EEL 5245 POWER ELECTRONICS I Lecture #14: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

Similar documents
ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

6.3. Transformer isolation

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Cross Regulation Mechanisms in Multiple-Output Forward and Flyback Converters

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Converter System Modeling via MATLAB/Simulink

Power Electronics

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Generalized Analysis for ZCS

Sliding-Mode Control of the DC-DC Ćuk Converter in Discontinuous Conduction Mode

Teaching of Switch-Mode Power Electronics Using A Building-Block Approach, Assisted by PSpice Modeling

LECTURE 44 Averaged Switch Models II and Canonical Circuit Models

Lecture 12 - Non-isolated DC-DC Buck Converter

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Chapter 7 DC-DC Switch-Mode Converters

ANALYSIS OF SMALL-SIGNAL MODEL OF A PWM DC-DC BUCK-BOOST CONVERTER IN CCM.

Computationally efficient models for simulation of non-ideal DC DC converters operating in continuous and discontinuous conduction modes

LECTURE 12 Lossy Converters (Static State Losses but Neglecting Switching Losses) HW #2 Erickson Chapter 3 Problems 6 & 7 A.

Lecture 17 Push-Pull and Bridge DC-DC converters Push-Pull Converter (Buck Derived) Centre-tapped primary and secondary windings

Project Components. MC34063 or equivalent. Bread Board. Energy Systems Research Laboratory, FIU

Electrical Circuits (2)

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Chapter 8: Converter Transfer Functions

Figure Circuit for Question 1. Figure Circuit for Question 2

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter

Part II Converter Dynamics and Control

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

First-order transient

REACTANCE. By: Enzo Paterno Date: 03/2013

ECE1750, Spring 2018 Week Buck Converter

Lecture 46 Bode Plots of Transfer Functions:II A. Low Q Approximation for Two Poles w o

ECE1750, Spring Week 11 Power Electronics

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

San Jose State University Department of Electrical Engineering. Exam 2 Solution. EE 098-MIT 6.002x Fall 2012

Regulated DC-DC Converter

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Key Features

Modeling Buck Converter by Using Fourier Analysis

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

Electric Circuits. Overview. Hani Mehrpouyan,

EE40 Midterm Review Prof. Nathan Cheung

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

On backstepping controller Design in buck/boost DC-DC Converter

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Topic 4. The CMOS Inverter

Designing an LLC Resonant Half-Bridge Power Converter

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

7.3 State Space Averaging!

The Pennsylvania State University. The Graduate School. Department of Electrical Engineering ANALYSIS OF DC-TO-DC CONVERTERS

I R TECHNICAL RESEARCH REPORT. Poles and Zeros for Sampled-Data Duty-Ratio-to-Output Dynamics of Buck and Boost Converters. by C.-C. Fang T.R.

ECE2262 Electric Circuits. Chapter 1: Basic Concepts. Overview of the material discussed in ENG 1450

ELECTRONICS E # 1 FUNDAMENTALS 2/2/2011

Averaged dynamics of a coupled-inductor boost converter under sliding mode control using a piecewise linear complementarity model

Alternating Current Circuits. Home Work Solutions

Introduction to AC Circuits (Capacitors and Inductors)

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

MAU100 Series. 1W, Miniature SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

Control Systems Engineering (Chapter 2. Modeling in the Frequency Domain) Prof. Kwang-Chun Ho Tel: Fax:

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

Electronic Power Conversion

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007.

MAU200 Series. 1W, High Isolation SIP, Single & Dual Output DC/DC Converters MINMAX. Block Diagram. Key Features

Solution to Tutorial 5 Isolated DC-DC Converters & Inverters

HighpowerfactorforwardAC-DC converter with low storage capacitor voltage stress

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

Design Engineering MEng EXAMINATIONS 2016

EE221 - Practice for the Midterm Exam

OPAMPs I: The Ideal Case

THE MULTI INPUT-MULTI OUTPUT STATE SPACE AVERAGE MODEL OF KY BUCK-BOOST CONVERTER INCLUDING ALL

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

Review of Basic Electrical and Magnetic Circuit Concepts EE

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

Distributing Tomorrow s Technologies For Today s Designs Toll-Free:

