ATtiny bit AVR Microcontroller with 16K Bytes In-System Programmable Flash DATASHEET APPENDIX B. Appendix B ATtiny1634 Specification at 125 C

Similar documents
8-bit Microcontroller with 2/4/8K Bytes In-System Programmable Flash. ATtiny25 ATtiny25V. Appendix B. Appendix B ATtiny25/V Specification at +125 C

Atmel ATtiny87/ATtiny167

ATtiny87/ATtiny167. Appendix A - ATtiny87/ATtiny167 Automotive Specification at 150 C DATASHEET. Description

ATmega16M1/32M1/32C1/64M1/64C1

ATmega88/168 Automotive

Interval and Wipe/Wash Wiper Control IC with Delay U641B

Replacing ATA5567/T5557/ TK5551 with ATA5577. Application Note. Replacing ATA5567/T5557/TK5551 with ATA5577

3.3 V 256 K 16 CMOS SRAM

5.0 V 256 K 16 CMOS SRAM

5 V 64K X 16 CMOS SRAM

3.3 V 64K X 16 CMOS SRAM

SY10/100EL11V. General Description. Precision Edge. Features. Pin Names. 5V/3.3V 1:2 Differential Fanout Buffer. Revision 10.0

Space Products. Technical Note. Package Thermal Characteristics in a Space Environment. 1. Introduction

STM1831. Voltage detector with sense input and external delay capacitor. Features. Applications

April 2004 AS7C3256A

5-V Low Drop Voltage Regulator TLE 4290

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648

Order codes Part numbers DPAK (tape and reel) PPAK (tape and reel)

Interval and Wipe/Wash Wiper Control IC with Delay U641B

Three-wire Serial EEPROM AT93C46D

LOW POWER SCHOTTKY. ESD > 3500 Volts. GUARANTEED OPERATING RANGES ORDERING INFORMATION V CC 8 7 GND

Low-voltage and Standard-voltage Operation. User-selectable Internal Organization. 1K: 64 x 16

LD29300xx. 3 A, very low drop voltage regulators. Features. Description

TC7WB66CFK,TC7WB66CL8X TC7WB67CFK,TC7WB67CL8X

5-V Low Drop Fixed Voltage Regulator TLE 4275

NLSV2T Bit Dual-Supply Inverting Level Translator

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION PLASTIC N SUFFIX CASE 648

74AVC16374-Q General description. 2. Features and benefits. 16-bit edge triggered D-type flip-flop; 3.6 V tolerant; 3-state

Low Drop Voltage Regulator TLE 4295

Energy Storage Double Layer Capacitors

AN922 Application note

LOW POWER SCHOTTKY. MARKING DIAGRAMS GUARANTEED OPERATING RANGES ORDERING INFORMATION. SN74LS37xN AWLYYWW PDIP 20 N SUFFIX CASE 738

TC74VCX14FT, TC74VCX14FK

8-bit binary counter with output register; 3-state

with Manual Reset and Watchdog Timer

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

SN74LS157MEL LOW POWER SCHOTTKY

CAT64LC40. 4 kb SPI Serial EEPROM

TC74HC155AP, TC74HC155AF

SN74LS132MEL. Quad 2 Input Schmitt Trigger NAND Gate LOW POWER SCHOTTKY

54AC174/54ACT174 Hex D Flip-Flop with Master Reset

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

74LVQ174 Low Voltage Hex D-Type Flip-Flop with Master Reset

HCMOS 7x5mm SMD Oscillator O7HS (former F4500, F4400, F4100 Series) DATASHEET

74AC00, 74ACT00 Quad 2-Input NAND Gate

Low Drop Voltage Regulator TLE

4-Line BUS-Port ESD-Protection

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

IX4340NE. Automotive Grade 5-Ampere, Dual Low-Side MOSFET Driver INTEGRATED CIRCUITS DIVISION. Features. Description. Applications

Small Signal Fast Switching Diode

DM74LS138 DM74LS139 Decoder/Demultiplexer

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22. Pin 1 Pin 3 Pin 5 Pin 4 n.c.

