Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces

Similar documents
Strong convergence theorems for total quasi-ϕasymptotically

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

Regularization Inertial Proximal Point Algorithm for Convex Feasibility Problems in Banach Spaces

Research Article Hybrid Algorithm of Fixed Point for Weak Relatively Nonexpansive Multivalued Mappings and Applications

A GENERALIZATION OF THE REGULARIZATION PROXIMAL POINT METHOD

Viscosity Approximative Methods for Nonexpansive Nonself-Mappings without Boundary Conditions in Banach Spaces

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

THROUGHOUT this paper, we let C be a nonempty

ITERATIVE ALGORITHMS WITH ERRORS FOR ZEROS OF ACCRETIVE OPERATORS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

ITERATIVE SCHEMES FOR APPROXIMATING SOLUTIONS OF ACCRETIVE OPERATORS IN BANACH SPACES SHOJI KAMIMURA AND WATARU TAKAHASHI. Received December 14, 1999

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

On an iterative algorithm for variational inequalities in. Banach space

Viscosity Iterative Approximating the Common Fixed Points of Non-expansive Semigroups in Banach Spaces

Convergence Rates in Regularization for Nonlinear Ill-Posed Equations Involving m-accretive Mappings in Banach Spaces

On nonexpansive and accretive operators in Banach spaces

A fixed point theorem for Meir-Keeler contractions in ordered metric spaces

SHRINKING PROJECTION METHOD FOR A SEQUENCE OF RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH SPACES

On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces

Viscosity approximation methods for nonexpansive nonself-mappings

Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

Research Article Iterative Approximation of Common Fixed Points of Two Nonself Asymptotically Nonexpansive Mappings

Convergence theorems for mixed type asymptotically nonexpansive mappings in the intermediate sense

Fixed point theorems for a class of maps in normed Boolean vector spaces

Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

Research Article Algorithms for a System of General Variational Inequalities in Banach Spaces

Research Article Strong Convergence of Cesàro Mean Iterations for Nonexpansive Nonself-Mappings in Banach Spaces

Research Article Iterative Approximation of a Common Zero of a Countably Infinite Family of m-accretive Operators in Banach Spaces

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1

Research Article Strong Convergence Theorems for Zeros of Bounded Maximal Monotone Nonlinear Operators

Some inequalities for unitarily invariant norms of matrices

Fixed point theory for nonlinear mappings in Banach spaces and applications

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

Strong Convergence Theorems for Nonself I-Asymptotically Quasi-Nonexpansive Mappings 1

STRONG CONVERGENCE THEOREMS FOR COMMUTATIVE FAMILIES OF LINEAR CONTRACTIVE OPERATORS IN BANACH SPACES

Krasnoselskii type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

A general iterative algorithm for equilibrium problems and strict pseudo-contractions in Hilbert spaces

Strong Convergence Theorem by a Hybrid Extragradient-like Approximation Method for Variational Inequalities and Fixed Point Problems

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

Some unified algorithms for finding minimum norm fixed point of nonexpansive semigroups in Hilbert spaces

Research Article Convergence Theorems for Common Fixed Points of Nonself Asymptotically Quasi-Non-Expansive Mappings

PROXIMAL POINT ALGORITHMS INVOLVING FIXED POINT OF NONSPREADING-TYPE MULTIVALUED MAPPINGS IN HILBERT SPACES

The Split Common Fixed Point Problem for Asymptotically Quasi-Nonexpansive Mappings in the Intermediate Sense

Common fixed points of two generalized asymptotically quasi-nonexpansive mappings

Research Article Strong Convergence of a Projected Gradient Method

Strong convergence to a common fixed point. of nonexpansive mappings semigroups

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

Research Article Convergence Theorems for Infinite Family of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces

New Iterative Algorithm for Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

Some results on Rockafellar-type iterative algorithms for zeros of accretive operators

A Viscosity Method for Solving a General System of Finite Variational Inequalities for Finite Accretive Operators