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

Modeling, Analysis and Control of an Isolated Boost Converter for System Level Studies

ECE 201 Fall 2009 Final Exam

ECE 241L Fundamentals of Electrical Engineering. Experiment 5 Transient Response

Electrical Engineering Fundamentals for Non-Electrical Engineers

Unified Steady-state Computer Aided Model For Soft-switching DC-DC Converters

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

Lecture 7: September 19th, The following slides were derived from those prepared by Professor Oldham for EE40 in Fall 01. Version Date 9/19/01

Exercise 2: Power Factor

Lab #4 Capacitors and Inductors. Capacitor Transient and Steady State Response

The Usage of the Digital Controller in Regulating Boost Converter

The output voltage is given by,

AC Circuits Homework Set

Section 5 Dynamics and Control of DC-DC Converters

Switched Capacitor DC/DC Marx Converter Loss Models Advanced Power Electronics Final Project FT08

Chapter 33. Alternating Current Circuits

Parasitic Capacitance E qoss Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs

MOS Amplifiers Dr. Lynn Fuller Webpage:

Transcription:

EE 545 POWER EECTRONICS I ecture #4: Chapter 4 Non-Isolated DC-DC Converters PWM Converters DCM Analysis (DCM)

Objectives Overview of Discontinuous Conduction Mode Buck Converter Analysis (DCM) Simulation of Buck in DCM Boost and Buck Boost Converter Analysis (DCM) Voltage Conversion Ratio (M=Gain) Average Input and Output Currents Output Voltage Ripple via Charge approximation Boundary Between CCM and DCM Examples of Analysis and Design for Boost and Buck Boost Converters in CCM/DCM PSPICE Simulation Verification

DCM Buck Converter i min = 0 Means inductor current starts at zero (i (0)=0), and ends at zero (i (T)=0) For a certain inductor value, DCM occurs as load is low,, Io is small. Io<Io,critical - In DCM, Vo/Vin= M= f(d,t,r,) Vo/Vin= M= f(d,d ) and D = f(d,t,r,)

Intuitive Concepts (All other variables are constant) Smaller Smaller Io arger T arger inductor current slope arger inductor current ripple More likely to go to DCM Smaller inductor average current (DC value) More likely to go to DCM Extended switching period allows more time for I to reach zero arger inductor current ripple More likely to go to DCM 3

DCM Buck Analysis S Mode : S on, D off Inductor charges from zero Mode : S off, D on Inductor discharges to zero 0 DT DT D T D T T V = Vin Vo I (0)=0 Vin Vo Vo I() t t I() t ( tdt) I( DT) Mode 3: S off, D off Inductor current =0 V = -Vo V = 0 I() t 0 oad is supplied by output capacitance4

I (0) 0 I( DT ) Vin Vo DT Volt Second balance: (Vin-Vo)*DT - Vo*(D -D)T = 0 Vo D M Vin D I max -I o c -I o o Vin-Vo -Vo o DT D T T t 5

I avg, Vo Io R I ( DT ) DT T Vo ( ) D RDT Vin Vo M RDT M Area under curve T Vin Vo DDT o 6

Solve for M D M D RD T M M M RD T M RD T M M M M RD T RD T M 0 Find roots of M b b 4ac a DRT 8 M 4 D RT 7

8 n R T RT 8 4 n n D M D Power Electronics often uses gain curves for design. It is easier to use normalized (Unit less) parameters, such as:

Book corrections - Eq. 4.9 must be corrected to: I D 8 D Eq.4.9 n 3 n nmax 4 n D - The y-axis in fig. 4.44 must be labeled I nmax instead of M 9

DCM buck Output voltage ripple I max -I o I max Imax Io DT t t ( I max Io) DT t t I Q ( t t )( Imax Io ) ( Imax Io) DT Vc C I V c max max Vo ( ) D RDT Vin Vo ( Imax Io) Vo CRD I ( Vin Vo) max Triangles similarity i c -I o v o, where t t DT D T T Vin Vo I max DT 0 t

CCM Boost Converter Mode : S on Mode : Mode : Switch and diode voltage stress= Vo Mode : S off

Voltage gain (from mode ) (from mode ) Using the above two equations, or using volt-second balance

Min & Max inductor current min Critical inductor Converter enters DCM when inductor current reaches zero I I max I in I in I I find critical Io?