DC Motor Driver for Servo Driver Applications

Low Drop Voltage Regulator TLE 4296

The 74LV08 provides a quad 2-input AND function.

Hex inverting Schmitt trigger with 5 V tolerant input

Low Pressure Sensor Amplified Analog Output SM6295-BCM-S

Dual Ultra-Low-Voltage SOT23 µp Supervisors with Manual Reset and Watchdog Timer

Description. Part numbers. AB version C version Output voltage LD2980ABM30TR LD2980ABM33TR LD2980CM33TR 3.3 V LD2980ABM50TR LD2980CM50TR 5.

5-V Low Drop Fixed Voltage Regulator TLE

CD74HC165, CD74HCT165

TLE42344G. Data Sheet. Automotive Power. Low Dropout Linear Voltage Regulator. Rev. 1.0,

MM54HC194 MM74HC194 4-Bit Bidirectional Universal Shift Register

HD74HC4511. BCD-to-Seven Segment Latch/Decoder/Driver. Description. Features

T810H. High temperature 8 A sensitive TRIACs. Features. Applications. Description. Medium current TRIAC

Small, Gauge Pressure Sensor

Conductive Polymer Aluminum Capacitors SMD (Chip), Low Impedance

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

LD A high PSRR ultra low drop linear regulator with reverse current protection. Datasheet. Features. Applications.

74HC2G16; 74HCT2G16. The 74HC2G16; 74HCT2G16 is a high-speed Si-gate CMOS device. The 74HC2G16; 74HCT2G16 provides two buffers.

onlinecomponents.com

V N (8) V N (7) V N (6) GND (5)


SPECIFICATIONS (T J = 25 C, unless otherwise noted)

74HC132-Q100; 74HCT132-Q100

Optocoupler, Photodarlington Output, High Gain, With Base Connection

Small Signal Fast Switching Diode

SN54HC682, SN74HC682 8-BIT MAGNITUDE COMPARATORS

7-stage binary ripple counter

MM54HC175 MM74HC175 Quad D-Type Flip-Flop With Clear

93L34 8-Bit Addressable Latch

Small Signal Fast Switching Diode

HD74AC166/HD74ACT166

Powered-off Protection, 6, 1.8 V to 5.5 V, SPDT Analog Switch (2:1 Multiplexer)

LOW POWER SCHOTTKY. GUARANTEED OPERATING RANGES ORDERING INFORMATION

μp Supervisory Circuits

The 74AXP1G04 is a single inverting buffer.

Aluminum Capacitors SMD (Chip) Long Life Vertical

Optocoupler, Phototransistor Output, LSOP-4, 110 C Rated, Long Mini-Flat Package

74HC30; 74HCT General description. 2. Features and benefits. 3. Ordering information. 8-input NAND gate

Small Absolute Pressure Sensor

74LVC823A-Q General description. 2. Features and benefits

5-V Low Drop Fixed Voltage Regulator TLE

74ACT825 8-Bit D-Type Flip-Flop

High Current Density Surface-Mount Trench MOS Barrier Schottky Rectifier

SN54/74LS145 1-OF-10 DECODER/DRIVER OPEN-COLLECTOR 1-OF-10 DECODER/ DRIVER OPEN-COLLECTOR FAST AND LS TTL DATA 5-240

54173 DM54173 DM74173 TRI-STATE Quad D Registers

Dual Low Dropout Voltage Regulator

Transcription:

ATtiny634 8-bit AVR Microcontroller with 6K Bytes In-System Programmable Flash Appendix B ATtiny634 Specification at 5 C DATASHEET APPENDIX B This document contains information specific to devices operating at temperatures up to 5 C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com.