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Convergence to Common Fixed Point for Two Asymptotically Quasi-nonexpansive Mappings in the Intermediate Sense in Banach Spaces

STRONG CONVERGENCE OF APPROXIMATION FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPING

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

Algorithm for Zeros of Maximal Monotone Mappings in Classical Banach Spaces

Convergence theorems for a finite family. of nonspreading and nonexpansive. multivalued mappings and equilibrium. problems with application

Viscosity approximation method for m-accretive mapping and variational inequality in Banach space

CONVERGENCE OF THE STEEPEST DESCENT METHOD FOR ACCRETIVE OPERATORS

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces

Research Article The Solution by Iteration of a Composed K-Positive Definite Operator Equation in a Banach Space

The viscosity technique for the implicit midpoint rule of nonexpansive mappings in

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE

Graph Convergence for H(, )-co-accretive Mapping with over-relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

Research Article A New Iterative Algorithm for Approximating Common Fixed Points for Asymptotically Nonexpansive Mappings

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

Best proximity point theorems for generalized proximal contractions

Inclusion Relationship of Uncertain Sets

STRONG CONVERGENCE THEOREMS BY A HYBRID STEEPEST DESCENT METHOD FOR COUNTABLE NONEXPANSIVE MAPPINGS IN HILBERT SPACES

A generalized forward-backward method for solving split equality quasi inclusion problems in Banach spaces

On The Convergence Of Modified Noor Iteration For Nearly Lipschitzian Maps In Real Banach Spaces

Iterative common solutions of fixed point and variational inequality problems

On Generalized Set-Valued Variational Inclusions

Research Article Remarks on Asymptotic Centers and Fixed Points

Synchronal Algorithm For a Countable Family of Strict Pseudocontractions in q-uniformly Smooth Banach Spaces

Strong Convergence of Two Iterative Algorithms for a Countable Family of Nonexpansive Mappings in Hilbert Spaces

ON WEAK CONVERGENCE THEOREM FOR NONSELF I-QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES

Common fixed points for some generalized multivalued nonexpansive mappings in uniformly convex metric spaces

CONVERGENCE THEOREMS FOR MULTI-VALUED MAPPINGS. 1. Introduction

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

Research Article Some New Fixed-Point Theorems for a (ψ, φ)-pair Meir-Keeler-Type Set-Valued Contraction Map in Complete Metric Spaces

STRONG CONVERGENCE OF AN IMPLICIT ITERATION PROCESS FOR ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS IN BANACH SPACES

A NEW COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

Available online at J. Nonlinear Sci. Appl., 10 (2017), Research Article

Convergence Theorems for Bregman Strongly Nonexpansive Mappings in Reflexive Banach Spaces

On Total Convexity, Bregman Projections and Stability in Banach Spaces

The Journal of Nonlinear Science and Applications

On the S-Iteration Processes for Multivalued Mappings in Some CAT(κ) Spaces

On the Weak Convergence of the Extragradient Method for Solving Pseudo-Monotone Variational Inequalities

A NEW ITERATIVE METHOD FOR THE SPLIT COMMON FIXED POINT PROBLEM IN HILBERT SPACES. Fenghui Wang

Weak and Strong Convergence Theorems for a Finite Family of Generalized Asymptotically Quasi-Nonexpansive Nonself-Mappings

A double projection method for solving variational inequalities without monotonicity

Transcription:

RESEARCH Open Access Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces Jong Kyu Kim 1* and Truong Minh Tuyen 2 * Correspondence: jongkyuk@kyungnam.ac.kr 1 Department of Mathematics Education, Kyungnam University, Masan, Kyungnam, 631-701, Korea Full list of author information is available at the end of the article Abstract We study the strong convergence of a regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in a uniformly convex and uniformly smooth Banach space. 2010 Mathematics Subject Classification: 47H09; 47J25; 47J30. Keywords: accretive operators, uniformly smooth and uniformly convex, Banach space, sunny nonexpansive retraction, weak sequential continuous, mapping, regularization 1 Introduction Let E be a Banach space with its dual space E*. For the sake of simplicity, the norms of E and E* are denoted by the symbol. We write x, x* instead of x*(x) for x* Î E* and x Î E. Wedenoteas and, the weak convergence and strong convergence, respectively. A Banach space E is reflexive if E = E**. The problem of finding a fixed point of a nonexpansive mapping is equivalent to the problem of finding a zero of the following operator equation: 0 A(x) (1:1) involving the accretive mapping A. One popular method of solving equation 0 Î A(x) is the proximal point algorithm of Rockafellar [1] which is recognized as a powerful and successful algorithm for finding a zero of monotone operators. Starting from any initial guess x 0 Î H, thisproximal point algorithm generates a sequence {x n } given by x n+1 = J A c n (x n + e n ), (1:2) where Jr A =(I + ra) 1, r >0istheresolventofA in a Hilbert space H. Rockafellar [1] proved the weak convergence of the algorithm (1.2) provided that the regularization sequence {c n } remains bounded away from zero, and that the error sequence {e n } satisfies the condition n=0 e n <. However, Güler s example [2] shows that proximal point algorithm (1.2) has only weak convergence in an infinite-dimensional Hilbert space. Recently, several authors proposed modifications of Rockafellar s proximal point algorithm (1.2) for the strong convergence. For example, Solodov and Svaiter [3] and 2011 Kim and Tuyen; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 2 of 10 Kamimura and Takahashi [4] studied a modified proximal point algorithm by an additional projection at each step of iteration. Lehdili and Moudafi [5] obtained the convergence of the sequence {x n } generated by the algorithm: x n+1 = J A n c n (x n ), (1:3) where A n = μ n I + A is viewed as a Tikhonov regularization of A. When A is maximal monotone in a Hilbert space H, Xu [6], Song and Yang [7] used the technique of nonexpansive mappings to get convergence theorems for {x n } defined by the perturbed version of the algorithm (1.3): x n+1 = J A (t n u +(1 t n )x n ). (1:4) The equation (1.4) can be written in the following equivalent form: A(x n+1 ) + x n+1 t n u + (1 t n )x n. (1:5) In this article, we study a regularization proximal point algorithm to solve the problem of finding a common fixed point of a finite family of nonexpansive self-mappings in a uniformly convex and uniformly smooth Banach space E. Moreover, we give some analogue regularization methods for the more general problems, such as: problem of finding a common fixed point of a finite family of nonexpansive mappings T i, i =1,2,..., N, where T i is self-mapping oonself-mapping on a closed convex subset of E. 2 Preliminaries Definition 2.1. A Banach space E is said to be uniformly convex, if for any ε Î (0, 2] the inequalities x 1, y 1, x - y ε imply that there exists a δ = δ(ε) 0 such that x + y 2 The function 1 δ. δ E (ε) =inf{1 2 1 x + y : x = y = 1, x y = ε} (2:1) is called the modulus of convexity of the space E. Thefunctionδ E (ε) defined on the interval [0, 2] is continuous, increasing and δ E (0) = 0. The space E is uniformly convex if and only if δ E (ε) >0, ε Î (0, 2]. The function ρ E (τ) =sup{2 1 ( x + y + x y ) 1: x = 1, y = τ}, (2:2) is called the modulus of smoothness of the space E. Thefunctionr E (τ) definedon the interval [0, + ) is convex, continuous, increasing and r E (0) = 0. Definition 2.2. A Banach space E is said to be uniformly smooth, if ρ E (τ) lim =0. (2:3) τ 0 τ It is well known that every uniformly convex and uniformly smooth Banach space is reflexive. In what follows, we denote h E (τ) = ρ E(τ). (2:4) τ

