

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. MhsT and LeuT architecture.

Supplementary Information

Advanced Certificate in Principles in Protein Structure. You will be given a start time with your exam instructions

Plasmid Relevant features Source. W18N_D20N and TrXE-W18N_D20N-anti

Membrane proteins Porins: FadL. Oriol Solà, Dimitri Ivancic, Daniel Folch, Marc Olivella

Nature Structural and Molecular Biology: doi: /nsmb.2783

Model Worksheet Teacher Key

Supplementary figure 1 Application of tmfret in LeuT. (a) To assess the feasibility of using tmfret for distance-dependent measurements in LeuT, a

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

It s really this simple.

NB-DNJ/GCase-pH 7.4 NB-DNJ+/GCase-pH 7.4 NB-DNJ+/GCase-pH 4.5

Supplementary Figure 1 Structure of the Orai channel. (a) The hexameric Drosophila Orai channel structure derived from crystallography 1 comprises

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1. Experimental approach for enhancement of unbiased Fo Fc maps.

Model Mélange. Physical Models of Peptides and Proteins

The Potassium Ion Channel: Rahmat Muhammad

Fig. 1. Stereo images showing (A) the best fit of the atomic model for F actin and the F actin map obtained by cryo-em and image analysis, and (B) goo

Exam I Answer Key: Summer 2006, Semester C

Purification, SDS-PAGE and cryo-em characterization of the MCM hexamer and Cdt1 MCM heptamer samples.

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

SUPPLEMENTARY INFORMATION

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Structural basis of PROTAC cooperative recognition for selective protein degradation

SUPPLEMENTARY INFORMATION

Model Worksheet Student Handout

The structure of vanadium nitrogenase reveals an unusual bridging ligand

Bacterial protease uses distinct thermodynamic signatures for substrate recognition

Transcription:

Supplementary Table 1: Data collection, phasing and refinement statistics ChbC/Ta 6 Br 12 Native ChbC Data collection Space group P4 3 2 1 2 P4 3 2 1 2 Cell dimensions a, c (Å) 132.75, 453.57 132.81, 452.95 Resolution (Å) 4.5 (4.66-4.5)* 3.3 (3.42-3.3) R sym or R merge 0.117 (0.379) 0.077 (0.702) I/σ(I) 23.5 (3.75) 65.4 (2.3) Completeness (%) 98.2 (87.6) 95.7 (91.4) Redundancy 19.5 10.1 Refinement Resolution (Å) 3.3-20.0 (3.41-3.3) No. reflections 58996 (4978) Completeness (%) 95.0 (86.0) R work/ R free 22.8/26.4 No. atoms Protein 13147 Ligand/ion 419 Water 0 B-factors Protein 105.9 Ligand/ion 110.8 Water R.m.s deviations Bond lengths (Å) 0.006 Bond angles ( ) 1.217 *Highest resolution shell is shown in parenthesis. WWW.NATURE.COM/NATURE 1