. Memories The EEPROM has an endurance of at least 5, write/erase cycles. EEPROM may not be programmed at supply voltages below V.

. Lock Bits, Fuse Bits and Device Signature Fuse bits may not be programmed at supply voltages below V. 3

3. Electrical Characteristics 3. Absolute Maximum Ratings* Storage Temperature............. -65 C to +5 C Voltage on any Pin except RESET with respect to Ground.......... -.5V to V CC +.5V Voltage on RESET with respect to Ground-.5V to +3.V Operating Temperature........... -55 C to +5 C *NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage................ 6.V DC Current per I/O Pin.................. 4. ma DC Current V CC and GND Pins........... ma 3. DC Characteristics Table 3-. DC Characteristics. T A = to +5 C Symbol Parameter Condition Min Typ () Max Units V IL V IH Input Low Voltage V CC =.8 -.4V -.5.V CC () V V CC =.4-5.5V -.5.3V CC () V Input Low Voltage, RESET Pin as Reset (4) V CC =.8-5.5V -.5.V CC () Input High-voltage Except RESET pin V CC =.8 -.4V.7V CC (3) V CC +.5 V V CC =.4-5.5V.6V CC (3) V CC +.5 V Input High-voltage RESET pin as Reset (4) V CC =.8-5.5V.9V CC (3) V CC +.5 V V OL Output Low Voltage (5) Except RESET pin (7) Standard I/O: I OL = ma, V CC = 5V High-sink I/O: I OL = ma, V CC = 5V Standard I/O: I OL = 5 ma, V CC = 3V High-sink I/O: I OL = ma, V CC = 3V.6 V.5 V V OH Output High-voltage (6) Except RESET pin (7) I OH = - ma, V CC = 5V 4.3 V I OH = -5 ma, V CC = 3V.5 V I LIL I LIH Input Leakage Current I/O Pin Input Leakage Current I/O Pin V CC = 5.5V, pin low (absolute value) <.5 (8) µa V CC = 5.5V, pin high (absolute value) <.5 (8) µa 4

Symbol Parameter Condition Min Typ () Max Units R PU Pull-up Resistor, Reset Pin V CC = 5.5V, input low 3 6 k Pull-up Resistor, I/O Pin V CC = 5.5V, input low 5 k I CC Supply Current, Active Mode (9) Supply Current, Idle Mode (9) f = MHz, V CC = V.3.4 ma f = 4MHz, V CC = 3V.3.7 ma f = 8MHz, V CC = 5V 4.3 6 ma f = MHz, V CC = V.4. ma f = 4MHz, V CC = 3V.6.4 ma f = 8MHz, V CC = 5V..7 ma Supply Current, WDT enabled, V CC = 3V.7 µa Power-Down Mode () WDT disabled, V CC = 3V. 8 µa Notes:. Typical values at +5 C.. Max means the highest value where the pin is guaranteed to be read as low. 3. Min means the lowest value where the pin is guaranteed to be read as high. 4. Not tested in production. 5. Although each I/O port can sink more than the test conditions ( ma at V CC = 5V, 5 ma at V CC = 3V) under steady state conditions (non-transient), the sum of all I OL (for all ports) should not exceed ma. If I OL exceeds the test conditions, V OL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 6. Although each I/O port can source more than the test conditions ( ma at V CC = 5V, 5 ma at V CC = 3V) under steady state conditions (non-transient), the sum of all I OH (for all ports) should not exceed ma. If I OH exceeds the test condition, V OH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 7. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. See Output Driver Strength on page. 8. These are test limits, which account for leakage currents of the test environment. Actual device leakage currents are lower. 9. Values are with external clock using methods described in Minimizing Power Consumption on page 39. Power Reduction is enabled (PRR = xff) and there is no I/O drive..bod Disabled. 5