Page 3 of 10 The function h E (τ)is nondecreasing. In addition, it is not difficult to show that the estimate h E (Kτ) LKh E (τ), K > 1, τ>0, (2:5) is valid, where L is the Figiel s constant [8-10], 1 <L < 1.7. Indeed, we know that the inequality holds ([8]) ρ E (η) η 2 It implies that L ρ E(ξ) ξ 2, η ξ>0. (2:6) ξh E (η) Lηh E (ξ), η ξ>0. (2:7) Taking in (2.7) h = Cτ and ξ = τ, we obtain the inequality: τh E (Cτ) LCτh E (τ), (2:8) which implies that (2.5) holds. Similarly, we have ρ E (Cτ) LC 2 ρ E (τ), C > 1, τ>0. (2:9) Definition 2.3. A mapping j from E onto E* satisfying the condition j(x) = {f E : x, f = x 2 and f = x } (2:10) is called the normalized duality mapping of E. We know that j(x) =2 1 grad x 2. in a smooth Banach space, and the normalized duality mapping J is the identity operator I in a Hilbert space. Definition 2.4. AnoperatorA : D(A) E E is called accretive, if for all x, y Î D (A), there exists j(x - y) Î J (x - y) such that A(x) A(y), j(x y) 0. (2:11) Definition 2.5. AnoperatorA : E E is called m-accretive if it is an accretive operator and the range R(lA + I) =E for all l > 0, where I is the identity of E. If A is an m-accretive operator then it is a demiclosed operator, i.e., if the sequence {x n } D(A) satisfies x n x and A(x n ) f, then A(x) =f [10,11]. Definition 2.6. A mapping T : C E is said to be nonexpansive on a closed convex subset C of Banach space E if Tx Ty x y, x, y C. (2:12) If T : C E is a nonexpansive then I - T is an accretive operator. In this case, if the subset C coincides E then I - T is an m-accretive operator. Definition 2.7. LetG be a nonempty closed convex subset of E. A mapping Q G : E G is said to be (i) a retraction onto G if Q 2 G = Q G;

Page 4 of 10 (ii) a nonexpansive retraction if it also satisfies the inequality: Q G x Q G y x y, x, y E; (2:13) (iii) a sunny retraction if for all x Î E and for all t Î [0, + ) Q G (Q G x + t(x Q G x)) = Q G x. (2:14) A closed convex subset C of E is said to be a nonexpansive retract of E, ifthere exists a nonexpansive retraction from E onto C, and it is said to be a sunny nonexpansive retract of E, if there exists a sunny nonexpansive retraction from E onto C. Proposition 2.8. [9]Let G be a nonempty closed convex subset of E. A mapping Q G : E G is a sunny nonexpansive retraction if and only if x Q G x, J(ξ Q G x) 0, x E, ξ G. (2:15) Reich [12] showed that if E is uniformly smooth and D is the fixed point set of a nonexpansive mapping from C into itself, then there is a sunny nonexpansive retraction from C onto D, and it can be constructed as follows. Lemma 2.9. [12]Let E be a uniformly smooth Banach space, and let T : C Cbea nonexpansive mapping with a fixed point. For each u Î C and every t Î (0, 1), the unique fixed point x t Î C of the contraction C x tu +(1-t)Tx converges strongly as t 0 toafixedpointoft. Define Q : C Fix(T) by Qu = lim t 0 x t. Then, Qisa unique sunny nonexpansive retraction from C onto Fix(T), i.e., Q satisfies the property: u Qu, j(z Qu) 0, u C, z Fix(T). (2:16) Definition 2.10. Let C 1 and C 2 be convex subsets of E. The quantity β(c 1, C 2 )=sup inf u v (= sup d(u, C 2 )) v C 2 u C 1 u C 1 is said to be a semideviation of the set C 1 from the set C 2. The function H(C 1, C 2 ) =max{β(c 1, C 2 ), β(c 2, C 1 )} is said to be a Hausdorff distance between C 1 and C 2. In this article, we will use the following useful lemma: Lemma 2.11. [7]If E is a uniformly smooth Banach space, C 1 and C 2 are closed convex subsets of E such that the Hausdorff distance H(C 1, C 2 ) δ, andq C1 and Q C2 are the sunny nonexpansive retractions onto the subsets C 1 and C 2, respectively, then Q C1 x Q C2 x 2 16R(2r + d)h E ( 16Lδ R ), (2:17) where L is Figiel s constant, r = x, d = max{d 1, d 2 }, and R =2(2r + d) +δ. Hered i = dist(θ, C i )=d(θ, C i ), i =1,2,and θ is the origin of the space E. 3 Main results We need the following lemmas in the proof of our results: Lemma 3.1. [9]If A = I - T with a nonexpansive mapping T, then for all x, y Î D(T), the domain of T Ax Ay, J(x y) L 1 R 2 δ E ( Ax Ay 4R ), (3:1)

