Submergence Escape in Oryza glaberrima Steud.

Similar documents
Growth Responses of Seedlings in Oryza glaberrima Steud. to Short-term Submergence in Guinea, West Africa

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Genetic Divergence Studies for the Quantitative Traits of Paddy under Coastal Saline Ecosystem

Breeding for Drought Resistance in Cacao Paul Hadley

Submergence tolerance of some modern rice cultivars at seedling and vegetative stages

Genetic and physiological approach to elucidation of Cd absorption mechanism by rice plants

Virupax Baligar 1, Alex-Alan Almeida 2, Dario Ahnert 2, Enrique Arévalo-Gardini 3, Ricardo Goenaga 4, Zhenli He 5, Marshall Elson 1

Response of Hybrid Lowland Rice (Oryza sativa L.) Cultivar FARO44 to Salinity in Coastal Plain Sands of the Niger Delta, Nigeria

Exemplar for Internal Assessment Resource Geography Level 3. Resource title: Water, water, everywhere?

Abiotic Stress in Crop Plants

EARLY WARNING IN SOUTHERN AFRICA:

Effect of Rust Disease on Photosynthetic Rate of Wheat Plant. Sevda Abdulbagiyeva, Atif Zamanov, Javanshir Talai and Tofig Allahverdiyev

IPC 24th Session, Dehradun Nov 2012

Effect of Weather Parameters on Population Dynamics of Paddy Pests

Drought lesson plan ITEMS. Teachers lesson plan. Student assignments. About droughts. Real life stories. Droughts: Be prepared.

DROUGHT RISK EVALUATION USING REMOTE SENSING AND GIS : A CASE STUDY IN LOP BURI PROVINCE

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK

DROUGHT ASSESSMENT USING SATELLITE DERIVED METEOROLOGICAL PARAMETERS AND NDVI IN POTOHAR REGION

MODELLING FROST RISK IN APPLE TREE, IRAN. Mohammad Rahimi

I to the renewed scientific interest in the introduction of cotton stocks from

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

SEASONAL CLIMATE OUTLOOK VALID FOR JULY-AUGUST- SEPTEMBER 2013 IN WEST AFRICA, CHAD AND CAMEROON

Eichhornia crassipes (water hyacinth) Tristylous, clonal

RCOF Review [Regional Climate Outlook Forum for the Gulf of Guinea region of Africa - PRESAGG] Status Report

Common Effects of Abiotic Stress Factors on Plants

Changes in Plant Metabolism Induced by Climate Change

References. 1 Introduction

What do plants compete for? What do animals compete for? What is a gamete and what do they carry? What is a gene?

Predicting rice (Oryza sativa) metabolism

Genetic Divergence for Yield and other Quantitative Traits in Rice (Oryza sativa L.)

Improvement of Quantitative Evaluation Method for Plant Type of Rice

World Meteorological Organization

Study of Genetic Diversity in Some Newly Developed Rice Genotypes

4/26/18. Domesticated plants vs. their wild relatives. Lettuce leaf size/shape, fewer secondary compounds

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

You are encouraged to answer/comment on other people s questions. Domestication conversion of plants or animals to domestic uses

Nutrient Uptake and Drymatter Accumulation of Different Rice Varieties Grown Under Shallow Water Depth

Effect of Moisture Stress on Key Physiological Parameters in Sunflower Genotypes

LECTURE 07: CROP GROWTH ANALYSIS

M14/3/GEOGR/SP2/ENG/TZ0/XX/Q GEOGRAPHY STANDARD LEVEL PAPER 2. Monday 19 May 2014 (morning) 1 hour 20 minutes INSTRUCTIONS TO CANDIDATES

Probability models for weekly rainfall at Thrissur

Status Analysis: projecting genotype performance into long term environment discrimination space

The Relationship between Vegetation Changes and Cut-offs in the Lower Yellow River Based on Satellite and Ground Data

Some changes in germination and morphological traits of black seed under different soil types and common bean densities

Introduction. Populus trichocarpa TORR. and GRAY. By M. G. R. CANNELL and S. C. WILLETT

Summary and Conclusions

CLIMATE CHANGE ADAPTATION BY MEANS OF PUBLIC PRIVATE PARTNERSHIP TO ESTABLISH EARLY WARNING SYSTEM

Chapter V SUMMARY AND CONCLUSION

By Geri Flanary To accompany AP Human Geography: A Study Guide 3 rd edition By Ethel Wood

Detailed Course Outline

What is insect forecasting, and why do it

Chapter 24 Southern Africa

Your web browser (Safari 7) is out of date. For more security, comfort and the best experience on this site: Update your browser Ignore

Measuring Disaster Risk for Urban areas in Asia-Pacific

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey

Dar es Salaam - Reality Check Workshop

Improvement of Photosynthetic Capacity in Soybean Variety

Manuscript received May 17,1971 Revised copy received September 14, 1971 ABSTRACT

Cotton Economics Research Institute CERI Outlook Report

EFFECTS OF WATER DEFICIT ON PHYSIOLOGY AND MORPHOLOGY OF THREE VARIETIES OF NERICA RAINFED RICE (Oryza sativa L.)