3.3 Speed The maximum operating frequency of the device is dependent on supply voltage, V CC. The relationship between supply voltage and maximum operating frequency is piecewise linear, as shown in Figure 3-. Figure 3-. Maximum Frequency vs. V CC 8 MHz 6 MHz MHz.8V.7V 4.5V 5.5V 3.4 Clock Table 3-. Accuracy of Calibrated 8MHz Oscillator Calibration Method Target Frequency V CC Temperature Accuracy Factory Calibration 8.MHz.7 4V 5 C to + C ±% () User Calibration Within: 7.3 8.MHz Within:.8 5.5V Within: C to + C ±% () Notes:. See device ordering codes on page 37 for alternatives.. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). Table 3-3. Accuracy of Calibrated 3kHz Oscillator Calibration Method Target Frequency V CC Temperature Accuracy Factory Calibration 3kHz.8 5.5V C to + C ±35% 6

Table 3-4. External Clock Drive V CC =.8-5.5V V CC =.7-5.5V V CC = 4.5-5.5V Symbol Parameter Min. Max. Min. Max. Min. Max. Units /t CLCL Clock Frequency 8 MHz t CLCL Clock Period 5 5 ns t CHCX High Time 4 ns t CLCX Low Time 4 ns t CLCH Rise Time..6.5 s t CHCL Fall Time..6.5 s t CLCL Change in period from one clock cycle to next % 3.5 System and Reset Table 3-5. Enhanced Power-On Reset Symbol Parameter Min () Typ () Max () Units V POR Release threshold of power-on reset ()..4.7 V V POA Activation threshold of power-on reset (3).6.3.7 V SR ON Power-On Slope Rate. V/ms Note:. Values are guidelines only.. Threshold where device is released from reset when voltage is rising. 3. The Power-on Reset will not work unless the supply voltage has been below V POA. 7

4. Typical Characteristics 4. Current Consumption in Active Mode Figure 4-. Active Supply Current vs. V CC (Internal Oscillator, 8 MHz) 6 5 5 5 4 I CC [ma] 3,5,5 3 3,5 4 4,5 5 5,5 Figure 4-. Active Supply Current vs. V CC (Internal Oscillator, MHz),4, 5 5,8 I CC [ma],6,4,,5,5 3 3,5 4 4,5 5 5,5 8

Figure 4-3. Active Supply Current vs. V CC (Internal Oscillator, 3kHz),45,4,35 5 5,3 I CC [ma],5,,5,,5,5,5 3 3,5 4 4,5 5 5,5 4. Current Consumption in Idle Mode Figure 4-4. Idle Supply Current vs. V CC (Internal Oscillator, 8 MHz),4, 5 5,8 I CC [ma],6,4,,5,5 3 3,5 4 4,5 5 5,5 9

Figure 4-5. Idle Supply Current vs. V CC (Internal Oscillator, MHz),5,4 5 5,3 I CC [ma],,,5,5 3 3,5 4 4,5 5 5,5 Figure 4-6. Idle Supply Current vs. V CC (Internal Oscillator, 3kHz),5,4 5 5,3 I CC,,,5,5 3 3,5 4 4,5 5 5,5 V CC

4.3 Current Consumption in Power-down Mode Figure 4-7. Power-down Supply Current vs. V CC (Watchdog Timer Disabled) 4,5 4 5 3,5 3 I CC [ua],5,5,5,5,5 3 3,5 4 4,5 5 5,5 5 Figure 4-8. Power-down Supply Current vs. V CC (Watchdog Timer Enabled) 5 8 I CC [ua] 6 5 4,5,5 3 3,5 4 4,5 5 5,5

4.4 Current Consumption in Reset Figure 4-9. Reset Current vs. V CC (No Clock, excluding Reset Pull-Up Current) 5 5,5 I CC [ma],5,5,5 3 3,5 4 4,5 5 5,5 4.5 Current Consumption of Peripheral Units Figure 4-. Watchdog Timer Current vs. V CC,7 5,6,5 5,4 IccWDT,3,,,5,5 3 3,5 4 4,5 5 5,5 V CC