Page 5 of 10 where x R, y R and 1<L < 1.7 is Figiel s constant. Lemma 3.2. [13]Let {a n } be a sequence of nonnegative real numbers satisfying the property: a n+1 (1 λ n )a n + λ n β n + σ n, n 0 where {l n }, {b n } and {s n } satisfy the following conditions. (i) n=0 λ n = ; (ii) lim sup n b n 0or λ nβ n < ; n=0 (iii) s n 0 n 0 and σ n <. n=0 Then, {a n } converges to zero. Lemma 3.3. [9]Let E be a uniformly smooth Banach space. Then, for all x, y Î E, x + y 2 x 2 +2 y, Jx + cρ E ( y ), (3:2) where c = 48 max(l, x, y ). First, we consider the following problem: Finding an element x S = N Fix(T i), (3:3) where Fix(T i ) is the set of fixed points of the nonexpansive mapping T i : E E, i =1, 2,..., N. Theorem 3.4. SupposethatEisauniformlyconvex and uniformly smooth Banach space which has a weakly sequentially continuous normalized duality mapping j from E to E*. Let T i : E E, i = 1, 2,..., N be nonexpansive mappings with S = N Fix(T i). If the sequences { } (0, + ) and {t n } (0, 1) satisfy (i) lim n t n =0; n=0 t n =+ ; (ii) lim n =+, then the sequence {x n } defined by A i (x n+1 )+x n+1 = t n u +(1 t n )x n, u, x 0 E, n 0 (3:4) converges strongly to Q S u, where A i = I - T i, i = 1, 2,..., NandQ S is a sunny nonexpansive retraction from E onto S. Proof. First, equation (3.4) defines a unique sequence {x n } E, because for each n, the element x n+1 is a unique fixed point of the contraction mapping f : E E defined by f (x) = N +1 N 1 T i (x)+ N +1 [t nu +(1 t n )x n ], x E. For every x* Î S, we have N A i (x n+1 ), j(x n+1 x ) 0, n 0. (3:5)

Page 6 of 10 Therefore, t n u + (1 t n )x n x n+1, j(x n+1 x ) 0, n 0. (3:6) It gives the inequality as follows: x n+1 x 2 {t n u x +(1 t n ) x n x } x n+1 x. Consequently, we have x n+1 x t n u x +(1 t n ) x n x max( u x, x n x ). max( u x, x 0 x ), n 0. Therefore, the sequence {x n } is bounded. Every bounded set in a reflexive Banach space is relatively weakly compact. This means that there exists a subsequence {x nk } {x n } which converges to a limit x E. Suppose x n R and x* R with R > 0. By Lemma 3.1, we have δ E ( Ai (x n+1 ) 4R ) L R 2 A i (x n+1 ), j(x n+1 x ) L R 2 N A k (x n+1 ), j(x n+1 x ) k=1 L R 2 t n u +(1 t n )x n x n+1. x n+1 x 0, n, for every i =1,2,...,N. Since the modulus of convexity δ E is continuous and E is a uniformly convex Banach space, A i (x n+1 ) 0, i = 1, 2,..., N. It is clear that x S from the demiclosedness of A i. Hence, noting the inequality (2.15), we obtain lim sup u Q S u, j(x n Q S u) = lim u Q S u, j(x nk Q S u) n k Next, we have x n+1 Q S u 2 = = u Q S u, j( x Q S u) 0. A i (x n+1 )+t n u +(1 t n )x n Q S u, J(x n+1 Q S u) N = A i (x n+1 ), J(x n+1 Q S u) + t n u +(1 t n )x n Q S u, J(x n+1 Q S u) t n (u Q S u)+(1 t n )(x n Q S u), J(x n+1 Q S u) 1 2 { t n(u Q S u)+(1 t n )(x n Q S u) 2 + x n+1 Q S u 2 }. By the Lemma 3.3 and the above inequality, we conclude that x n+1 Q S u 2 t n (u Q S u)+(1 t n )(x n Q S u) 2 (1 t n ) 2 x n Q S u 2 +2t n (1 t n ) u Q S u, j(x n Q S u) + cρ E (t n u Q S u ). (3:7)