CCM Boost Output voltage ripple Use capacitor charge Q DTI V o c V V c find v c (t)? o DTV CR D RCf o

DCM Boost Converter () Vin i t t 0 DT Vin Vo i () t ( tdt) I ( DT) DT D T i () 0 t D T T

( ) Vin I DT DT Using the above two equations, or using volt-second balance Vin DT ( Vin Vo)( D D) T 0 Vo D Vin D D from mode Vin Vo I( DT ) 0 ( DD) T I( DT) from mode i I v i D i c 0 V in (V o V in ) I (DT) I max I o DT D T I o T t t t I o

Solve for M I Davg, I ( DT ) ( D D ) T VinD( D ) Vo I o R T Vo R DD ( DT ) () Vin M D D ( D D) M D D D ( M ) DM D DM ( M ) () Substitute eq. in eq. M D n n RT D T

DCM boost output voltage ripple I I I ( D D) T t DT t max max o DT ( I max Io)( D D) T I max Q ( tdt )( Imax Io ) ( I max Io) ( D D) T Vc C I D I max DM ( M ) Vin DT max Triangles similarity I max i c I o I o v c V o t t

CCM Buck-Boost Converter Mode : S on Mode : Mode : Mode : S off 0 DT DT T Note that buck-boost is an inverting converter (output is negative) Switch and diode voltage stress= Vin + Vo

3

(from mode ) (from mode ) Using the above two equations, or using volt-second balance M> M< M= 3 M( D) 0 3 0 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 D 4

- D : D 5

Min & Max inductor current Critical inductor Converter enters DCM when inductor current reaches zero find critical Io? 6

CCM Buck-Boost Output voltage ripple Use capacitor charge Q DTI V o c V V c find v c (t)? o DTV CR D RCf o 7

DCM Buck-Boost Converter Mode : S off Mode : 0 DT Mode : Mode 3: i () t 0 i () t I c o Mode : S on Mode 3: S & D off DT D T D T T Switch and diode voltage stress= Vin + Vo 8

( ) Vin I DT DT from mode Vo I( DT ) 0 ( DD) T I( DT) from mode Using the above two equations, or using volt-second balance Vin DT Vo( D D) T 0 Vo D Vin D D 9

Solve for M I Davg, I ( DT ) ( D D ) T VinD( D ) Vo I o R T Vo R DD ( DT ) () Vin D M D D ( D D) M D DM D( M) D D( ) () M Substitute eq. in eq. M D n n RT D T 0

DCM Buck-Boost output voltage ripple I I I ( D D) T t DT t max max o DT ( I max Io)( D D) T I max Q ( tdt )( Imax Io ) ( I max Io) ( D D) T Vc C I D I max D( ) M Vin DT max Triangles similarity I max i c I o I o v c V o t t

Buck Converter Analysis: ipes Examples for Buck DCM DC/DC-Converter Basic Topologies Buck-Converter - () Buck-Converter - () Buck-Converter - (3) Buck-Converter: Start-Up with Constant Duty Cycle

Buck Converter Analysis: Simulation Verification Example-Buck DCM

Buck Converter Analysis: Simulation Verification Example-Buck DCM

Buck Converter Analysis: Simulation Verification Example-Buck DCM

Buck Converter Analysis: Simulation Verification Example-Buck DCM

Buck Converter Analysis: Simulation Verification Example-Buck DCM

Buck Converter Analysis: Simulation Verification Example-Buck DCM 0V.0V 0V.0V -0V 5.0A V(:,:) 9.880m,6.4896u) SE>> 0V.0A V(Gate).5A (9.894m,5.685m) 0A SE>> -.0A (9.890m,3.006) 9.8875ms 9.9000ms 9.95ms I() Time -.0A 9.89ms 9.90ms 9.9ms 9.9ms 9.93ms I(Cf) Time