!!!!!!!!!%&'()*"+*,-(*,'.$/&&,#$0-&*&1"+%&##-2#%&##21&+#+-)2!!!!'%",2&%-(343*,&-!!!!!!!)+*2,1%3#!!!!!!!"21%3$*"''(#"+*,-(*,-.$/&$,&$0-##&1"+&###-2*%&#&12&+#+-),!!!!0%",-&%-'34*'(&-!!!!!!!)+*3,2%0#!!!!!!!"2(*#,2&'(*&&+%,*(#-(.+/*3,#(3-%#(&"+&1&,-,"%*&#33*%&2%-'-2%%)2&-#$&0,21#'1&3-&(,#--3*)3-1&-#!!!!!!!"23*#,2&'(*&&+%,*(#-(.+/*3,#(3-%#$&"+&1&,-,"%*&#33*%&2%-'-2%%)2&-#$&0,21#'1&3-&(-#--3*)3-1&-#!!!!!!!"0,%#(%&0'(&2,+",(&,3.$/&$,#$0-##,1&+&##*-2%%&#&,,++&+'3!!!!!!4(&).%&1'/,,(#&!!!!!!!&+%$&2",#!!!"22&),(&#0*#'$.#1+&,-,#-..()*12#$0-%#1,&+%"#*-2%&&*%#%++%2+0114-%,$,4&.%2&0/$0,&"!!!!!!!&+%3%2"-*!!!!!!!"23*#,2&'(*&&+%,*(#-(.+/*3,#(3-%#$&"+&1&,-,"%*&#33*%&2%-'-2%%)2"-#$&0,21#'1&3-&(-#--3*)3-1&-#!!!!"2&),2&"$**'3/#,+&,-$#-2.$/##,#$0-%#5,"+%&#*-2#"&#*,3++%0,31122%-$,4&-%,(2/431#1!!!!!!!"+%%"1"-&!"3+"(&)0,##-#*'(/#,+#,,(*-3.+/*$,"$0-%#*,"+%##*-2%#&#%,%++%,'0113*%-$*4&3%,11/%0##"!!!!!!!"+%3"2"-# "-1.,*3&.21#"'(*3(%&+(#&(**32(+#*,#('-%"&1"+&1##-2*%&&&,%*+#0-)3!!!!'%",-#%-,'421+&%!!!!!!!.**-,1%0#!!!!!!!!!!!!"%(3,%,3!!!!!!!!!!!&.(*-(2&"&+*2*&+#,-#&&-*-2,3%24&+!!!!,**2/*",',-!!!!!!!!!!!!!!!-2*%,3!!!!!!!!!!!!!!!!!"220#(#(*.2%-$%&23!!!!!"*"+3#-,%#,4-##1,&%#+!!!!!!!!!!!1-4&+3'1&,(&!!!!!!!*-+"#1)&& %$&'!"()*+,+-.&$/(#-$0' 1"#(0#$%,2$0&' 1"#,+- 1"%3&'-,4(53-($ 6"40$&),0-($ 7"$05$%-#( 7",8,%-/$%( 9"#3,+$%($ 9"/-'#3$%- %"&' ",&#,*%-#,)$&-'))(*0,&,2-,&2&*1%&&,1+%.*,)#"+-1('2#&*0-!*#+,,&"-2.-&%*,"##,##21'#)$%&*.(("##("+'1*++ ",&*,,%-#,)$&,'2)'*0,&22-,#,&,,%&&,1+).#+%#+0-2,1'#"*--!-#+#2&&-2(-&%*,"##,"&21'*)$%##.$3#*#("+0-*++ "2&",+%%#-",&,''$(*0+&,,-&&2#,,%"1*1+!!!!!)2*-',),*-!!!!!!!,34&--,3##2-###-&**,'"%1%##$$34*#$&+02*+, "2&",+%%#-",&,''$(*0,&,,-&&2*,,%"1*1+!!!!!)2*-',),*-!!!!!!!,34&--,3##2-###-&**,'"%1%#*$$34*#(&+02*+, "1&),1%-#-22&,(2)0&0'&2--#&,1,,%&&1%!!!#+#3#+,0,-&0*2-!4*&+",3&--,-"%*-##12#&,*'#%$410$23%(#2"++.*+1 "1&%#,*-#,,2&,(///&02&1,-"&2&"2%&&*,!!!!!!!,+&(0-.!!!!!!!#21,)%2-.-#%1,#&*,#)21'&),%&($/3#1#$&++'*+, "2&",+%%#-",&,''$(*0,&,,-&&2*,,%"1*1+!!!!!)2*-',),*-!!!!!!!,34&--,3##2-###-&**,'"%1%#*$$34*#(&+02*+, "2*%*,*-1,)2&,(/)-&0,&1,-&&2&",%&&1,!!!!!!!,+.*03(!!!!!!!"2&0%&--.-*%1,&&5,#42*'&#$&&(()3#1&$"+'.*++ "1#%*2&-*,)2&,(,)("0-#12,*&2&"2%&&*,!!!!!!!,+,('02!!!!!!!&2",/"--1-#%1,*"5,%%,*'&)$%"((/3#1#$"+'.