Page 7 of 10 Consequently, we have where x n+1 Q S u 2 (1 t n ) x n Q S u 2 + t n β n, (3:8) β n =2(1 t n ) u Q S u, j(x n Q S u) + c ρ E(t n u Q S u ) t n. Since E is a uniformly smooth Banach space, ρ E(t n u Q S u ) t n 0, n. By (3.7), we obtain lim sup n b n 0. Hence, an application of Lemma 3.2 on (3.8) yields the desired result. Now, we will give a method to solve more generally following problem: Finding an element x S = N Fix(T i), (3:9) where T i : C i C i, i =1,2,...,N is a nonexpansive mapping and C i is a convex closed nonexpansive retract of E. Obviously, we have the following lemma: Lemma 3.5. Let E be a Banach space, and let C be a closed convex retract of E. Let T : C C be a nonexpansive mapping such that Fix(T). Then, Fix(T) =Fix(TQ C ), where Q C is a retraction of E onto C. We consider the iterative sequence {x n } defined by B i (x n+1 )+x n+1 = t n u +(1 t n )x n, u, x 0 E, n 0, (3:10) where B i = I T i Q Ci, i = 1, 2,..., N and Q Ci is a nonexpansive retraction from E onto C i, i = 1, 2,..., N. Theorem 3.6. SupposethatEisauniformlyconvex and uniformly smooth Banach space which has a weakly sequentially continuous normalized duality mapping j from E into E*. Let C i be a convex closed nonexpansive retract of E and let T i : C i C i, i =1, 2,..., N be a nonexpansive mapping such that S = N Fix(T i). If the sequences { } (0, + ) and {t n } (0, 1) satisfy (i) lim n t n =0; n=0 t n =+ ; (ii) lim n =+, then the sequence {x n } generated by (3.10) converges strongly to Q S u, where Q S is a sunny nonexpansive retraction from E onto S. Proof. BytheLemma3.5,wehaveS = N Fix(T iq Ci ) and applying Theorem 3.4, we obtain the proof of this Theorem. Next, we study the stability of the regularization algorithm (3.10) in the case that each C i is a closed convex sunny nonexpansive retract of E with respect to perturbations of operators T i and constraints C i, i = 1, 2,..., N satisfying following conditions: (P1) Instead of C i, there is a sequence of closed convex sunny nonexpansive retracts C n i E, n = 1, 2, 3,... such that H(C n i, C i) δ n, i =1,2,..., N,