Lassen Community College Course Outline

FINAL VERSION_ Secondary Preservice Teacher Standards -- Life Science AFK12SE/NGSS Strand Disciplinary Core Idea

Predict. Perform. Profit. Highly accurate rain forecasts a missing link to Climate Resilient Agriculture in West Africa

PROF. DR HAB. PIOTR TRYJANOWSKI

Mapping QTL for Seedling Root Traits in Common Wheat

Sec$on 1: Geography and Early China. How does China s geography affect the culture?

Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer

Cambridge International Examinations Cambridge Ordinary Level

NOS 18 Scientific Explanations

Workshop on Drought and Extreme Temperatures: Preparedness and Management for Sustainable Agriculture, Forestry and Fishery

COMPARATIVE PERFORMANCE OF BRASSICA NAPUS AND ERUCA SATIVA UNDER WATER DEFICIT CONDITIONS: AN ASSESSMENT OF SELECTION CRITERIA

Pollen fertility Vs Spikelet fertility in F2 of a CMS based hybrids in rice (Oryza sativa L.) under Aerobic condition

Chapter 1. Global agroclimatic patterns

How to integrate wetland processes in river basin modeling? A West African case study

Meteorological alert system in NMS of Mongolia

The study of the impact of climate variability on Aman rice yield of Bangladesh

Identification of Rhizosphere Abiotic Stress Tolerance and Related Root Traits in Soybean [ Glycine max ( L. ) Merr. ]

THE OCCURENCE OF A HYBRID SWARM INVOLVING O. LONGISTAMINATA A. IN JEBBA, NIGERIA.

GENETIC ANALYSES OF ROOT SYSTEM DEVELOPMENT IN THE TOMATO CROP MODEL

Module 3, Investigation 1: Briefing 2 The ENSO game: Predicting and managing for El Niño and La Niña

Effect of the age and planting area of tomato (Solanum licopersicum l.) seedlings for late field production on the physiological behavior of plants

ANALYSIS OF FLOODS AND DROUGHTS IN THE BAGO RIVER BASIN, MYANMAR, UNDER CLIMATE CHANGE

Kevin Foster. School of Plant Biology Faculty of Natural and Agricultural Sciences

Ethephon in Sugarcane Cultivation

Effect of 1-MCP on Water Relations Parameters of Well-Watered and Water-Stressed Cotton Plants

International Flood Network - IFNet

Geography Teach Yourself Series Topic 4: Global Distribution of Land Cover

Word Cards. 2 map. 1 geographic representation. a description or portrayal of the Earth or parts of the Earth. a visual representation of an area

GIRLS SECON DARY - MRIEĦEL HALF-YEARLY EXAMINATIONS 2016/2017

Structures and Functions of Living Organisms (LS1)

Secondary Curriculum Maps

EVALUATION OF SPAD AND LCC BASED NITROGEN MANAGEMENT IN RICE (Oryza sativa L.) Abstract

WHEN CAN YOU SEED FALLOW GROUND IN THE FALL? AN HISTORICAL PERSPECTIVE ON FALL RAIN

Climate Change in the Inland Pacific Northwest

It is relatively simple to comprehend the characteristics and effects of an individual id fire. However, it is much more difficult to do the same for

Major Nutrients Trends and some Statistics

Drought Tolerant Criterion of Wheat Genotypes Using Carbon Isotopes Discrimination Technique

SELECTING NEW Brachiaria FOR BRAZILIAN PASTURES. 2 CNPq fellow. Abstract

Source-Sink Relationship in Intersubspecific Hybrid Rice

Transcription:

Submergence Escape in Oryza glaberrima Steud. Jun-Ichi Sakagami a, *, Chiharu Sone a, Naoyoshi Kawano b a Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan b Rural Development Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan *Corresponding author: Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, 1-1, Ohwashi, Tsukuba, Ibaraki 305-8686, Japan Tel.:+81 29 838 6368; Fax: +81 29 838 6355. sakajun@affrc.go.jp Abstract Oryza glaberrima, an African monocarpic annual rice derived from Oryza barthii, is grown in traditional rice producing wetland areas of West Africa. Oryza sativa, an Asian rice that varies from annual to perennial, is derived from Oryza rufipogon. Genotypes of O. glaberrima are inherently lower yielding than those of O. sativa and are, therefore, cultivated in fewer areas. However, because they grow adequately in unstable environments such as those with water stress, they appear to tolerate severe environmental stress. Cultivars of O. glaberrima are roughly divisible into two ecotypes: upland and lowland. However, it might be that O. glaberrima is a valuable rice species for flooding conditions in all cases. To elucidate the physiological responses of young rice plants to short-term submergence stress, so-called flash flooding, under rainfed conditions for O. glaberrima by comparison with several genotypes for lowland adapted, deepwater adapted shoot elongated escape and Sub1 of O. sativa, 30-day-old seedlings were submerged completely for 10 d at 45 cm water depth at 13 d after transplantation in a lowland field. In fact, O. glaberrima showed higher shoot elongation ability during submergence than any genotype of O. sativa that we tested. However, O. glaberrima lodged easily after the end of submergence because of longer and more rapid shoot elongation during submergence. Therefore, it triggered a decrease in its survival rate. On the other hand, various lines of 35 O. sativa and 27 O. glaberrima, including some classified as short-term submergence tolerant, were compared for submergence tolerance in field and pot experiments to long-term submergence tolerant varieties in other words, deepwater varieties. Submergencetolerant cultivars of O. sativa were unable to survive prolonged complete submergence for 31 37 d, which indicated that the mechanism of suppressed leaf elongation that confered increased survival of short-term submergence was inadequate for surviving long periods underwater. The superior tolerance of deepwater O. sativa and O. glaberrima genotypes to prolonged complete submergence appeared to be attributable to their greater photosynthetic capacity developed by leaves that had newly emerged above the floodwater. Cultivars of O. glaberrima adapt to long-term complete submergence. Cultivar Saligbeli adapted to short to long term submergence. Keywords: glaberrima, lodging, photosynthesis, shoot elongation, submergence escape Introduction Rice farming in Africa began approximately 3500 years ago (Porter, 1970). The rice variety cultivated at the time was African rice (Oryza glaberrima Steud.), which is native to the continent (Chu and Oka, 1972). African rice is well adapted to the severe local climate, but it has had little opportunity to be improved or selected by humans. It is, therefore, regarded as wild and of low productivity. For that reason, Asian rice (O. sativa L.) accounts for a high proportion of the rice consumed in Africa today. However, the development and promotion of a NEw RIce for AfriCA (NERICA) is attracting attention in Africa. Moreover, the properties of African rice, which was employed as a parent strain in the production of NERICA, are now being reassessed. In this manner, rice farming in Africa has been developed differently from that in Asia, and cultivation and cooking methods also differ in many ways. Farmers cultivate rice in irrigated lowlands in Asia, 24 Proceedings of The 7 th ACSA Conference 2011

