Dark matter and entropy dilution

Similar documents
Cosmological constraints on the Sessaw Scale

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Sterile Neutrinos as Dark Matter. Manfred Lindner

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Sterile Neutrinos in Cosmology and Astrophysics

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Invisible Sterile Neutrinos

J. C. Vasquez CCTVal & USM

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Production mechanisms for kev sterile neutrino dark matter in the Early Universe

Non-Abelian SU(2) H and Two-Higgs Doublets

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Debasish Borah. (Based on with A. Dasgupta)

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Thermal Dark Matter Below an MeV

Parity restored at TeV scale? Fabrizio Nesti

Dark Matter - Neutrino Connection at the LHC

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Probing the Majorana nature in radiative seesaw models at collider experiments

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

University College London. Frank Deppisch. University College London

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Neutrino Masses and Conformal Electro-Weak Symmetry Breaking

arxiv: v2 [hep-ph] 26 Jan 2015

The Standard Model of particle physics and beyond

Heavy Sterile Neutrinos at CEPC

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Right-handed SneutrinoCosmology and Hadron Collider Signature

Mirror World and Improved Naturalness

Recent progress in leptogenesis

Neutrino Mass Seesaw, Baryogenesis and LHC

Technicolor Dark Matter. Chris Kouvaris Université Libre de Bruxelles

The Yang and Yin of Neutrinos

Neutrino masses, dark matter and baryon asymmetry of the universe

Dark Matter in Particle Physics

Leptogenesis with Composite Neutrinos

Gravitino LSP as Dark Matter in the Constrained MSSM

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

PoS(PLANCK 2015)141. Origin of Neutrino Mass. Goran Senjanović

Axion in Large Extra Dimensions

Feebly Interacting Massive Particles and their signatures

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Cosmology at Colliders: Possible LHC searches for RPV baryogenesis

Search for Heavy Majorana Neutrinos

A Domino Theory of Flavor

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Dark Matter in the minimal Inverse Seesaw mechanism

Sterile Neutrino Candidates for the 3.5 kev Line. Kevork Abazajian University of California, Irvine

TeV Scale Seesaw with Loop Induced

arxiv: v1 [hep-ph] 28 Aug 2015

Dark Matter Decay and Cosmic Rays

The Four Basic Ways of Creating Dark Matter Through a Portal

Electroweak and Higgs Physics

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff

Neutrino masses respecting string constraints

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Testing leptogenesis at the LHC

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Leptogenesis in Higgs triplet model

U(1) Gauge Extensions of the Standard Model

On Minimal Models with Light Sterile Neutrinos

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Astroparticle Physics and the LC

Collider Signatures of the Left-Right Higgs Sector

Gauged U(1) clockwork

University College London. Frank Deppisch. University College London

3.5 kev X-ray line and Supersymmetry

DARK MATTER MEETS THE SUSY FLAVOR PROBLEM

How high could SUSY go?

Revisiting gravitino dark matter in thermal leptogenesis

arxiv: v1 [hep-ph] 8 Nov 2018

The Effect of Cancellation in Neutrinoless Double Beta Decay

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Big Bang Nucleosynthesis

Constraining Neutrino Mass from Neutrinoless Double Beta Decay in TeV Scale Left-Right Model

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Dark matter and IceCube neutrinos

On the detection of kev scale neutrino dark matter in β decay

Lepton Flavor Violation in Left-Right theory

Lepton Number Violation

arxiv:hep-ph/ v1 5 Oct 2005

Cosmological Production of Dark Matter

The Matter-Antimatter Asymmetry and New Interactions

Reminder : scenarios of light new physics

Cosmology Neutrinos Connect to QGP Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Dark matter, Neutrino masses in MSSM after sattelite experiments

The Constrained E 6 SSM

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

LHC Searches for Neutrino Physics in t Channel Heavy Neutrino, Z and W

Transcription:

Dark matter and entropy dilution Miha Nemevšek Goran Senjanović, Yue Zhang 1205.0844 Dark workshop TÜM/IAS, December 2015

Dark Matter stability

Discrete symmetries MSSM & R-parity extended Higgs Inert Higgs doublet Z 2 symmetries talk by Steffen

Discrete symmetries MSSM & R-parity extended Higgs Inert Higgs doublet Z 2 symmetries talk by Steffen Small couplings and or large scales small couplings (Dirac Yukawa) large scales (extended gauge symmetry) i.e. small masses (e.g. axion) talk by Redondo µ / m 5 µ/m 4 W m DM

Neutrino mass vs. Dark Matter new physics needed for neutrino mass talk by Schwetz

Neutrino mass vs. Dark Matter new physics needed for neutrino mass, same for DM?