Page 8 of 10 where {δ n } is a sequence of positive numbers. (P2) For each set C n i, there is a nonexpansive self-mapping Tn i : C n i C n i, i = 1, 2,..., N satisfying the conditions: if for all t > 0, there exists the increasing positive functions g(t) and ξ(t) such that g(0) 0, ξ(0) = 0 and x Î C i, y C m i, x - y δ, then T i x T m i y g(max{ x, y })ξ(δ). (3:11) We establish the convergence and stability of the regularization method (3.10) in the form: B n i (z n+1)+z n+1 = t n u +(1 t n )z n, u, z 0 E, n 0, (3:12) where B n i = I Ti nq C n, i = 1, 2,..., N and Q i C n is a sunny nonexpansive retraction from i E onto C n i, i = 1, 2,..., N. Theorem 3.7. SupposethatEisauniformlyconvex and uniformly smooth Banach space which has a weakly sequentially continuous normalized duality mapping j from E into E*. Let C i be a convex closed sunny nonexpansive retract of E and let T i : C i C i, i =1,2,...,Nbe nonexpansive mappings such that S = N Fix(T i). If the conditions (P1) and (P2) are fulfilled, and the sequences { }, {δ n } and {t n } satisfy (i) lim n t n =0; n=0 t n =+ ; (ii) lim n =+ ; (iii) n=0 ξ(a h E (δ n )) < + for each a >0, then the sequence {z n } generated by (3.12) converges strongly to Q S u, where Q S is a sunny nonexpansive retraction from E onto S. Proof. For each n, N Bn is an m-accretive operator on E, so the equation (3.12) i defines a unique element z n+1 Î E. From the equations (3.10) and (3.12), we have N B n i (z n+1) B n i (x n+1), j(z n+1 x n+1 ) N + B n i (x n+1) B i (x n+1 ), j(z n+1 x n+1 ) + z n+1 x n+1 2 = (1 t n ) z n x n, j(z n+1 x n+1 ). By the accretivity of N Bn i and the equation (3.13), we deduce (3:13) z n+1 x n+1 (1 t n ) z n x n + B n i (x n+1) B i (x n+1 ). (3:14) For each i Î {1, 2,..., N}, B n i (x n+1) B i (x n+1 ) = Ti n Q C nx i n+1 T i Q Ci x n+1. (3:15) Since {x n } is bounded and H(C i, C n i ) δ n,thereexistconstantsk 1,i >0andK 2,i >1 such that Q C n i x n+1 Q Ci x n+1 K 1,i he (K 2,i δ n ) K 1,i K2,i L h E (δ n ). (3:16)

Page 9 of 10 By the condition (P2), T n i Q C n i x n+1 T i Q Ci x n+1 g(m i )ξ(k 1,i K2,i L h E (δ n )), (3:17) where M i =max{sup Q C n i x n+1,sup Q Ci x n+1 } < +. From (3.14), (3.15) and (3.17), we obtain z n+1 x n+1 (1 t n ) z n x n +Ng(M) ξ(γ 1,2 he (δ n )), (3:18) where M = max{m 1, M 2,..., M N }<+ and γ 1,2 = max {K 1,i K2,i L}.,2,...,N By the above assumption and Lemma 3.2, we conclude that z n - x n 0. In addition, by Theorem 3.6, z n Q S u z n x n + x n Q S u 0, as n, (3:19) which implies that {z n } converges strongly to Q S u. Finally, in this article we give a method to solve the following problem: Finding an element x S = N Fix(T i), (3:20) where T i : C i E, i = 1, 2,..., N is nonexpansive nonself-mapping and C i is a closed convex sunny nonexpansive retract of E. Lemma 3.8. [14]LetCbeaclosedconvexsubsetofastrictlyconvexBanachspaceE and let T be a nonexpansive mapping from C into E. Suppose that C is a sunny nonexpansive retract of E. If Fix(T), then Fix(T) =Fix(Q C T), where Q C is a sunny nonexpansive retraction from E onto C. We have the following result: Theorem 3.9. SupposethatEisauniformlyconvex and uniformly smooth Banach space which has a weakly sequentially continuous normalized duality mapping j from E into E*. Let C i be a convex closed sunny nonexpansive retract of E and let T i : C i E, i =1,2,...,N be nonexpansive mappings such that S = N Fix(T i). If the sequences { } (0, + ) and {t n } (0, 1) satisfy (i) lim n t n =0; n=0 t n =+ ; (ii) lim n =+, then the sequence {u n } defined by f i (u n+1 )+u n+1 = t n u +(1 t n )u n, u, u 0 E, n 0, (3:21) converges strongly to Q S u, where Q S is a sunny nonexpansive retraction from E onto S and f i = I Q Ci T i Q Ci, i = 1, 2,..., N. Proof. By the Lemma 3.5 and Lemma 3.8, S = N Fix(T i)= N Fix(f i). Applying Theorem 3.4, we obtain the proof of this Theorem. Acknowledgements The authors thank the referees for their valuable comments and suggestions. This work was supported by the Kyungnam University Research Fund, 2010.