*++ &,&#-,%-#,)1)*()'-/3-*3,-*&,#*2&&#*"3!!,%**,+0-*1.#-!!!-*#+(,%&--(-"#,,#*#-&**-##)2",%3$34*#(&+02*+' "+&#%,#-*,&-%1330-*2,&,,!**,)-#"*(1",**,+&*&/&+,''#,2(/!&,01-*&--!!!!!!!!!!##2-,#,,)"%3$%)$#(&+')&-% +&&#-)1--(&*--'$--**-,#11"-*#*-,0"+"%&-2"#,-+&--45#(/%0$4*0-(#(2-%'"&*33%2,-##-"#&,#&,%&-#-+!!!!!#*',*1$2%,,&#+-%#**1**4##$&#%'/11%-2#/3**-(&&.'+&2#&-,2&4-,*#,*#&*/*&4,5-#/-!!!!,1#*--*"2+#4&2&"0.3$#,%,*2(2%*,&#+-%###1&*4&,$&%#'#1+%(2&/3**-0&&-1+&2#&--2&--2&#,'%*."&&425-#/-!!!!,2##--*"2+#4)-,"0,3$&,% 2*2$2%2,&#+-%##&2#"-##,4,&2/4!-13%/.##"02#21+&,2"--**-!!4,)*#%12&&4%%-*/-2&,&,,&02-#"1+4,&'3*,&)..)- 2*2$2%2,&#+-%##&2*"-##,4,&314!-13%/.##"01#21+&,2&-2**-!!4,)*#%*+&&4%%-#/-,&,&1,&03-#"1+4,&'3#,1)..)- 2*,$2%',&*+1,##&#&",1#1)4#-%3!4/1%#,-!!!!&*(+#*/,,01&+2*&##*%&*1%%42%-#/-!!!!*2##-1&,$+#4&.&&0(31,,. -*,$2%'#&#+*&,##&1&/+&3&%#',.!&-"##+',#"2&*(+&*,,201&+,#&&2*&*5.*&4%,-#/-!!!!,&#*1-#"3+%4",3&2*3.,," 2*2$2%2,&#+-%##&2#"-##,4,&23)!-23%/.##"01#21+&,2&-2**-!!4,)*#%*+&&4%%-#/-2&,&1,&02-#"1+4,&'3#2#)..)-,#,$2%'&&)+**-#&&1*)+&2#&".2'!%.&&&+,,#".&%.+&#,*-01&+,#&&,*&#,3&&4%,-#/-!!!!03#*1-&&3+#%",3&,13,,&*,#,$2%'*&&+*&,#%&1&)+&2&%*.,'!)-"&#+0,*","%(+&#2,231&+,##-,&&*5.&&4%,-#/-!!!!,,#**-&&2+#%&13#2,3#0,% -*23,%(2&#+-%&##1&,%&1)#%%'**%'$1%#'1#)/##.1+&.2"202%%-,*-#,&&#2&&445-*/-!!!!+*#*"-#"-+#*1,3,&/3.2#* %,-($%*+##2-&,,#%1-**&2%#4++#-2,#.1%2.4,,).3+*!!!!!!!*,%-#)-%#'$5&*+%-&//!!!!#43*+%.".#-')13,,-.*%/-,&2("&,,-*3%"**/0"&+&,2#%*'+,(#&%&33,#3/-#%2!!!!!!!!!!!!!!'+,(#&%&33,#3/-!!!!!#%2+&-!!!!!!!!!!!!!!!!.,-.0*+3!!!!!1#1,.%%0&4#)"--2-,1&,&**-"&&%,$2..&(2&-$&2#,+-#%3#3'"*1%-"+#*"3+&&&#+%#**+**&1#*2)%,"'4.,-',&+2!!!!!#%11.%%.#4#3*--2-,1&,&*&1"&*$2$2(."(.&-$&-#-+,#%3#3'+##%-"+&*"3+&&#*+%##,+&&1#1,1)#-"21 2*0,,&,,-(1%/*4,(+"&02)#%&--1-,1&-&##,*%#*2$$,0/$.*,(&,&+2-#%.#3'+#&%-&+##"3+*"%#+%*&*.+&&,,#1&#,))& 2*',,&,,-(1%/#4,(+"&02%#%&--2-,1&-&#&,#%#,2$$,0)$.*,(&,&+2-#%.#3'+#&%-&+##"3+*"%#+%*&*.+#&,,#1&,,))" *,-.,&+,!!!!!#2,'+%).4%#4#--2-,1#-&,#,",%%2(2,),(2&-(1,%#+,5%3#3'+##%-,+#*"3+#&##+%##1+"*-1##,4*,12,,,-1,#+/!!!!!#)*.-%40/)&&#--*-21&+&,&"&&$!2(,*/&$1#-$"-**+-*%3#3'+#&%-,+##"3+&%%&+%*&*+"*3,1&,)%,&(& 2*0,,&',-(1%/#4,(+"&02)#%&--2-,1&-&##,#%&,2$$,0)$.*,(&,&+2-#%.#3'+#&%-&+##"3+*"%#+%#&*.+#&,,#1&*,))&,/-0+12.!!!!!1&1,+%42%)*5#--2-21&*&,&&)&$!2$2*/&$1#-(&2**+,,%3#3'+&&%-2+**"3+1&%#+&"**+*#3,1&,)%,&/4 *1-.