Neutrino mass vs. Dark Matter small couplings (Dirac Yukawa) S MSM 5 mµ m S S ' µ m S m Dodelson, Widrow 93,... can t do justice to the field m S. 20 kev talk by Drewes

Neutrino mass vs. Dark Matter small couplings (Dirac Yukawa) S MSM 5 mµ m S S ' µ m S m m S. 20 kev Dodelson, Widrow 93,... can t do justice to the field large scales and small masses no direct channels below m N1 ' kev M WR m & 14 TeV N i, only mixing Left-Right Bezrukov, Hettmansperger, Lindner 09 a possible window M WR 2 (4, 7) TeV MN, Senjanović, Zhang 12 DM predicts mass and flavor of N i

Left-Right the minimal model SU(2) L SU(2) R U(1) B L understanding the SM asymmetry......through spontaneous breaking Pati, Salam 74 Mohapatra, Pati 75 Senjanović, Mohapatra 75 W L Q L = L L = ul d L el L Q R = L R = ur d R er R W R

Left-Right the minimal model understanding the SM asymmetry......through spontaneous breaking Pati, Salam 74 Mohapatra, Pati 75 Senjanović, Mohapatra 75 W L Q L = L L = ul d L el L (2, 2, 0) L(3, 1, 2) R(1, 3, 2) Q R = L R = ur d R er R W R seesaw Minkowski 79 Senjanović, Mohapatra 79 rich phenomenology: LNV, LFV at colliders, 0 2

Left-Right 0 2 vs. LHC in ev Senjanović, Mohapatra 82 Tello, MN, Nesti, Senjanović, Vissani 10 mn ee M WR =3.5 TeV m N =.5 TeV lightest m in ev in GeV MNe @GeVD mn 1000 500 100 50 D0: dijets 4 1.64` 3 2 e + jetêem activity L=33.2pb -1 0n2bHHML t N ~1 mm Keung, Senjanović 83 MN, Nesti, Senjanović, Zhang 11 10 5 e + Displaced Vertex t N ~5 m CMS e + Missing Energy 1 1000 1500 2000 2500 3000 M W R @GeVD WR in GeV mass origin in Higgs decays h! N i N i Maiezza, MN, Nesti, 15

Left-Right 0 2 vs. LHC in ev Senjanović, Mohapatra 82 Tello, MN, Nesti, Senjanović, Vissani 10 mn ee M WR =3.5 TeV m N =.5 TeV in GeV MNe @GeVD mn lightest in ev m Dark Matter? 1000 L=33.2pb -1 500 100 50 10 5 D0: dijets 4 1.64` 3 2 e + jetêem activity e + Displaced Vertex 0n2bHHML t N ~1 mm t N ~5 m Keung, Senjanović 83 MN, Nesti, Senjanović, Zhang 11 CMS e + Missing Energy 1 1000 1500 2000 2500 3000 M W R @GeVD WR in GeV mass origin in Higgs decays h! N i N i Maiezza, MN, Nesti, 15

Dark Matter (over)production

Left-Right freeze-out part 1 gauge interactions keep thermal equilibrium suppressed rate compared to SM neutrinos N ' 4 MW ' G 2 F M WR MW M WR 4 T 5 thermal freeze-out MW M WR 4 T 5 ' p GT 2 around the QCD phase transition 1/6 g (T f ) MWR T f ' 400 MeV 70 5 TeV 4/3

Left-Right over-abundance freeze-out relativistic, no Boltzmann suppression T f >m N kev freeze-out relativistic, no Boltzmann suppression Y N n N s ' 135 (3) 4 4 g (T f ) Y N conserved, evolve to present times N1 = Y N1 m N1 s = 3.3 c mn1 kev ' 13 DM 70 g (T f ) many species, not in LRSM m N1 g < 1000 < 0.08 kev astrophysics,...

Dark Matter dilution

Decaying particles in the early universe Scherrer, Turner 85 massive late decaying particle decays heat up radiation, dilutes the rest diluter applied to sterile neutrinos Asaka, Shaposhnikov, Kusenko 06

Decaying particles in the early universe Scherrer, Turner 85 massive late decaying particle decays heat up radiation, dilutes the rest diluter applied to sterile neutrinos Asaka, Shaposhnikov, Kusenko 06 Left-Right candidates Higgs sector heavy & unstable next-to-lightest N 2,3 the only remaining candidates

Diluting with part 1 Scherrer, Turner 85 N 2 sudden decay approximation (works for m ) t apple 2 matter dominance H 2 = 2 2 = 8 3M 2 P 22 MP 2 T < =0.65 Y 2 m 2 g (Y 2 m N2 ) 2 2 g 45 T 3 < 1/3