Figure 4-. Brownout Detector Current vs. V CC 5 5 5 5 I CC [ua] 5,5,5 3 3,5 4 4,5 5 5,5 Figure 4-. Sampled Brownout Detector Current vs. V CC 8 7 6 5 5 I CC [ua] 4 3 5,5,5 3 3,5 4 4,5 5 5,5 3

Figure 4-3. AREF External Reference Pin Current (V CC = 5V) 6 4 5 5 AREF pin current [ua] 8 6 4,5,5 3 3,5 4 4,5 5 5,5 AREF [V] 4.6 Pull-up Resistors Figure 4-4. I/O pin Pull-up Resistor Current vs. Input Voltage (V CC =.8V) 5 4 5 5 3 I OP [ua],,4,6,8,,4,6,8 V OP [V] 4

Figure 4-5. I/O Pin Pull-up Resistor Current vs. input Voltage (V CC =.7V) 8 6 5 5 I OP [ua] 4,5,5,5 3 V OP [V] Figure 4-6. I/O pin Pull-up Resistor Current vs. Input Voltage (V CC = 5V) 4 5 5 8 I OP [ua] 6 4 3 4 5 6 V OP [V] 5

Figure 4-7. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V CC =.8V) 4 3 5 5 I RESET [ua],,4,6,8,,4,6,8 V RESET [V] Figure 4-8. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V CC =.7V) 6 5 5 5 4 I RESET [ua] 3,5,5,5 3 V RESET [V] 6

Figure 4-9. Reset Pull-up Resistor Current vs. Reset Pin Voltage (V CC = 5V) 5 5 8 I RESET [ua] 6 4 3 4 5 6 V RESET [V] 4.7 Input Thresholds Figure 4-. V IH : Input Threshold Voltage vs. V CC (I/O Pin, Read as ) 3,5 5 5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 7

Figure 4-. V IL : Input Threshold Voltage vs. V CC (I/O Pin, Read as ) 3,5 5 5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 Figure 4-. V IH -V IL : Input Hysteresis vs. V CC (I/O Pin),6,5 5 5 Hysteris VIL VIH IO,4,3,,,5,5 3 3,5 4 4,5 5 5,5 V CC 8

Figure 4-3. V IH : Input Threshold Voltage vs. V CC (Reset Pin as I/O, Read as ) 3 5 5,5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 Figure 4-4. V IL : Input Threshold Voltage vs. V CC (Reset Pin as I/O, Read as ) 3,5 5 5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 9

Figure 4-5. V IH -V IL : Input Hysteresis vs. V CC (Reset Pin as I/O),9,8 Hysteresis Reset IO VIL VIH,7,6,5,4,3 5 5,,,5,5 3 3,5 4 4,5 5 5,5 V CC 4.8 Output Driver Strength Figure 4-6. V OH : Output Voltage vs. Source Current (I/O Pin, V CC =.8V),5 V OH [V],5 5 5 3 4 5 I OH [ma]

Figure 4-7. V OH : Output Voltage vs. Source Current (I/O Pin, V CC = 3V) 3,5 5 5 V OH [V],5,5 4 6 8 I OH [ma] Figure 4-8. V OH : Output Voltage vs. Source Current (I/O Pin, V CC = 5V) 5 4 5 5 3 V OH [V] 5 5 I OH [ma]

Figure 4-9. V OL : Output Voltage vs. Sink Current (I/O Pin, V CC =.8V),8 5,6 V OL [V] 5,4, 3 4 5 I OL [ma] Figure 4-3. V OL : Output Voltage vs. Sink Current (I/O Pin, V CC = 3V),8 5,6 V OL [V] 5,4, 4 6 8 I OL [ma]