+*+3!!!!!#%1.+%40%)#%#--2-,1&,&*#&"2%!2$2,/&(2#-$"2,*+-%%.#3'+*#%-2+**"3+#&%&+%*%,+*#3,1#,)%,#.& 3,-',&#,-'3-(**13.%*0.%#1*--2-&1%-&*55"*&%,$2#.%(.&-$&2%#+-#%3#3'+*#%,1+##%3+#"%#+%*1,+*&2,#"*)12#3" 0#+$)",-!0+1,-(&2--%&%(")!-&+,,,#,#4/2,(+'3$,(*--#"#2,,&12%&1-#1'+#'%2%"%*,+#&)##/,#&,-&,%+#5#&&-"$0!!#..2/'!!!!!&-(2#%%&#',3+-+-!!!"-*&&,)"%%-$-2,(.2,--,,##/%&--#/'#)%+!!)*&"3+$&#&,*#&--"1-!*%1&1#&-- -&*,$+2-,,*1411+#&%2-)&-2--(#2-*#&.&*3%,&,%*#)&+%&(#40(.(#,''(-'!!!!!!!!!!!!!!!! -"*,(+,-#,*+41"++&#2-)&,1--(#2-2*".&#3&&#1%##))+%%$#40&.(4$''$,,'.3*1''1!!!!!!!! -##++!*13#,+41"+1-&-,%%313-2*,,%&&,#%3&-#,1&&)"+%*,#,3(,,1*#0'''2''0#,&,&(%!!!!! -##++!*13#,+41"+1-&-,%%313-2*,,&&*,&%3&-#,1&#)&+%***,3(,.3,#0(''2''0#,3,&(%!!!!! -&*3$!*#*1,+41&+-+#-,)#,1--0)$,2#&3##&###2**#))+%%(#)03(&&'''$#-3!!!!!!!!!!!!!!! 0&*2$!**2"1+411+,+#-,24,,342%2+*#&5&#5",1,"*")&+%&(,)'(.&&,.'$!!'3,*-.,03,,.1,!! -##++!#13#,+41"+1-&-,%%313-2*,,&&*,&%3&,*,1&#)&+%***,3(,.3,#'.''2''0#,3,&(%!!!!! 0&*'(!"*,",+41,+,+&-,"#2,240#$,,&&*&&&",#0&,#4&+%%(*)'(.&&,.'...,(1'$,,20,,,,.!! -%*-"!-*,11+411+,##-,24-2-41%1+*&&**-&&#&0&&#)&+%%("%'(.*&'.'.+*'2(*(,,.+-$.-*1, -%*-+%1,*.*+411+"*&2-%#*--!!42,,&&.#,*%5"1*5*)%+%%().0(&,,.0',(,,,+12.,1,!!!!!!! -12%2/-!!!!!!!!!!&#0%#*&2-322(&4&%+#*-#-),#*))1#%$*&#!!!!!!!!!!!!!!!!!!!!!!!!!!! -&*2+,2+-2#&,*&,"1+(-,)%,3!!#,-*5,,",*2%**2,#&&(12(*(''00#',,1$!!!!!!!!!!!!!!!!!!" #$ "% "% #& "& "% #" "$ #" '# (& )!# )#) )#) )#) )!( )!( )#) )!' )!# )#* )*( )'' $!* $!! $!# $!# $(! $!) $!# $!& $!% $#& $%' $&$ %(" %!$ %!# %!# %($ %(' %!# %(* %(! %#& %%% $#" *%% *** *'$ *'$ *$( **& *'$ **) **( *') %!( %'& %$&'!"()*+,+-.&$/(#-$0' 1"#(0#$%,2$0&' 1"#,+- 1"%3&'-,4(53-($ 6"40$&),0-($ 7"$05$%-#( 7",8,%-/$%( 9"#3,+$%($ 9"/-'#3$%- %"&'!"# $%# $%& $%' (" $%) $%*!"& $%+ $%, $%-. $%/ $%#0 $%-1 %$&'!"()*+,+-.&$/(#-$0' 1"#(0#$%,2$0&' 1"#,+- 1"%3&'-,4(53-($ 6"40$&),0-($ 7"$05$%-#( 7",8,%-/$%( 9"#3,+$%($ 9"/-'#3$%- %"&' %$&'!"()*+,+-.&$/(#-$0' 1"#(0#$%,2$0&' 1"#,+- 1"%3&'-,4(53-($ 6"40$&),0-($ 7"$05$%-#( 7",8,%-/$%( 9"#3,+$%($ 9"/-'#3$%- %"&' %$&'!"()*+,+-.&$/(#-$0' 1"#(0#$%,2$0&' 1"#,+- 1"%3&'-,4(53-($ 6"40$&),0-($ 7"$05$%-#( 7",8,%-/$%( 9"#3,+$%($ 9"/-'#3$%- %"&' "2# "2& WWW.NATURE.COM/NATURE 2