Diluting with part 1 Scherrer, Turner 85 N 2 sudden decay approximation (works for m ) t apple 2 t 2 matter dominance H 2 = 2 2 = 8 3M 2 P 22 MP 2 T < =0.65 Y 2 m 2 g (Y 2 m N2 ) 2 2 g 45 T 3 < 1/3 radiation dominance H = 2 =1.66 g1/2 T> 2 M P p T > ' 0.78 g 1/4 2M P r 1 sec ' 1.22 MeV 2 needed for BBN

Diluting with part 1 Scherrer, Turner 85 N 2 sudden decay approximation (works for m ) t apple 2 t 2 matter dominance H 2 = 2 2 = 8 3M 2 P 22 MP 2 T < =0.65 Y 2 m 2 g (Y 2 m N2 ) 2 2 g 45 T 3 < 1/3 radiation dominance H = 2 =1.66 g1/2 T> 2 M P p T > ' 0.78 g 1/4 2M P r 1 sec ' 1.22 MeV 2 Dilution factor S = T> T < 3 ' 1.7 T ( 2) 1/4 Y 2 m 2 p 2M P S / m 2 p 2 needed for BBN

Diluting with part 1 N 2 how much dilution? N1 '.228 mn1 kev 1.85 GeV sec m N2 2 g (T f2 ) g (T f1 ) Boltzmann suppressed T f1 ' 400 MeV

Diluting with part 1 N 2 how much dilution? N1 '.228 mn1 kev 1.85 GeV sec m N2 2 g (T f2 ) g (T f1 ) Boltzmann suppressed T f1 ' 400 MeV 1sec lifetime near the m + m` threshold, disfavored 3 250 MeV MWR (N 2! ` ) =sec 5 TeV m N2 4 0.002 3 f(x`,x ) ` = e, µ

Diluting with part 1 N 2 how much dilution? N1 '.228 mn1 kev 1.85 GeV sec m N2 2 g (T f2 ) g (T f1 ) Boltzmann suppressed T f1 ' 400 MeV 1sec lifetime near the m + m` threshold, disfavored 3 250 MeV MWR (N 2! ` ) =sec 5 TeV m N2 4 0.002 3 f(x`,x ) ` = e, µ freeze-out flavor dependent m N1 kev V Re1 ' 0 SN cooling Raffelt, Seckel 88 Barbieri, Mohapatra 89 turn off W R V R 1 ' 1 T f1 >T f2

Mass spectrum of DM in Left-Right mass and flavor fixed DM couples to V R ' 0 0 0 1 1 @ 0 1 0A 1 0 0 m N1 ' kev

Mass spectrum of DM in Left-Right mass and flavor fixed V R ' 0 0 0 1 1 @ 0 1 0A 1 0 0 m N2 ' m + m µ m N3 ' m + m e Diluters couple to e and µ

Dark Matter freeze-out pt. 2

Left-Right freeze-out part II drop in g Y N2 ' g (T f1 ) Y N1 g (T f2 ) 3 4 80 70 N 1 60 g* 50 40 150 MeV 400 MeV 30 20 N 2 0.05 0.10 0.20 0.50 1.00 2.00 T@GeVD

Left-Right freeze-out part II pair N i N i! `+`, uu, dd single N i`! ud, N i u! `+d, N i d! `+u 10-20 W g R N2 W g R N1 n N2 H g HGeV 4 L 10-21 10-22 1.5 2.0 3.0 1 GeVêT g 5.0

Left-Right freeze-out part II DM-diluter separation window 0.020 T QCD = 350 MeV T QCD = 150 MeV Y=nês 0.015 0.010 T QCD = 400 MeV N 2 0.005 Boltzmann suppressed N 1 4 6 8 10 M WR @TeVD universal freeze-out

Left-Right freeze-out part II coupled Boltzmann equations i =1, 2, 3 shz dy N i dz = YNi Y eq 1 N i W R N i! 2 YNi Y eq 1 WR N i N i + N i Z LR N i N i 0.050 0.020 N 3 Y=nês 0.010 N 2 Y N2,3 >Y N1 0.005 N1 M WR =5.5TeV, T QCD =350MeV 0.002 0.2 0.5 1.0 2.0 5.0 10.0 20.0 z=m N2 êt

Left-Right freeze-out part II final yields 0.025 0.020 N 3 T QCD =350MeV T QCD =400MeV T QCD =150MeV YN= n N s 0.015 0.010 Boltzmann suppressed 0.005 N 2 N 1 2 4 6 8 10 M WR HTeVL universal freeze-out