although rainfed uplands in Africa account for most rice fields. African farmers attach great importance to the quantity immediately after cooking in many cases (Sakagami et al., 2008). Although rice consumption in African countries has shown an increasing trend in recent years, the production rate is not sufficient to meet the demand. The volume of imported rice is increasing annually, which is having a detrimental effect on African countries economies. In general, rice cultivation is vulnerable to natural disasters in West Africa. One reason is the shortage of suitable irrigation systems. The area of irrigation is less than 20% of the total area of rice cultivation, and most rice is planted in rainfed regions (Balasubramanian et al., 2007). Therefore, rice cultivation in West Africa is strongly influenced by precipitation or overflow from rivers. However, the status of damage to rice plants by flooding in West Africa has not been understood well until now. Upland rice is severely influenced by rainfall because of the lack of standing water. Yields of upland rice are very low (around 1 t ha -1 ) compared with those of lowland rice cultivation (around 2 t ha -1 ) (Norman and Otoo, 2003). Lowlands, therefore, offer greater potential for raising rice production, and represent about 20 50 million hectares, depending on the definition used. At present, only about 10 20% of this area is under cultivation (Africa Rice Center, 2004), thereby offering great potential for rice farming expansion. However, rice plants in lowland areas are often damaged by floods caused by heavy rain. It is, therefore, important to study the effects of submergence on rice plants to develop sustainable rice production in West Africa. Genotypes of O. glaberrima are inherently lower yielding than those of O. sativa and are, therefore, cultivated in fewer areas (Linares, 2002). However, because they grow adequately in unstable environments such as those with water stress, they appear to tolerate severe environmental stress. Flooding imposes severe selection pressure on plants, principally because excess water in the plant surroundings can deprive them of certain basic needs, notably of oxygen and of carbon dioxide and light for photosynthesis. It is a major abiotic influence on species distribution and agricultural productivity world-wide. Based on our analysis, most O. glaberrima varieties adapt well when floods are deeper and when they entail long-term submergence in Africa because of their greater photosynthetic capacity developed by leaves that have newly emerged above floodwaters through rapid shoot elongation. Materials and Methods Experiment 1: Responses to short-term submergence flash flood To elucidate the physiological responses of young rice plants to short-term submergence stress, so-called flash flooding, under rainfed conditions for O. glaberrima by comparison with several genotypes for lowland adapted, deepwater adapted shoot elongated escape and Sub1 of O. sativa, 30-day-old seedlings were submerged completely for 10 d at 45 cm water depth at 13 d after transplantation in a lowland field of Guinea. Dry matter production, plant height, lodging and surviving rate were compared. Experiment 2: Responses to long-term submergence deep water Various lines of 35 O. sativa and 27 O. glaberrima, including some classified as short-term submergence tolerant, were compared for submergence tolerance in field and pot experiments to long-term submergence tolerant varieties in other words, deep-water varieties. Plants were submerged completely for 31 d in a field experiment, and partially or completely for 37 d in a pot experiment in a growth chamber. Dry matter production, plant height, leaf area, and photosynthetic rate were compared. Experiment 3: Flash flood tolerance for cultivated species Lodging, plant height, and dry matter accumulation for 99 cultivars in O. sativa, O. glaberrima, and interspecific hybridization progenies (IHP) were measured when 12-day-old Proceedings of The 7 th ACSA Conference 2011 25

seedlings were submerged completely for 7 d in pots and in fields to make an evaluation of flash flood tolerance. Results and Discussion There was a high positive correlation (P < 0.01, r =0.86) between shoot length elongation during short term submergence and lodging score at 15 DAS (Day After Submergence) in experiment 1. DRL (Deep-water to Rainfed Lowland genotype in O. glaberrima) showed higher shoot elongation during submergence and a higher lodging score after desubmergence than other genotypic groups. On the other hand, ST (Submergence Tolerance genotype) showed the opposite features to DRL with lower shoot elongation and lodging score. RL (Rainfed Lowland genotype), DW (Deep-Water genotype) and SE (Shoot Elongation genotype) showed intermediate traits in shoot length elongation and lodging score between DRL and ST. Figure 1 shows the relationship between shoot length elongation during submergence and survival rate at 19 DAS. There was a negative correlation between shoot length elongation and survival rate (P < 0.05, r = -0.66). Figure 1. Effect of shoot length elongation on survival rate. Survival rate was calculated for number of plants before submergence divided by number of surviving plants at 19 day after desubmegence ST of Sub1 showed the highest survival rate (93%) and the shortest shoot length elongation (6.8 cm) as well as IR 62293-2B-18-2-2-1-3-2-3 (86%, 11.5 cm) in the SE group. The survival rate of DRL was lower compared with ST. O. glaberrima showed higher shoot elongation ability during submergence than any genotype of O. sativa tested. However, O. glaberrima lodged easily after desubmergence due to longer and rapid shoot elongation during submergence, and thus triggered a decrease in its survival rate. We suggested that O. glaberrima was susceptible to short-term submergence while it may be adapted to prolonged flooding because of improved restoration of aerial photosynthesis and survival rate through shoot elongation ability All cultivars of O. sativa with submergence tolerance based on the quiescence strategy failed to regain contact with the aerial environment and died during 31 d submergence in the field experiment 2. In contrast, all O. glaberrima genotypes resurfaced and survived submergence. The photosynthetic rates of the youngest fully expanded leaf of the main shoot of pot-grown plants were measured in pot experiment 2. The non-submerged rate for IR73020 (30.9 μmol m -2 s -1 ) 1 DBS(Day Before Submergence) was significantly above those for other genotypes. The rate for Yele1A (6.74 μmol m -2 s -1 ) was the lowest. It was, however, significantly greater for Yele1A than for other genotypes in non-submergence plots (29.2 μmol m -2 s -1 ), in partial submergence plots (30.3 μmol m -2 s -1 ) and in complete submergence plots (34.8 μmol m -2 s -1 ) 37 DAS. The photosynthetic rate at 37 DAS in partial and complete submergence was closely related to the NAR (Net Assimilation Rate) during submergence in the pot experiment (Figure 2). 26 Proceedings of The 7 th ACSA Conference 2011