Supplementary Figure 1: Sequence alignment of bacterial ChbC proteins. Sequence alignment of ChbCs from Bacillus cereus (NP_981617.1), Bacillus amyloliquefaciens (YP_001423125.1), Enterobacter cancerogenus (EFC57248.1), Escherichia coli (YP_002329385.1), Erysipelothrix rhusiopathiae (ZP_05748394.1), Klebsiella pneumoniae (ZP_06017077.1), Salmonella enterica (YP_216321.1), Serratia odorifera (ZP_06637670.1), Vibrio cholerae (ZP_04410814.1), and Vibrio fischeri (YP_203986.1). PtsG (NP_415619.1), which transports glucose, and MtlA (ZP_07786294.1), which transports mannitol, are from E. coli and belong to the superfamily of Glc EIIC, but are in different subfamilies than ChbC. Cylinders and arrows above the alignment correspond to α-helices and β-strands, respectively, and are color-coded by the same scheme as Fig. 2a. The Glc superfamily signature sequence is marked with blue lines, residues that form hydrogen bonds with the bound chitobiose are marked with red circles, and Glu334 and His250 are highlighted in red. WWW.NATURE.COM/NATURE 3

Supplementary Figure 2: Purification and stability of ChbC. (a) Purification of ChbC. Lane 1, molecular weight standard; Lane 2, sample after cobalt affinity column; lane 3, the same as lane 2 after incubation with TEV protease to remove the decahistidine tag; lane 4, sample after further purification by gel filtration. (b-e) Analytical gel filtration profiles of ChbC in (b) n-dodecyl-β-d-maltoside, (c) n-decyl-β-d-maltoside, (d) n-nonyl-β-d-maltoside, and (e) n-octyl-β-d-maltoside. Retention volumes of the major UV-absorbance peaks are labeled. WWW.NATURE.COM/NATURE 4