Dark Matter dilution pt. 2

Dilution phase space 100 Non thermal history or DM over abundance MSM WR mass in TeV 50 10 Boltzmann suppressed, decays to N 1 5 e Decays too fast 0.2 0.5 1.0 2.0 5.0 10.0 Dilutor mass in GeV

Dilution phase space 10 8 100 e m Non thermal history or DM over abundance MSM 6 4 2 WR mass in TeV 50 LHC reach 10 5 e Excluded by direct searches & theory Decays too fast Boltzmann suppressed 0.14 0.16 0.18 0.2 0.20 0.22 0.24 0.5 0.26 1.0 2.0 5.0 10.0 Dilutor mass in GeV

Dilution part 1I coupled energy density evolution matter radiation d dt +4H = 2 2 + 3 3 d N1 dt d N2 dt +4H N1 =0 +4H N2 = 2 2 d N3 dt +4H N3 = 3 3

Dilution part 1I freeze-out coupled energy density evolution match z m = 30 T,m ' 15 MeV t m =1/(2H) matter radiation d dt +4H = 2 2 + 3 3 d N1 dt d N2 dt d N3 dt +4H N1 =0 +4H N2 = 2 2 +4H N3 = 3 3 N1 (t m )= 7 4 (t m )= 2 30 g (T,m )T 4,m 2 30 g (T,m )T 4 N 1,m N2 (t m )=m N2 Y N2 (z m ) 2 2 45 g (T,m )T 3,m N3 (t m )=m N3 Y N3 (z m ) 2 2 45 g (T,m )T 3,m

Dilution part 1I radiation decrease slows down 10-7 10-11 r g 10-15 r N1 r DM decouples 10-19 10-23 10-27 M WR =5.5TeV, T QCD =350MeV r N2 +r N3 0.01 0.1 1 10 100 têt N diluters decay

Dilution part 1I N2 + N3 = = 2 30 g (T r )T 4 r T r & 0.7 MeV 10-7 10-11 r g 10-15 r N1 r 10-19 r N2 +r N3 10-23 10-27 M WR =5.5TeV, T QCD =350MeV 0.01 0.1 1 10 100 S = S(t f ) S(t m ) = s(t f ) s(t m ) V (t f ) V (t m ) = têt N 3/4 3/4 (tf ) N1 (t f ) (t m ) N1 (t m )

Left-Right low scale DM windows min W N 1 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 m N1 =0.5 kev Planck 15 t N2,3 >1.5 sec disfavored by BBN 2 5 10 20 50 M WR HTeVL T r / 1/ p N S / p N

Left-Right low scale DM windows min W N 1 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 m N1 =0.4 kev Planck 15 t N2,3 >1.5 sec disfavored by BBN 2 5 10 20 50 M WR HTeVL

Left-Right low scale DM - further constraints dsph m N1. (0.4 0.5) kev diluted Ly- m N1. O(keV) CMB & N eff repopulation N 3! + e! e + e µ µ e N 2! + µ! e + e µ µ µ e e Fuller, Kishimoto, Kusenko 11 X-ray observations M D, LR & v L Merle, Niro 13 0 2 subject to uncertainties M WR & (5 7) TeV MN, Senjanović, Zhang 12 Lopez-Pavon, Huang 13

Critical conclusion RH neutrino kev DM candidate pros dilution possible in the minimal model window at the LHC X-ray limits cons fairly low reheating vs. BBN and CMB light DM mass vs. Ly-

Thank you

X-ray constraints Majorana vs. Dirac in Left-Right MN, Senjanović, Tello 13 seesaw M = MDM T 1 N M D + v L M N v R parity M D = M T D M D = im N r M 1 N M v L v R M N = V T R m N V R γ γ W ξ LR A N1! = l j ν k N 1 ν i N1 l i + ν j N 1! = µ mn1 m µ 5 3 X` 4 LR`N1 f D + LR m` m N1 f LR 2

0 2 constraints m N 3 ee = p 2 MW M WR 4 V 2 Re3 m N3 p 2 + m 2 N 3 MN, Nesti, Senjanović, Tello 11 m N ee = including the mixing LR + M 2 W M 2 W R MN, Senjanović, Tello 12 see also Lopez-Pavon, Huang 13 Barry, Rodejohann 13 p M 1 N M D ee M WR @TeVD 15.0 10.0 7.0 5.0 3.0 Excluded by Cosmology 1.0 Excluded by 0n2b 0.1 0.3 m ee N @evd V R en = 0.8 R = 0.4 V mn V R tn = 0.4 LHC reach HL=300êfbL NME uncertainties axial coupling Barea, Kotila, Iachello 12, 13, 15 Theoretical Limit 2.0 0.01 0.1 1 10 100 1000 m N @GeVD