Page 10 of 10 Author details 1 Department of Mathematics Education, Kyungnam University, Masan, Kyungnam, 631-701, Korea 2 College of Sciences, Thainguyen University, Thainguyen, Vietnam Authors contributions JKK conceived the study and participated in its design and coordination. JKK suggested many good ideas that are useful for achievement this paper and made the revision. TMT and JKK prepared the manuscript initially and performed all the steps of proof in this research. All authors read and approved the final manuscript. Competing interests The authors declare that they have no competing interests. Received: 22 November 2010 Accepted: 16 September 2011 Published: 16 September 2011 References 1. Rockaffelar, RT: Monotone operators and proximal point algorithm. In J Control Optim, vol. 14, pp. 887 897.SIAM (1976) 2. Güler, O: On the convergence of the proximal point algorithm for convex minimization. In J Control Optim, vol. 29, pp. 403 419.SIAM (1991). doi:10.1137/0329022 3. Solodov, MV, Svaiter, BF: Forcing strong convergence of proximal point iteration in Hilert space. Math Program Ser A. 87, 189 202 (2000) 4. Kamimura, S, Takahashi, W: Strong convergence of a proximal-type algorithm in Banach spaces. In J Control Optim, vol. 13, pp. 938 945.SIAM (2002) 5. Lehdili, N, Moudafi, A: Combining the proximal algorithm and Tikhonov regularization. Optimization. 37, 239 252 (1996). doi:10.1080/02331939608844217 6. Xu, H-K: A regularization method for the proximal point algorithm. J Glob Optim. 36, 115 125 (2006). doi:10.1007/ s10898-006-9002-7 7. Song, Y, Yang, C: A note on a paper: a regularization method for the proximal point algorithm. J Glob Optim. 43, 171 174 (2009). doi:10.1007/s10898-008-9279-9 8. Figiel, T: On the moduli of convexity and smoothness. Stud Math. 56, 121 155 (1976) 9. Alber, Y: On the stability of iterative approximations to fixed points of nonexpansive mappings. J Math Anal Appl. 328, 958 971 (2007). doi:10.1016/j.jmaa.2006.05.063 10. Alber, Y, Ryazantseva, I: Nonlinear Ill-Posed Problems of Monotone Type. Dordrecht: Springer (2006) 11. Li, G, Kim, JK: Demiclosed principle and asymptotic behavior foonexpansive mappings in metric spaces. Appl Math Lett. 14, 645 649 (2001). doi:10.1016/s0893-9659(00)00207-x 12. Reich, S: Strong convergence theorems for resolvents of accretive operators in Banach space. J Math Anal Appl. 75, 287 292 (1980). doi:10.1016/0022-247x(80)90323-6 13. Xu, H-K: Strong convergence of an iterative method foonexpansive and accretive operators. J Math Anal Appl. 314, 631 643 (2006). doi:10.1016/j.jmaa.2005.04.082 14. Matsushita, S, Takahashi, W: Strong convergence theorem foonexpansive nonself-mappings without boundary conditions. Nonlinear Anal TMA. 68, 412 419 (2008). doi:10.1016/j.na.2006.11.007 doi:10.1186/1687-1812-2011-52 Cite this article as: Kim and Tuyen: Regularization proximal point algorithm for finding a common fixed point of a finite family of nonexpansive mappings in Banach spaces. Fixed Point Theory and Applications 2011 2011:52. Submit your manuscript to a journal and benefit from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the field 7 Retaining the copyright to your article Submit youext manuscript at 7 springeropen.com