Supplementary Figure 3: Phasing and structure solution of ChbC. The final ChbC model is shown superposed with electron density calculated with (a) amplitudes and solvent-flattened experimental phases from the 4.5 Å Ta 6 Br 12 -derivatized dataset, contoured at 1.0 σ, (b) sigmaa-weighted 2F o -F c Fourier coefficients from the 3.3 Å native dataset and phases from a model containing only polyalanine, contoured at 1.0 σ, and (c) sigmaa-weighted 2F o -F c Fourier coefficients from the 3.3 Å dataset and phases from the final model, contoured at 1.5 σ. Panels on the right correspond to enlarged views of the area marked by a black rectangle on the left. WWW.NATURE.COM/NATURE 5

(% $%&!"-. %0& 34!!"#!"'!")!"*!",!"+!"-/ %0#. %0#/!"2!"#1!"& $%# 6 7 56 Supplementary Figure 4: Membrane topology of ChbC. Topology diagram of ChbC with helices denoted as rectangles and ß-sheet as arrows. The diagram is oriented with the extracellular side on top. The helix coloring scheme is consistent with that used in Figure 1c and Supplementary Figure 1. The black lines show the approximate location of the membrane, and the N- and C-termini are marked with letters. WWW.NATURE.COM/NATURE 6

Supplementary Figure 5: Stereo-views of the ChbC dimer. Stereo-views of the ChbC dimer as viewed from (a) the intracellular side, (b) inside the plane of the membrane, and (c) the extracellular side. The two-fold rotational symmetry axis relating the protomers is marked in panel b. WWW.NATURE.COM/NATURE 7

Supplementary Figure 6: Crystal packing in the P4 3 2 1 2 Chbc crystals. ChbC dimers in a section of the crystal lattice are shown with the two protomers colored green and blue, and the ß-hairpins in both protomers colored purple. WWW.NATURE.COM/NATURE 8

Supplementary Figure 7: The ChbC dimer interface. The surfaces of the two protomers of ChbC are shown as opaque blue and transparent green viewed from within the plane of the membrane (left) and from the intracellular side (right): the residues involved in the dimer interface are colored black on the opaque subunit. WWW.NATURE.COM/NATURE 9

"#$! "#$!! "#( %&'! "#( %&$* %&+ %&) %&$* %&'- %&'- %&+ %&'! %&) %&, "#$- "#$- %&, - -((( +"*, %(." )"*$ -((( +"*, %(." )"*$ '((& %"&# '((& %"&# Supplementary Figure 8: The (GlcNAc) 2 binding site. (a) Stereo-view of the C- terminal domain and bound (GlcNAc) 2 molecule viewed from the plane of the membrane. The green mesh corresponds to F o -F c density calculated in the absence of (GlcNAc) 2 and contoured at 2.5 sigma. (b) Stereo-view of the sugar-binding pocket viewed from the intracellular side. A (GlcNAc) 2 molecule is shown modeled in the orientation placing the C6-OH of the non-reducing sugar (red arrow) closest to the cytoplasm, along with residues potentially forming hydrogen bonds or hydrophobic interactions with the sugar. WWW.NATURE.COM/NATURE 10

Supplementary Figure 9: Fit of diacetylchitobiose in the electron density. Stereoview of (GlcNAc) 2 placed in the ChbC sugar-binding site in two orientations: (a) with the non-reducing C6 -OH (red arrow) closer to the cytoplasm (used in the final model), and (b) with the non-reducing C6 -OH buried in the protein interior. The green mesh corresponds to the Fo-Fc difference electron density contoured at 3.0 σ. WWW.NATURE.COM/NATURE 11

Supplementary Figure 10: Speculative model of the ChbC transport mechanism. Possible conformational changes to convert the occluded, sugar-bound state observed in the crystal structure to the inward- and outward-facing open states are proposed. These motions could potentially be either concerted between the two protomers or could occur independently as depicted here. To convert the occluded state (middle) to the outward-facing state (left), an outward rigid body rotation of the region comprising TM8, HP1-2, and TM9-10 could expose the sugar-binding cavity to the periplasmic space. Opening of the intracellular gate to form the inward-open state (right) could be achieved by the straightening of helix TM5 on the neighboring protomer, as triggered by phosphorylation of the (GlcNAc) 2. WWW.NATURE.COM/NATURE 12