Figure 4-3. V OL : Output Voltage vs. Sink Current (I/O Pin, V CC = 5V) 5,8 5,6 V OL [V],4, 5 5 I OL [ma] Figure 4-3. V OH : Output Voltage vs. Source Current (Reset Pin as I/O, V CC =.8V,5 V OH [V],5 5 5,,4,6,8 I OH [ma] 3

Figure 4-33. V OH : Output Voltage vs. Source Current (Reset Pin as I/O, V CC = 3V 3,5 V OH [V],5 5 5,5,,4,6,8 I OH [ma] Figure 4-34. V OH : Output Voltage vs. Source Current (Reset Pin as I/O, V CC = 5V 5 4 V OH [V] 3 5 5,,4,6,8 I OH [ma] 4

Figure 4-35. V OL : Output Voltage vs. Sink Current (Reset Pin as I/O, V CC =.8V) 5,8 5,6 V OL [V],4,,,4,6,8 I OL [ma] Figure 4-36. V OL : Output Voltage vs. Sink Current (Reset Pin as I/O, V CC = 3V),8 5,6 V OL [V] 5,4,,5,5 I OL [ma] 5

Figure 4-37. V OL : Output Voltage vs. Sink Current (Reset Pin as I/O, V CC = 5V) 5,8,6 5 V OL [V],4,,5,5,5 3 3,5 4 I OL [ma] 4.9 BOD Figure 4-38. BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,34 4,3 V CC RISING 4,3 4,8 Threshold [V] 4,6 4,4 V CC FALLING 4, 4, 4,8 4,6-4 6 8 4 Temperature [C] 6

Figure 4-39. BOD Threshold vs Temperature (BODLEVEL =.7V),76,74 V CC RISING,7 Threshold [V],7,68 V CC FALLING,66,64,6-4 6 8 4 Temperature [C] Figure 4. BOD Threshold vs Temperature (BODLEVEL =.8V),8 V CC RISING,8,8 V CC FALLING Threshold [V],79,78,77,76,75-4 6 8 4 Temperature [C] 7

Figure 4-4. Sampled BOD Threshold vs Temperature (BODLEVEL = 4.3V) 4,33 4,3 V CC RISING V CC FALLING 4,3 4,3 Threshold [V] 4,9 4,8 4,7 4,6 4,5-4 6 8 4 Temperature [C] Figure 4-4. Sampled BOD Threshold vs Temperature (BODLEVEL =.7V),76,75 V CC RISING,74 Threshold [V],73 V CC FALLING,7,7,7-4 6 8 4 Temperature [C] 8

Figure 4-43. Sampled BOD Threshold vs Temperature (BODLEVEL =.8V),8,795,79 Threshold [V],7 V CC RISING,78,775 V CC FALLING,77-4 6 8 4 Temperature [C] 4. Bandgap Voltage Figure 4-44. Bandgap Voltage vs. Supply Voltage,,8,75 5,7 Bandgap [V],65,6 5,55,5,45,4,5,5 3 3,5 4 4,5 5 5,5 Vcc [V] 9

Figure 4-45. Bandgap Voltage vs. Temperature (V CC = 3.3V),7,65,6 Bandgap Voltage [V],55,5,45,4-4 6 8 4 Temperature [C] 4. Reset Figure 4-46. V IH : Input Threshold Voltage vs. V CC (Reset Pin, Read as ) 3 5 5,5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 3

Figure 4-47. V IL : Input Threshold Voltage vs. V CC (Reset Pin, Read as ) 3,5 5 5 Threshold [V],5,5,5,5 3 3,5 4 4,5 5 5,5 Figure 4-48. V IH -V IL : Input Hysteresis vs. V CC (Reset Pin ),7,6,5 Hysteresis [V],4,3, 5 5,,5,5 3 3,5 4 4,5 5 5,5 3