Symbols represent non-submerged plants, partially submerged plants and completely submerged plants as indicated. The number next to each symbol indicate the cultivars: 1, Banjoulou ; 2, IR71700 ; 3, IR73020 ; 4, Nylon ; and 5, Yele1A Figure 2. Relationship between net assimilation rate during submergence and photosynthetic rate after 37 d submergence in a pot experiment. The superior tolerance of deepwater O. sativa and O. glaberrima genotypes to prolonged complete submergence appears to be due to their greater photosynthetic capacity developed by leaves newly emerged above the floodwater. Vigorous upward leaf elongation during prolonged submergence is, therefore, critical for ensuring shoot emergence from water, leaf area extension above the water surface and a subsequent strong increase in shoot biomass. Increase in shoot DMA after desubmergence was negatively correlated with shoot elongation during submergence, r = 0.36 (P < 0.01) in experiment 3. ST were plotted in the area of short shoot elongation and high increase in DMA (Dry Matter Accumulation), while O. glaberrima, except for Saligbeli, were plotted in the area opposite to that of ST. Some LS (Lowland Sativa genotype) and LI (Lowland Interspecific progenies genotype) were plotted close to the ST for both shoot elongation and shoot DMA. Increase in DMA after desubmergence of all US (Upland Sativa genotype) was less than that of ST. The first principal component explained 46.8%, and for the classification of cultivars according to their physiological responses to flash floods. The results of the cluster analysis were compared to the principal component analysis results (Figure 3). Principal component analysis was performed with the increase in DMA from 1 DAD to 14 DAD, and lodging at 1 DAD, shoot elongation during submergence, and increased DMA during submergence. In Clusters I, III, and VIII, the main genotypes belonging to each cluster group were classified on the principal component analysis. Cluster I, including ST cultivars, and Cluster VIII, including O. glaberrima, were positioned in opposite regions except for Saligbeli. Saligbeli exhibited enhanced shoot elongation with the increase in DMA during submergence. These features seemed to be a unique way to cope with submergence. Proceedings of The 7 th ACSA Conference 2011 27

I Axis I is the first principal component (y = 0.403942 x1 + 0.434866 x2 + 0.329416 x3 0.271996 x4). Axis II is the second principal component (y = 0.068947 x1 0.080874 x2 + 0.618871 x3 +0.722613 x4), x1, x2, x3 and x4 represent increase in DMA after desubmergence, lodging score, shoot elongation and increase in DMA during submergence respectively. All data are standardized. ( ) Upland Sativa, ( ) Lowland Sativa, ( ) Upland Glaberrima ( ) Lowland Glaberrima, ( ) Upland IHP, ( ) Lowland IHP, ( ) Submergence tolerance. Figure 3. Principal component analysis of the physiological traits linked to submergence (shoot elongation during submergence, increase in dry matter accumulation during submergence, lodging score and increase in dry matter accumulation after desubmergence. References Africa Rice Center. 2004. Going beyond the upland NERICA: another African Rice is born. In Annual Report 2003 2004. Cotonu, Benin. Balasubramanian, V., Sie, M., Hijmans, RJ. & Otsuka, K. 2007. Increasing rice production in Sub-Saharan Africa: Challenges and opportunities. Advances in Agronomy 94:55-133. Chu, YE. & Oka, HI. 1972. The distribution and effects of genes causing F1 weakness in Oryza breviligulata and O. glaberrima. Genetics 70:163-173. Linares, O.F. (2002). African rice (Oryza glaberrima): history and future. Proceedings of the National Academy of Sciences of the United States of America, 99:16360 16365. Norman, JC. & Otoo, E. 2003. Rice development strategies for food security in Africa In: Proceedings of the 20th Session of the International Rice Commission. Food and Agricultural Organization of the United Nations. Porteres, R. 1970. Primary cradles of agriculture in the Africa continent. In: Fage, J., Oliver, R. (eds.). African Prehistory. Cambridge University Press, Cambridge, UK, pp. 43-58. Sakagami, J-I., Hatta, T., Kamidozono, A., Masunaga, T., Umemoto, T. & Uchida, S. 2008. The actual condition of traditional rice culture in inland valley delta of Niger River. JIRCAS Working Report. In: Sakagami, J-I. Ito, O.(eds). pp. 37-52. -- back to Table of Content -- 28 Proceedings of The 7 th ACSA Conference 2011