Buck Converter Analysis: Simulation Verification Example-Buck DCM 6V 5V 4V 0V (0.000,4.048) 5V SE>> V.50A V(Road:) SE>> 0V.0A V(Road:).5A.0A.00A 9.89ms 9.90ms 9.9ms 9.9ms 9.93ms I(Road) Time 0A 0Hz 40KHz 80KHz 8KHz I(Road) Frequency

Example 4.-BuckBoost Consider a buck-boost converter with the following values: Vo=V, Pout=5W, Vin=0V and ƒ=00khz. (a) Design the above converter so that it will operate in ccm (b) Repeat part (a) for dcm, (c) Find the maximum inductor current under both ccm and dcm (d) If the load resistance increases by 50% (i.e. the load current changes.08a to.39a) determine the mode of operation for the two converters and then the maximum inductor current (e) Sketch the new inductor currents derived from part (e.)

Example 4.-BuckBoost V o := V in := 0 P o := 5 f := 00 0 3 T s := f (a) For CCM R := V o P o R = 5.76 crit := R T s ( D) 0 D D D :=.375 T s = 0 5 D T s = 3.75 0 6 solve, D.375 float, 3 crit =.5 0 5 Chose higher than crit for CCM :=. 0 3 Note-This is an arbitrary assignment that puts us into CCM mode. Since in CCM M is independent of, we do not effect the conversion ratio so long as >crit. The value of chosen does effect ripple current in the inductor though.

Example 4.-BuckBoost (b) For DCM Chose to less than crit := 5 0 6 τ n := R T s M D τ n τ n = 0.087 D := 0 τ n D = 0.5 M D D D solve, D 3

Example 4.-BuckBoost (c) For CCM :=. 0 3 D :=.375 i max D V in V in D T s D V in := R ( D) + i min := R ( D) V in D T s i max = 3.708 i min =.958 (c) For DCM := 5 0 6 D :=.5 i max := V in i max = 0 D T s

Example 4.-BuckBoost (d) Assume load resistance increase by 50% Assume Vo remains at V and Po Changes R := 5.76 +.5 5.76 D :=.375 R = 8.64 crit := R T s ( D) crit =.688 0 5 P := V o R P = 6.667 With at.mh, we are still in CCM for our original CCM design :=. 0 3 D :=.375 i max D V in V in D T s D V in := R ( D) + i min := R ( D) V in D T s i max =.597 i min =.847

Example 4.-BuckBoost For our original DCM design, reducing the load current moves us deeper into DCM (b) For DCM Chose to less than crit := 5 0 6 D R M τ n := T τ s n τ n = 0.058 D := 0 τ n M D D D D = 0.04 solve, D.5443305395873555 i max := V in i max = 8.65 D T s

Example 4.-BuckBoost Simulation CCM Original (R=5.76)

Example 4.-BuckBoost Simulation CCM Original (R=5.76) 0V 4.0A -5V 3.6A -0V 3.A -5V -0V 0s 5ms 0ms 5ms V(Output) Time 4.0.8A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time 3.0.0.0 0 4.980ms 4.985ms 4.990ms 4.995ms V(Gate) -I() Time

Example 4.-BuckBoost Simulation DCM Original (R=5.76)

Example 4.-BuckBoost Simulation DCM Original (R=5.76) 0V -5V 8 4-0V 0-5V 0s 5ms 0ms 5ms V(Output) Time -4 4.980ms 4.985ms 4.990ms 4.995ms -I() V(Gate) Time

Example 4.-BuckBoost Simulation CCM New (R=8.64)

Example 4.-BuckBoost Simulation CCM New (R=8.64) 0V.6A -5V.4A -0V.A -5V.0A -0V 0s 5ms 0ms 5ms V(Output) Time.8A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time

Example 4.-BuckBoost Simulation DCM New (R=8.64)

Example 4.-BuckBoost Simulation DCM New (R=8.64) 5V 0A 0V 5A -5V -0V 0A -5V 0s 5ms 0ms 5ms V(Output) Time -5A 4.980ms 4.985ms 4.990ms 4.995ms -I() Time