Figure 4-49. Minimum Reset Pulse Width vs. V CC 5 Pulsewidth [ns] 5 5 5 5,5,5 3 3,5 4 4,5 5 5,5 4. Analog Comparator Offset Figure 4-5. Analog Comparator Offset vs. V IN (V CC = 5V) 8 7 6 5 5 5 Offset [mv] 4 3,5,5,5 3 3,5 4 4,5 5 V IN [V] 3

Figure 4-5. Analog Comparator Offset vs. V CC (V IN =.V) 8 7 6 5 Offset [mv] 4 3 5 5,5,5 3 3,5 4 4,5 5 5,5 Figure 4-5. Analog Comparator Hysteresis vs. V IN (V CC = 5.V) 45 4 35 3 5 5 Hysteresis [mv] 5 5 5,5,5,5 3 3,5 4 4,5 5 V IN [V] 33

4.3 Internal Oscillator Speed Figure 4-53. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. V CC 8,4 8,3 Frequency [MHz] 8, 8, 5 5 8 7,9,5,5 3 3,5 4 4,5 5 5,5 Figure 4-54. Calibrated Oscillator Frequency (Nominal = 8MHz) vs. Temperature 8, 8,5 5. V 8, Frequency [MHz] 8,5 8 3. V 7,95 7,9-4 6 8 4 Temperature [ ] 34

Figure 4-55. Calibrated Oscillator Frequency (Nominal = MHz) vs. V CC,5,4,3 5 5, Frequency [MHz],,99,98,97,5,5 3 3,5 4 4,5 5 5,5 Figure 4-56. Calibrated Oscillator Frequency (Nominal = MHz) vs. Temperature 3 5. V Frequency 3. V 99.8 V 98 97-4 6 8 4 Temperature [ ] 35

Figure 4-57. ULP Oscillator Frequency (Nominal = 3kHz) vs. V CC 33 3 3 5 F RC [Hz] 3 9 8 5 7,5,5 3 3,5 4 4,5 5 5,5 Figure 4-58. ULP Oscillator Frequency (Nominal = 3kHz) vs. Temperature 33 3 3 F RC [Hz] 3 9 8 7-4 6 8 4 Temperature [ ] 36

5. Ordering Information 5. ATtiny634 Speed (MHz) () Supply Voltage (V) Temperature Range Package () Accuracy (3) Ordering Code (4).8 5.5 Industrial ( C to +5 C) (5) Notes:. For speed vs. supply voltage, see section 3.3 Speed on page 6.. All packages are Pb-free, halide-free and fully green, and they comply with the European directive for Restriction of Hazardous Substances (RoHS). 3. Denotes accuracy of the internal oscillator. See Table 3- on page 6. 4. Code indicators: F: matte tin R: tape & reel 5. Can also be supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities. M ±% ATtiny634-MF ±% ATtiny634-MFR Package Type M -pad, 4 x 4 x.8 mm Body, Quad Flat No-Lead / Micro Lead Frame Package (QFN/MLF) 37

6. Datasheet Revision History Revision History 833D: Appendix B / Initial revision 38

39

Atmel Corporation 6 Technology Drive San Jose, CA 95 USA Tel: (+) (48) 44-3 Fax: (+) (48) 487-6 www.atmel.com Atmel Asia Limited Unit -5 & 6, 9F BEA Tower, Millennium City 5 48 Kwun Tong Roa Kwun Tong, Kowloon HONG KONG Tel: (+) 45-6 Fax: (+) 7-369 Atmel Munich GmbH Business Campus Parkring 4 D-748 Garching b. Munich GERMANY Tel: (+49) 89-397- Fax: (+49) 89-3946 Atmel Japan G.K. 6F Shin-Osaki Kangyo Bldg -6-4 Osaki, Shinagawa-ku Tokyo 4-3 JAPAN Tel: (+8) (3) 647-3 Fax: (+8) (3) 647-37 3 Atmel Corporation. All rights reserved. / Rev.: Atmel, Atmel logo and combinations thereof, Enabling Unlimited Possibilities, AVR, tinyavr and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.